UWB Circular Fractal Antenna with High Gain for Telecommunication Applications
<p>The proposed antenna structure (<b>a</b>) Top view (<b>b</b>) Back view.</p> "> Figure 2
<p>Different development stages: (<b>a</b>) initiator, (<b>b</b>) Iteration 1, (<b>c</b>) Iteration 2, (<b>d</b>) Iteration 3, (<b>e</b>) Proposed Design.</p> "> Figure 3
<p>Proposed antenna reflection coefficients during various phases of development.</p> "> Figure 4
<p>Simulated S11 parameters as functions of Wp.</p> "> Figure 5
<p>Simulated S11 parameters as functions of “Pos”.</p> "> Figure 6
<p>Simulated S11 parameters as functions of “Ep”.</p> "> Figure 7
<p>Suggested patch surface current distributions (<b>a</b>) at 3.17 GHz, (<b>b</b>) at 5.82 GHz, (<b>c</b>) at 7.86 GHz, and (<b>d</b>) at 9.16 GHz.</p> "> Figure 8
<p>Patch prototype. (<b>a</b>) Top view, (<b>b</b>) bottom view, and (<b>c</b>) installation for measuring radiation characteristics in the anechoic chamber.</p> "> Figure 9
<p>Comparison of measured and simulated results of the proposed fractal patch.</p> "> Figure 10
<p>Peak gain of the suggested patch.</p> "> Figure 11
<p>Radiation efficiency of the suggested patch.</p> "> Figure 12
<p>(<b>a</b>) 2D radiation pattern and (<b>b</b>) Co-polarization and cross-polarization.</p> "> Figure 13
<p>Time–domain response.</p> "> Figure 14
<p>Group delay.</p> ">
Abstract
:1. Introduction
2. Antenna Design
2.1. A. Planar Fractal Antenna Planned Development Stages
2.2. B. The Reflection Coefficient (S11) Analysis for Various Development Stages
3. Parametric Study
3.1. Effect of Feed Line Width “Wp”
3.2. Effect of Ground Plane Slot Position “Pos”
3.3. Effect of Ground Plane Slot Width “Ep”
3.4. Surface Current Distribution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirtania, S.G.; Younes, B.A.; Hossain, A.R.; Karacolak, T.; Sekhar, P.K. CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications. Micromachines 2021, 12, 453. [Google Scholar] [CrossRef]
- Kikuta, K.; Hirose, A. Compact Folded-Fin Tapered Slot Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1192–1195. [Google Scholar] [CrossRef]
- Zhong, Y.-W.; Yang, G.-M.; Zheng, L.-R. Planar circular patch with elliptical slot antenna for ultrawideband communication applications. Microw. Opt. Technol. Lett. 2014, 57, 325–328. [Google Scholar] [CrossRef]
- Ojaroudi, M.; Ghobadi, C.; Nourinia, J. Small Square Monopole Antenna with Inverted T-Shaped Notch in the Ground Plane for UWB Application. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 728–731. [Google Scholar] [CrossRef]
- Hirt, W. Ultra-wideband radio technology: Overview and future research. Comput. Commun. 2003, 26, 46–52. [Google Scholar] [CrossRef]
- Alam, J.; Faruque, M.R.I.; Hasan, M.; Islam, M.T. Split quadrilateral miniaturised multiband microstrip patch antenna design for modern communication system. IET Microw. Antennas Propag. 2017, 11, 1317–1323. [Google Scholar] [CrossRef]
- Ramos, A.; Lazaro, A.; Girbau, D. RFID and Wireless Sensors Using Ultra-Wideband Technology; Livre Électronique, Scribd; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Anveshkumar, N.; Gandhi, A.S. Lumped Equivalent Models of Narrowband Antennas and Isolation Enhancement in a Three Antennas System. Radioengineering 2018, 27, 646–653. [Google Scholar] [CrossRef]
- Davoli, L.; Belli, L.; Cilfone, A.; Ferrari, G. From Micro to Macro IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and Sub-GHz Technologies. IEEE Internet Things J. 2017, 5, 784–793. [Google Scholar] [CrossRef]
- Dumoulin, A.; John, M.; Ammann, M.J.; McEvoy, P. Optimized Monopole and Dipole Antennas for UWB Asset Tag Location Systems. IEEE Trans. Antennas Propag. 2012, 60, 2896–2904. [Google Scholar] [CrossRef]
- Gao, G.-P.; Hu, B.; Wang, S.-F.; Yang, C. Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 434–437. [Google Scholar] [CrossRef]
- Islam, M.T.; Islam, M.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications. Sensors 2015, 15, 11601–11627. [Google Scholar] [CrossRef]
- Kang, C.-H.; Wu, S.-J.; Tarng, J.-H. A Novel Folded UWB Antenna for Wireless Body Area Network. IEEE Trans. Antennas Propag. 2011, 60, 1139–1142. [Google Scholar] [CrossRef]
- Nejdi, I.H.; Das, S.; Rhazi, Y.; Madhav, B.T.P.; Bri, S.; Aitlafkih, M. A Compact Planar Multi-Resonant Multi-Broadband Fractal Monopole Antenna for Wi-Fi, WLAN, Wi-MAX, Bluetooth, LTE, S, C, and X Band Wireless Communication Systems. J. Circuits Syst. Comput. 2022, 31, 2250204. [Google Scholar] [CrossRef]
- Qu, S.-W.; Ruan, C.-L.; Xue, Q. A Planar Folded Ultrawideband Antenna With Gap-Loading. IEEE Trans. Antennas Propag. 2007, 55, 216–220. [Google Scholar] [CrossRef]
- Marzouk, M.; Nejdi, I.H.; Rhazi, Y.; Saih, M. Multiband and Wide Band Octagonal Fractal Antenna for Telecommunication Applications. In Proceedings of the 2022 8th International Conference on Optimization and Applications (ICOA), Genoa, Italy, 6–7 October 2022; pp. 1–6. [Google Scholar]
- Hussain, N.; Awan, W.A.; Naqvi, S.I.; Ghaffar, A.; Zaidi, A.; Iftikhar, A.; Li, X.J. A Compact Flexible Frequency Reconfigurable Antenna for Heterogeneous Applications. IEEE Access 2020, 8, 173298–173307. [Google Scholar] [CrossRef]
- Biswas, B.; Ghatak, R.; Poddar, D.R. A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System. IEEE Trans. Antennas Propag. 2017, 65, 6126–6129. [Google Scholar] [CrossRef]
- Nie, L.Y.; Lin, X.Q.; Yang, Z.Q.; Zhang, J.; Wang, B. Structure-Shared Planar UWB MIMO Antenna With High Isolation for Mobile Platform. IEEE Trans. Antennas Propag. 2018, 67, 2735–2738. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, X.; Zhan, J.; Hu, S.; Xi, Z.; Liu, Y. Compact UWB-MIMO Antenna with High Isolation and Triple Band-Notched Characteristics. IEEE Access 2019, 7, 19856–19865. [Google Scholar] [CrossRef]
- Das, S.; Islam, H.; Bose, T.; Gupta, N. Ultra Wide Band CPW-Fed Circularly Polarized Microstrip Antenna for Wearable Applications. Wirel. Pers. Commun. 2019, 108, 87–106. [Google Scholar] [CrossRef]
- Simorangkir, R.B.; Kiourti, A.; Esselle, K.P. UWB Wearable Antenna with a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 493–496. [Google Scholar] [CrossRef]
- Liu, F.; Xu, K.; Zhao, P.; Dong, L.; Wang, G. Uniplanar dual-band printed compound loop antenna for WLAN/WiMAX applications. Electron. Lett. 2017, 53, 1083–1084. [Google Scholar] [CrossRef]
- Saha, T.K.; Goodbody, C.; Karacolak, T.; Sekhar, P.K. A compact monopole antenna for ultra-wideband applications. Microw. Opt. Technol. Lett. 2018, 61, 182–186. [Google Scholar] [CrossRef]
- Ali, E.M.; Awan, W.A.; Alizaidi, M.S.; Alzahrani, A.; Elkamchouchi, D.H.; Falcone, F.; Ghoneim, S.S.M. A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices. Sensors 2023, 23, 748. [Google Scholar] [CrossRef] [PubMed]
- Zahran, S.R.; Abdalla, M.A.; Gaafar, A. Time domain analysis for foldable thin UWB monopole antenna. AEU Int. J. Electron. Commun. 2018, 83, 253–262. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, L.; Chen, Q.; Yang, W.; Qu, H. Flexible UWB antenna fabricated on polyimide substrate by surface modification and in situ self-metallization technique. Microelectron. Eng. 2019, 206, 12–16. [Google Scholar] [CrossRef]
- Hamouda, Z.; Wojkiewicz, J.; Pud, A.A.; Kone, L.; Bergheul, S.; Lasri, T. Flexible UWB organic antenna for wearable technologies application. IET Microw. Antennas Propag. 2018, 12, 160–166. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Ashraf, M.I.; Salamin, M.A. A dual-mode double-sided 4 × 4 MIMO slot antenna with distinct isolation for WLAN/WiMAX applications. Microsyst. Technol. 2020, 27, 967–983. [Google Scholar] [CrossRef]
- Chouhan, S.; Panda, D.K.; Kushwah, V.S.; Singhal, S. Spider-shaped fractal MIMO antenna for WLAN/WiMAX/Wi-Fi/Bluetooth/C-band applications. AEU Int. J. Electron. Commun. 2019, 110, 152871. [Google Scholar] [CrossRef]
- Ben Nsir, C.; Ribero, J.-M.; Boussetta, C.; Gharsallah, A. A Wide Band Transparent Koch Snowflake Fractal Antenna Design for Telecommunication Applications. In Proceedings of the 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), Hammamet, Tunisia, 31 October–2 November 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Choukiker, Y.K.; Behera, S.K. Wideband frequency reconfigurable Koch snowflake fractal antenna. IET Microw. Antennas Propag. 2017, 11, 203–208. [Google Scholar] [CrossRef]
- Kulkarni, J.; Sim, C.-Y.; Poddar, A.K.; Rohde, U.L.; Alharbi, A.G. A Compact circularly polarized rotated L-shaped antenna with J-shaped defected ground strucutre for wlan and V2X applications. Prog. Electromagn. Res. Lett. 2022, 102, 135–143. [Google Scholar] [CrossRef]
- Midya, M.; Bhattacharjee, S.; Mitra, M. Compact cpw-fed circularly polarized antenna for wlan application. Prog. Electromagn. Res. M 2018, 67, 65–73. [Google Scholar] [CrossRef]
- Srivastava, K.; Mishra, B.; Singh, R. Microstrip-line-fed inverted L-shaped circularly polarized antenna for C-band applications. Int. J. Microw. Wirel. Technol. 2021, 14, 502–510. [Google Scholar] [CrossRef]
- Desai, A.; Kulkarni, J.; Kamruzzaman, M.M.; Hubalovsky, S.; Hsu, H.-T.; Ibrahim, A.A. Interconnected CPW Fed Flexible 4-Port MIMO Antenna for UWB, X, and Ku Band Applications. IEEE Access 2022, 10, 57641–57654. [Google Scholar] [CrossRef]
- Khangarot, S.; Sravan, B.; Aluru, N.; Saadh, A.M.; Poonkuzhali, R.; Kumar, O.P.; Ali, T.; Pai, M.M. A compact wideband antenna with detailed time domain analysis for wireless applications. Ain Shams Eng. J. 2020, 11, 1131–1138. [Google Scholar] [CrossRef]
- Addepalli, T.; Desai, A.; Elfergani, I.; Anveshkumar, N.; Kulkarni, J.; Zebiri, C.; Rodriguez, J.; Abd-Alhameed, R. 8-Port Semi-Circular Arc MIMO Antenna with an Inverted L-Strip Loaded Connected Ground for UWB Applications. Electronics 2021, 10, 1476. [Google Scholar] [CrossRef]
- Journals, I.; Devi, R.; Neog, D.K. Determination of Radius of Circular Microstrip Antenna Using Clonal Selection Algorithm. IOSR J. Electron. Commun. Eng. Ver. I 2015, 10, 2278–2834. [Google Scholar] [CrossRef]
- Antenna Theory: Analysis and Design, 4th ed.; Wiley: New York, NY, USA, 2015; Available online: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061 (accessed on 21 February 2023).
Parameters | L | W | Rp | Ep | Z | R1 | R2 | R3 | Lp | Wp | K |
---|---|---|---|---|---|---|---|---|---|---|---|
Values (mm) | 40 | 24.5 | 12.25 | 0.5 | 4 | 12 | 4.5 | 1.68 | 13.08 | 2.75 | 2 |
Bandwidth [GHz] | Covered Commercial Bands |
---|---|
[2.70–11.0] | ; ; ; ITU assigned all C band transmit frequency , and receive frequency , around the world, and ITU assigned amateur radio and amateur satellite applications in the X band. |
Ref No | Electrical Size | Subs Type | Band Operational (GHz) | Resonant Frequency (GHz) | Peak Gain (dB) |
---|---|---|---|---|---|
[10] | 0.189 λ × 0.189 λ | FR4 | [2.37–3.78], [5.15–5.85] | 2.65, 3.45, 5.65 | 1.62 to 3.1 1.74 to 3.78 |
[19] | 110 × 120 (3.66) | Rogers RO4350B | [3.00–10.00] | 3.00, 6.00 | 6.00 |
[21] | 75 × 63 (3.2) | Rogers RO4232 | [3.10–10.6] | 2.4, 3.2 | 3.50 |
[29] | 0.22 × 0.22 | FR4 | [2.3–2.6], [3.3–3.7] | 2.46, 3.5 | 2.61, 2.7 |
[30] | 0.2 λ × 0.13 λ | FR4 | [2.24–2.5], [3.6–3.99], [4.4–4.6], [5.71–5.9] | 2.43, 3.83, 4.48, 5.8 | 2.2, 2.8, 3.3, 4.2 |
[32] | 0.28 λ × 0.14 λ | FR4 | [2.2–3.4], [3.34–4.52] | Not specified | 2.2 to 2.4 |
[33] | 0.22 λ × 0.22 λ | FR4 | [4.80–5.99] | 5.5 | 2.5 |
[34] | 0.148 λ × 0.161 λ | FR4 | [4.65–6.72] | 5.2 | Not specified |
[35] | 0.176 λ × 0.176 λ | FR4 | [3.48–5.86] | 5.1 | Not specified |
This work | 0.171 λ × 0.104 λ | FR4 | [2.70–11.0] | 3.17, 5.82, 7.86, 9.16 | 1.7 to 6.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nejdi, I.H.; Bri, S.; Marzouk, M.; Ahmad, S.; Rhazi, Y.; Ait Lafkih, M.; Sheikh, Y.A.; Ghaffar, A.; Hussein, M. UWB Circular Fractal Antenna with High Gain for Telecommunication Applications. Sensors 2023, 23, 4172. https://doi.org/10.3390/s23084172
Nejdi IH, Bri S, Marzouk M, Ahmad S, Rhazi Y, Ait Lafkih M, Sheikh YA, Ghaffar A, Hussein M. UWB Circular Fractal Antenna with High Gain for Telecommunication Applications. Sensors. 2023; 23(8):4172. https://doi.org/10.3390/s23084172
Chicago/Turabian StyleNejdi, Ibrahime Hassan, Seddik Bri, Mohamed Marzouk, Sarosh Ahmad, Youssef Rhazi, Mustapha Ait Lafkih, Yawar Ali Sheikh, Adnan Ghaffar, and Mousa Hussein. 2023. "UWB Circular Fractal Antenna with High Gain for Telecommunication Applications" Sensors 23, no. 8: 4172. https://doi.org/10.3390/s23084172
APA StyleNejdi, I. H., Bri, S., Marzouk, M., Ahmad, S., Rhazi, Y., Ait Lafkih, M., Sheikh, Y. A., Ghaffar, A., & Hussein, M. (2023). UWB Circular Fractal Antenna with High Gain for Telecommunication Applications. Sensors, 23(8), 4172. https://doi.org/10.3390/s23084172