Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends
<p>(<b>a</b>) Structure of a 90° sharp bend using a Euler curve. (<b>b</b>) Schematic of the SiPh integrated circuit, with MDM Mux/Demux and a straight multimode bus waveguide between two Euler bends.</p> "> Figure 2
<p>Waveguide effective indices at different waveguide widths for providing phase matching for the MDM Mux/Demux.</p> "> Figure 3
<p>Simulation results of length dependency of a straight multimode bus waveguide between two sharp Euler bends.</p> "> Figure 4
<p>Experimental results of length dependency of a straight multimode bus waveguide between two Euler bends with straight waveguide lengths (<b>a</b>) <span class="html-italic">L</span> = 1 μm (period pattern trough), and (<b>b</b>) <span class="html-italic">L</span> = 16 μm (period pattern peak).</p> "> Figure 5
<p>FDTD simulation results of TE<sub>0</sub> mode transmission at waveguide lengths (<b>a</b>) <span class="html-italic">L</span> = 1 μm, and (<b>b</b>) <span class="html-italic">L</span> = 16 μm; and TE<sub>1</sub> mode transmission at waveguide lengths (<b>c</b>) <span class="html-italic">L</span> = 1 μm, and (<b>d</b>) <span class="html-italic">L</span> = 16 μm.</p> "> Figure 6
<p>Simulated TE<sub>1</sub> mode at different wavelengths, with multimode bus waveguide width of 1.525 μm and two Euler bends, with effective radii of 12 μm each.</p> "> Figure 7
<p>Simulation results of TE<sub>1</sub> mode (<b>a</b>) at different multimode bus waveguide widths and (<b>b</b>) at different effective Euler bend radii.</p> "> Figure 8
<p>Experimental setup of the proof-of-concept NOMA-OFDM transmission with two MDM modes and two NOMA users, in the MDM device with sharp Euler bends. LD: laser diode; MZM: Mach–Zehnder modulator; AWG: arbitrary waveform generator; VOA: variable optical attenuator; PC: polarization controller; EDFA: erbium-doped fiber amplifier; OSA: optical spectrum analyzer; RTO: real-time oscilloscope; PD: photodiode.</p> "> Figure 9
<p>Experimental photos using two SMFs to couple optical signal in and out of the SiPh chip (<b>a</b>) before and (<b>b</b>) after zoom-in.</p> "> Figure 10
<p>Measured SNRs of NOMA (<b>a</b>) Data<sub>2</sub> and (<b>b</b>) Data<sub>1</sub> over all the 170 OFDM subcarriers at MDM TE<sub>0</sub> mode, with corresponding constellation diagrams of the NOMA Data<sub>2</sub> and Data<sub>1</sub>.</p> "> Figure 11
<p>Measured SNRs of NOMA (<b>a</b>) Data<sub>2</sub> and (<b>b</b>) Data<sub>1</sub> over all the 170 OFDM subcarriers at MDM TE<sub>1</sub> mode, with corresponding constellation diagrams of the NOMA Data<sub>2</sub> and Data<sub>1</sub>.</p> ">
Abstract
:1. Introduction
2. Design and Simulation
3. Simulation and Experimental Evaluation of MDM Device with Sharp Euler Bends
4. Proof-of-Concept NOMA-OFDM Experiment with Two MDM Modes and Two NOMA Users in the MDM Device with Sharp Euler Bends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, G.K.; Chowdhury, A.; Jia, Z.; Chien, H.C.; Huang, M.F.; Yu, J.; Ellinas, G. Key technologies of WDM-PON for future converged optical broadband access networks. J. Opt. Commun. Netw. 2009, 1, C35. [Google Scholar] [CrossRef]
- Lu, H.H.; Peng, H.C.; Tsai, W.S.; Lin, C.C.; Tzeng, S.J.; Lin, Y.Z. Bidirectional hybrid CATV/radio-over-fiber WDM transport system. Opt. Lett. 2010, 35, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Lu, I.C.; Wei, C.C.; Jiang, W.J.; Chen, H.Y.; Chi, Y.C.; Li, Y.C.; Hsu, D.Z.; Lin, G.R.; Chen, J. 20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats. Opt. Exp. 2013, 21, 8622–8629. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Yan, J.H.; Peng, P.C.; Hsu, C.W.; Zhou, Q.; Liu, S.; Yao, S.; Zhang, R.; Feng, K.M.; Finkelstein, J.; et al. Polarization-tracking-free PDM supporting hybrid digital-analog transport for fixed-mobile systems. IEEE Photonics Technol. Lett. 2018, 31, 54–57. [Google Scholar] [CrossRef]
- Ranaweera, C.; Kua, J.; Dias, I.; Wong, E.; Lim, C.; Nirmalathas, A. 4G to 6G: Disruptions and drivers for optical access [Invited]. J. Opt. Comm. Netw. 2022, 14, A143–A153. [Google Scholar] [CrossRef]
- Lipson, M.; Miller, S.A.; Phare, C.T.; Chang, Y.C.; Ji, X.; Gordillo, O.A.J.; Mohanty, A.; Roberts, S.P.; Shin, M.C.; Stern, B.; et al. Silicon photonics integration for future generation optical network. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Andrade, H.; Xia, Y.; Maharry, A.; Valenzuela, L.; Buckwalter, J.F.; Schow, C.L. 50 GBaud QPSK 0.98 pJ/bit Receiver in 45 nm CMOS and 90 nm Silicon Photonics. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Tsang, H.K.; Chen, X.; Cheng, Z.; Zhou, W.; Tong, Y. Subwavelength Silicon Photonics. In Silicon Photonics IV; Lockwood, D.J., Pavesi, L., Eds.; Topics in Applied Physics; Springer: Cham, Switzerland, 2021; p. 139. [Google Scholar] [CrossRef]
- Xu, K.; Yang, L.G.; Sung, J.Y.; Chen, Y.M.; Cheng, Z.; Chow, C.W.; Yeh, C.H.; Tsang, H.K. Compatibility of silicon Mach-Zehnder modulators for advanced modulation formats. J. Light. Technol. 2013, 31, 2550–2554. [Google Scholar]
- Chan, D.W.U.; Wu, X.; Zhang, Z.; Lu, C.; Lau, A.P.T.; Tsang, H.K. C-band 67 GHz silicon photonic microring modulator for dispersion-uncompensated 100 Gbaud PAM-4. Opt. Lett. 2022, 47, 2935–2938. [Google Scholar] [CrossRef]
- Peng, C.W.; Chow, C.W.; Kuo, P.C.; Chen, G.H.; Yeh, C.H.; Chen, J.; Lai, Y. DP-QPSK coherent detection using 2D grating coupled silicon based receiver. IEEE Photonics J. 2021, 13, 7900105. [Google Scholar] [CrossRef]
- Hung, T.Y.; Chen, G.H.; Lin, Y.Z.; Chow, C.W.; Jian, Y.H.; Kuo, P.C.; Peng, C.W.; Tsai, J.F.; Liu, Y.; Yeh, C.H. Wideband and channel switchable mode division multiplexing (MDM) optical power divider supporting 7.682 Tbit/s for on-chip optical interconnects. Sensors 2023, 23, 711. [Google Scholar] [CrossRef]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.H.; Chow, C.W.; Yeh, C.H.; Peng, C.W.; Guo, P.C.; Tsai, J.F.; Cheng, M.W.; Tong, Y.; Tsang, H.K. Mode-division-multiplexing (MDM) of 9.4-Tbit/s OFDM signals on silicon-on-insulator (SOI) platform. IEEE Access 2019, 7, 129104–129111. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J.E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express 2011, 19, 10940–10949. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Jiang, X.; Hsu, Y.; Chen, G.H.; Chow, C.W.; Dai, D. Ten-channel mode-division-multiplexed silicon photonic integrated circuit with sharp bends. Front. Inf. Technol. Electron. Eng. 2019, 20, 498–506. [Google Scholar] [CrossRef]
- Dai, D.; Wang, J.; Shi, Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 2013, 38, 1422–1424. [Google Scholar] [CrossRef]
- Hsu, Y.; Chuang, C.Y.; Wu, X.; Chen, G.H.; Hsu, C.W.; Chang, Y.C.; Chow, C.W.; Chen, J.; Lai, Y.C.; Yeh, C.H.; et al. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photonics Technol. Lett. 2018, 30, 1052–1055. [Google Scholar] [CrossRef]
- Chen, G.H.; Tsai, J.F.; Peng, C.W.; Kuo, P.C.; Chen, C.J.; Chow, C.W.; Yeh, C.H.; Lai, Y.; Liu, Y. Compact mode division MUX/DEMUX using enhanced evanescent-wave coupling on silicon-on-insulator (SOI) platform for 11-Tbit/s broadband transmission. IEEE Access 2020, 8, 219881–219890. [Google Scholar] [CrossRef]
- Lu, F.; Xu, M.; Cheng, L.; Wang, J.; Chang, G.K. Power-division non-orthogonal multiple access (NOMA) in flexible optical access with synchronized downlink/asynchronous uplink. J. Light. Technol. 2017, 35, 4145–4152. [Google Scholar] [CrossRef]
- Gunawan, W.H.; Chow, C.W.; Liu, Y.; Chang, Y.H.; Yeh, C.H. Optical beam steerable visible light communication (VLC) system supporting multiple users using RGB and orthogonal frequency division multiplexed (OFDM) non-orthogonal multiple access (NOMA). Sensors 2022, 22, 8707. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Light. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Chow, C.W.; Yeh, C.H.; Wang, C.H.; Wu, C.L.; Chi, S.; Lin, C. Studies of OFDM signal for broadband optical access networks. IEEE J. Sel. Areas Comm. 2010, 28, 800–807. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, L.; Liu, D.; Johnson, S.G.; Lipson, M. On-chip transformation optics for multimode waveguide bends. Nat. Commun. 2012, 3, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, D. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt. Express 2014, 22, 27524–27534. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Aalto, T. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt. Express 2013, 21, 17814–17823. [Google Scholar] [CrossRef] [PubMed]
Mode Crosstalk | TE0 | TE1 | TE2 | TE3 | |
---|---|---|---|---|---|
Input Mode | |||||
TE0 | 77.46% | 21.52% | 0.87% | ~0.00% | |
TE1 | 22.27% | 70.43% | 7.15% | 0.01% | |
TE2 | 0.18% | 0.75% | 88.16% | 3.67% | |
TE3 | 0.02% | 0.07% | 3.78% | 93.48% |
Mode | Theoretical Calculated (μm) | Simulated (μm) |
---|---|---|
TE0 | 11.07 | 11 |
TE1 | 11.07 | 11 |
TE2 | 6.45 | 6.25 |
TE3 | 4.19 | 4.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, P.-C.; Chow, C.-W.; Lin, Y.-Z.; Gunawan, W.H.; Hung, T.-Y.; Jian, Y.-H.; Chen, G.-H.; Peng, C.-W.; Liu, Y.; Yeh, C.-H. Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends. Sensors 2023, 23, 2965. https://doi.org/10.3390/s23062965
Kuo P-C, Chow C-W, Lin Y-Z, Gunawan WH, Hung T-Y, Jian Y-H, Chen G-H, Peng C-W, Liu Y, Yeh C-H. Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends. Sensors. 2023; 23(6):2965. https://doi.org/10.3390/s23062965
Chicago/Turabian StyleKuo, Pin-Cheng, Chi-Wai Chow, Yuan-Zeng Lin, Wahyu Hendra Gunawan, Tun-Yao Hung, Yin-He Jian, Guan-Hong Chen, Ching-Wei Peng, Yang Liu, and Chien-Hung Yeh. 2023. "Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends" Sensors 23, no. 6: 2965. https://doi.org/10.3390/s23062965
APA StyleKuo, P. -C., Chow, C. -W., Lin, Y. -Z., Gunawan, W. H., Hung, T. -Y., Jian, Y. -H., Chen, G. -H., Peng, C. -W., Liu, Y., & Yeh, C. -H. (2023). Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends. Sensors, 23(6), 2965. https://doi.org/10.3390/s23062965