Remote Blood Pressure Estimation via the Spatiotemporal Mapping of Facial Videos
<p>An overview of our blood pressure estimation network. We first generate the corresponding spatiotemporal feature map slices of the input facial video clips. Then, a feature extractor composed of a depth residual network and BiLSTM fits a high-dimensional feature, which is fed into the blood pressure classifier to locate the blood pressure interval through this feature. Finally, the blood pressure calculator combines the results of the feature extractor and the blood pressure classifier to output the final blood pressure value.</p> "> Figure 2
<p>An illustration of the generation of spatiotemporal feature map slices from an input facial video clip of T frames. Firstly, we use Seetaface6 to detect the human face, localize 68 landmarks, and define four ROIs; then, we calculate the average pixel values of each ROI to get spatiotemporal maps. Secondly, the data augmentation module randomly masks a part of the cropped spatiotemporal maps presented above along both the time domain and the spatial domain; then, they are transformed from the RGB color space into the modified YUV color space. Finally, the cropped video sequence is sliced to generate the spatiotemporal feature map slices for the following network.</p> "> Figure 3
<p>The distributions of the ground-truth blood pressure values in the MPM-BP dataset.</p> "> Figure 4
<p>Devices and setup used to collect MPM-BP.</p> ">
Abstract
:1. Introduction
- An end-to-end network that uses spatiotemporal maps of facial videos for remote BP estimation is proposed.
- A BP classifier that transforms a regression problem into a joint problem of classification and regression is proposed.
- An oversampling training scheme for effectively addressing the unbalanced distribution of BP values in the training process is exploited.
2. Related Work
3. Method
3.1. Spatiotemporal Feature Map Slices
3.1.1. Definition of Regions of Interest
3.1.2. Data Augmentation
3.1.3. Spatiotemporal Slicer
3.2. Network Architecture
3.3. Oversampling Training Strategy
4. Experiments and Results
4.1. Datasets and Experimental Settings
4.1.1. Datasets
4.1.2. Evaluation Metrics
4.1.3. Training Details
4.2. Ablation Study
4.2.1. Impact of the Modified YUV Color Space
4.2.2. Impact of the Spatiotemporal Slicer
4.2.3. Impact of the Oversampling Strategy
4.2.4. Impact of the Loss Function
4.3. Cross-Dataset Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Blood pressure |
SD | Standard deviation |
MAE | Mean absolute error |
RMSE | Root mean square error |
BVP | Blood volume pulse |
PTT | Pulse transit time |
PPG | Photoplethysmography |
rPPG | Remote photoplethysmography |
BiLSTM | Bi-directional long short-term memory |
STS | Spatiotemporal feature map slice |
ROI | Region of interest |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
NCBP | Non-contact blood pressure |
NIBPP | Non-invasive blood pressure prediction |
AAMI | The Association for the Advancement of Medical Instrumentation |
BHS | The British Hypertension Society |
References
- Barvik, D.; Cerny, M.; Penhaker, M.; Noury, N. Noninvasive Continuous Blood Pressure Estimation From Pulse Transit Time: A Review of the Calibration Models. IEEE Rev. Biomed. Eng. 2022, 15, 138–151. [Google Scholar] [CrossRef]
- Chandrasekhar, A.; Yavarimanesh, M.; Natarajan, K.; Hahn, J.O.; Mukkamala, R. PPG Sensor Contact Pressure Should Be Taken Into Account for Cuff-Less Blood Pressure Measurement. IEEE Trans. Biomed. Eng. 2020, 67, 3134–3140. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Y.; Song, R.; Liu, Y.; Li, C.; Chen, X. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks. Comput. Biol. Med. 2021, 138, 104877. [Google Scholar] [CrossRef]
- Sun, Y.; Thakor, N. Photoplethysmography Revisited: From Contact to Noncontact, From Point to Imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Shan, S.; Han, H.; Chen, X. RhythmNet: End-to-End Heart Rate Estimation From Face via Spatial-Temporal Representation. IEEE Trans. Image Process. 2020, 29, 2409–2423. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Zhang, S.; Li, C.; Zhang, Y.; Cheng, J.; Chen, X. Heart Rate Estimation From Facial Videos Using a Spatiotemporal Representation With Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2020, 69, 7411–7421. [Google Scholar] [CrossRef]
- Jaiswal, K.B.; Meenpal, T. Heart rate estimation network from facial videos using spatiotemporal feature image. Comput. Biol. Med. 2022, 151, 106307. [Google Scholar] [CrossRef]
- Steinman, J.; Barszczyk, A.; Sun, H.S.; Lee, K.; Feng, Z.P. Smartphones and Video Cameras: Future Methods for Blood Pressure Measurement. Front. Digit. Health 2021, 3, 770096. [Google Scholar] [CrossRef]
- Markandu, N.; Whitcher, F.D.; Arnold, A.; Carney, C. The mercury sphygmomanometer should be abandoned before it is proscribed. J. Hum. Hypertens. 2000, 14, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Hertzmann, A. Observations on the finger volume pulse recorded photo-electrically. Am. J. Physiol. 1937, 119, 334–335. [Google Scholar]
- Zheng, X.; Zhang, C.; Chen, H.; Zhang, Y.; Yang, X. Remote measurement of heart rate from facial video in different scenarios. Measurement 2022, 188, 110243. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Firouzmand, M.; Charmi, M.; Hemmati, M.; Moghadam, M.; Ghorbani, Y. Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method. Biomed. Signal Process. Control. 2019, 47, 196–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, X.; Liang, X.; Ye, X.; Zhou, C. A Refined Blood Pressure Estimation Model Based on Single Channel Photoplethysmography. IEEE J. Biomed. Health Inform. 2022, 26, 5907–5917. [Google Scholar] [CrossRef]
- Landry, C.; Hedge, E.T.; Hughson, R.L.; Peterson, S.D.; Arami, A. Cuffless Blood Pressure Estimation During Moderate- and Heavy-Intensity Exercise Using Wearable ECG and PPG. IEEE J. Biomed. Health Inform. 2022, 26, 5942–5952. [Google Scholar] [CrossRef]
- Geddes, L.; Voelz, M.; Babbs, C.; Bourland, J.; Tacker, W. Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 1981, 18, 71–74. [Google Scholar] [CrossRef]
- Payne, R.A.; Symeonides, C.N.; Webb, D.J.; Maxwell, S.R. Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 2006, 100, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Ye, Q.; Yang, X.; Choudhury, S. Robust blood pressure estimation using an RGB camera. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4329–4336. [Google Scholar] [CrossRef]
- Samria, R.; Jain, R.; Jha, A.; Saini, S.; Chowdhury, S.R. Noninvasive cuffless estimation of blood pressure using Photoplethysmography without electrocardiograph measurement. In Proceedings of the 2014 IEEE REGION 10 SYMPOSIUM, Kuala Lumpur, Malaysia, 14–16 April 2014; pp. 254–257. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, J.; Song, R.; Liu, Y.; Ward, R.; Wang, Z.J. Video-based heart rate measurement: Recent advances and future prospects. IEEE Trans. Instrum. Meas. 2018, 68, 3600–3615. [Google Scholar] [CrossRef]
- Khanam, F.T.Z.; Al-Naji, A.A.; Chahl, J. Remote Monitoring of Vital Signs in Diverse Non- Clinical and Clinical Scenarios Using Computer Vision Systems: A Review. Appl. Sci. 2019, 9, 4474. [Google Scholar] [CrossRef] [Green Version]
- Poh, M.Z.; McDuff, D.J.; Picard, R.W. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 2010, 58, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Jeong, I.; Finkelstein, J. Introducing Contactless Blood Pressure Assessment Using a High Speed Video Camera. J. Med. Syst. 2016, 40, 77. [Google Scholar] [CrossRef]
- Fan, X.; Tjahjadi, T. Robust Contactless Pulse Transit Time Estimation Based on Signal Quality Metric. Pattern Recognit. Lett. 2019, 137, 12–16. [Google Scholar] [CrossRef]
- Luo, H.; Yang, D.; Barszczyk, A.; Vempala, N.; Wei, J.; Wu, S.J.; Zheng, P.P.; Fu, G.; Lee, K.; Feng, Z.P. Smartphone-Based Blood Pressure Measurement Using Transdermal Optical Imaging Technology. Circulation 2019, 12, e008857. [Google Scholar] [CrossRef] [Green Version]
- Rong, M.; Li, K. A Blood Pressure Prediction Method Based on Imaging Photoplethysmography in combination with Machine Learning. Biomed. Signal Process. Control. 2021, 64, 102328. [Google Scholar] [CrossRef]
- Bousefsaf, F.; Desquins, T.; Djeldjli, D.; Ouzar, Y.; Maaoui, C.; Pruski, A. Estimation of blood pressure waveform from facial video using a deep U-shaped network and the wavelet representation of imaging photoplethysmographic signals. Biomed. Signal Process. Control. 2022, 78, 103895. [Google Scholar] [CrossRef]
- Schrumpf, F.; Frenzel, P.; Aust, C.; Osterhoff, G.; Fuchs, M. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning. Sensors 2021, 21, 6022. [Google Scholar] [CrossRef]
- Zhuang, J.; Chen, Y.; Zhang, Y.; Zheng, X. FastBVP-Net: A lightweight pulse simulation network for measuring heart rhythm via facial videos. arXiv 2022, arXiv:2206.12558. [Google Scholar]
- Yu, Z.; Li, X.; Zhao, G. Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks. In Proceedings of the 30th British Machine Vision Conference 2019, BMVC, Cardiff, UK, 9–12 September 2019; p. 277. [Google Scholar] [CrossRef]
- Tulyakov, S.; Alameda-Pineda, X.; Ricci, E.; Yin, L.; Cohn, J.F.; Sebe, N. Self-Adaptive Matrix Completion for Heart Rate Estimation from Face Videos under Realistic Conditions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2396–2404. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, G.; Alpert, B.; Mieke, S.; Asmar, R.; Atkins, N.; Eckert, S.; Frick, G.; Friedman, B.; Grassl, T.; Ichikawa, T.; et al. A Universal Standard for the Validation of Blood Pressure Measuring Devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement. Hypertension 2018, 71, 368–374. [Google Scholar] [CrossRef]
Color Space | SD () | RMSE () | MAE () | |
---|---|---|---|---|
SBP | RGB | |||
YUV | 9.99 | 10.18 | 8.21 | |
modified YUV | 9.81 | 9.94 | 8.07 | |
DBP | RGB | |||
YUV | 8.41 | 8.62 | 6.97 | |
modified YUV | 8.28 | 8.45 | 6.78 |
Method | SD () | RMSE () | MAE () | |
---|---|---|---|---|
SBP | w/o slicing | |||
slice-90 | 10.06 | |||
slice-150 | 9.81 | 9.94 | 8.07 | |
slice-225 | 10.16 | 8.32 | ||
DBP | w/o slicing | |||
slice-90 | 7.31 | |||
slice-150 | 8.28 | 8.45 | 6.78 | |
slice-225 | 8.33 | 9.05 |
Method | SD () | RMSE () | MAE () | |
---|---|---|---|---|
SBP | w/o OSS | |||
w/ OSS | 9.81 | 9.94 | 8.07 | |
DBP | w/o OSS | |||
w/ OSS | 8.28 | 8.45 | 6.78 |
Loss Function | SD () | RMSE () | MAE () | |
---|---|---|---|---|
SBP | L1 | 9.81 | 9.94 | 8.07 |
L2 | ||||
DBP | L1 | 8.28 | 8.45 | 6.78 |
L2 |
Method | SD () | RMSE () | MAE () | |
---|---|---|---|---|
SBP | NCBP [26] | |||
NIBPP [28] | − | − | ||
BPE-Net (90) | ||||
BPE-Net (150) | 16.02 | 16.55 | 12.35 | |
BPE-Net (225) | 16.98 | 17.12 | 13.15 | |
DBP | NCBP [26] | |||
NIBPP [28] | − | − | 10.3 | |
BPE-Net (90) | ||||
BPE-Net (150) | 11.98 | 12.22 | 9.54 | |
BPE-Net (225) | 12.87 | 13.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhuang, J.; Li, B.; Zhang, Y.; Zheng, X. Remote Blood Pressure Estimation via the Spatiotemporal Mapping of Facial Videos. Sensors 2023, 23, 2963. https://doi.org/10.3390/s23062963
Chen Y, Zhuang J, Li B, Zhang Y, Zheng X. Remote Blood Pressure Estimation via the Spatiotemporal Mapping of Facial Videos. Sensors. 2023; 23(6):2963. https://doi.org/10.3390/s23062963
Chicago/Turabian StyleChen, Yuheng, Jialiang Zhuang, Bin Li, Yun Zhang, and Xiujuan Zheng. 2023. "Remote Blood Pressure Estimation via the Spatiotemporal Mapping of Facial Videos" Sensors 23, no. 6: 2963. https://doi.org/10.3390/s23062963
APA StyleChen, Y., Zhuang, J., Li, B., Zhang, Y., & Zheng, X. (2023). Remote Blood Pressure Estimation via the Spatiotemporal Mapping of Facial Videos. Sensors, 23(6), 2963. https://doi.org/10.3390/s23062963