State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review
<p>PRISMA flow diagram showing the process for selecting articles for inclusion in this scoping review.</p> "> Figure 2
<p>Schematic of ultrasound technology method of operation.</p> "> Figure 3
<p>Schematic of optical technology method of operation.</p> "> Figure 4
<p>Schematic of bioimpedance technology method of operation.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Identification of Relevant Studies
2.2. Article Selection
2.3. Charting of Data
2.4. Summarizing and Reporting of Results
3. Results
3.1. Bladder Urine Volume Measurement and Monitoring
3.1.1. Ultrasound Technology
3.1.2. Optical Technology
3.1.3. Electrical Bioimpedance Technology
3.1.4. Other Technologies
3.2. Urine Leakage Collection and Detection
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIA | Body Impedance Analysis |
BUV | Bladder Urinary Volume |
EUFC | External Urine Female Collection |
EIT | Electrical Impedance Tomography |
IUC | Indwelling Urinary Catheter |
NIRS | Near-Infrared Spectroscopy |
UAPV | Ultrasound-Assisted Prompted Voiding |
UBM | URIKA Bladder Monitor |
UI | Urinary Incontinence |
References
- Perez, N.E.; Godbole, N.P.; Amin, K.; Syan, R.; Gater, D.R., Jr. Neurogenic bladder physiology, pathogenesis, and management after spinal cord injury. J. Pers. Med. 2022, 12, 968. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.G.; Park, B.H.; Joung, D.Y.; Jo, J.K.; Hoh, J.-K.; Choi, W.Y.; Park, K.K. Forward-Looking Ultrasound Wearable Scanner System for Estimation of Urinary Bladder Volume. Sensors 2021, 21, 5445. [Google Scholar] [CrossRef] [PubMed]
- Semproni, F.; Iacovacci, V.; Menciassi, A. Bladder Monitoring Systems: State of The Art and Future Perspectives. IEEE Access 2022, 10, 125626–125651. [Google Scholar] [CrossRef]
- Wilson, J.; Farrow, E.; Holden, C. Urinary tract obstruction. Semin. Nephrol. 2022, 15, 265–271. [Google Scholar] [CrossRef]
- Hidas, G.; Soltani, T.; Billimek, J.; Selby, B.; Kelly, M.S.; McLorie, G.; Wehbi, E.; Khoury, A.E. Home urodynamic pressures and volume measurement for the neurogenic bladder: Initial validation study. J. Urol. 2017, 198, 1424–1429. [Google Scholar] [CrossRef]
- Wittig, L.; Carlson, K.V.; Andrews, J.M.; Crump, R.T.; Baverstock, R.J. Diabetic bladder dysfunction: A review. Urology 2019, 123, 1–6. [Google Scholar] [CrossRef]
- Lenis, A.T.; Lec, P.M.; Chamie, K.J.J. Bladder cancer: A review. Jama 2020, 324, 1980–1991. [Google Scholar] [CrossRef]
- Hu, J.S.; Pierre, E.F. Urinary incontinence in women: Evaluation and management. Am. Fam. Physician 2019, 100, 339–348. [Google Scholar]
- DeMaagd, G.A.; Davenport, T.C. Management of urinary incontinence. Pharm. Ther. 2012, 37, 345. [Google Scholar]
- Molavi, B.; Shadgan, B.; Macnab, A.J.; Dumont, G.A. Noninvasive optical monitoring of bladder filling to capacity using a wireless near infrared spectroscopy device. Circuits Syst. 2013, 8, 325–333. [Google Scholar] [CrossRef]
- Milsom, I.; Gyhagen, M. The prevalence of urinary incontinence. Climacteric 2019, 22, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vo, A.; Kielb, S.J. Female voiding dysfunction and urinary incontinence. Med. Clin. N. Am. 2018, 102, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Bardsley, A. An overview of urinary incontinence. Br. J. Nurs. 2016, 25, S14–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, Y.; Brown, H.W.; Brubaker, L.; Cornu, J.N.; Daly, J.O.; Cartwright, R. Urinary incontinence in women. Nat. Rev. Dis. Prim. 2017, 3, 17042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur-Bialy, A.I.; Kołomańska-Bogucka, D.; Nowakowski, C.; Tim, S. Urinary incontinence in women: Modern methods of physiotherapy as a support for surgical treatment or independent therapy. J. Clin. Med. 2020, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Cervigni, M.; Gambacciani, M. Female urinary stress incontinence. Climacteric 2015, 18, 30–36. [Google Scholar] [CrossRef]
- Kim, A.; Kim, S.; Kim, H.G. Current overview of surgical options for female stress urinary incontinence. Int. Neurourol. J. 2020, 24, 222. [Google Scholar] [CrossRef]
- Lavelle, J.P.; Teahan, S.; Kim, D.-Y.; Chancellor, M.B. Medical and minimally invasive treatment of urinary incontinence. Rev. Urol. 1999, 1, 111. [Google Scholar]
- McPhail, M.; Abu-Hilal, M.; Johnson, C.D. A meta-analysis comparing suprapubic and transurethral catheterization for bladder drainage after abdominal surgery. Br. J. Surg. 2006, 93, 1038–1044. [Google Scholar] [CrossRef]
- Bakal, U.; Sarac, M.; Tartar, T.; Ersoz, F.; Kazez, A. Bladder perforations in children. Niger. J. Clin. Pract. 2015, 18, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.W. Catheter-associated urinary tract infections. Int. J. Antimicrob. Agents 1997, 11, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Abelson, B.; Majerus, S.; Sun, D.; Gill, B.C.; Versi, E.; Damaser, M.S. Ambulatory urodynamic monitoring: State of the art and future directions. Nat. Rev. Urol. 2019, 16, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Rosier, P.F.; Schaefer, W.; Lose, G.; Goldman, H.B.; Guralnick, M.; Eustice, S.; Dickinson, T.; Hashim, H. International Continence Society Good Urodynamic Practices and Terms 2016: Urodynamics, uroflowmetry, cystometry, and pressure-flow study. Neurourol. Urodyn. 2017, 36, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Feneley, R.C.; Hopley, I.B.; Wells, P.N.T. Urinary catheters: History, current status, adverse events and research agenda. J. Med. Eng. Technol. 2015, 39, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M. Causes and management of indwelling urinary catheter-related pain. Br. J. Nurs. 2008, 17, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.L. Indwelling Urinary Catheters: A Pathway to Health Care-Associated Infections. AORN J. 2017, 105, 446–452. [Google Scholar] [CrossRef]
- Zanetti, M.R.; Castro, R.de.A.; Rotta, A.L.; Santos, P.D.D.; Sartori, M.; Girão, M.J.B.C. Impact of supervised physiotherapeutic pelvic floor exercises for treating female stress urinary incontinence. Sao Paulo Med. J. 2007, 125, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Wallace, S.A.; Roe, B.; Williams, K.; Palmer, M. Bladder training for urinary incontinence in adults. Cochrane Database Syst. Rev. 2004, 2004, CD001308. [Google Scholar] [CrossRef]
- Bhomi, K.K.; Joshi, B.R. Correlation between symptom severity and objective parameters in elderly men with lower urinary tract symptoms. Nepal Med. Coll. J. 2019, 21, 117–121. [Google Scholar] [CrossRef]
- Panicker, J.N.; Fowler, C.J.; Kessler, T.M. Lower urinary tract dysfunction in the neurological patient: Clinical assessment and management. Lancet Neurol. 2015, 14, 720–732. [Google Scholar] [CrossRef]
- Smith, T.J.; Andrews, V.; Cho, S.; Drinnan, N.; Dunsmuir, W. Bladder problems associated with neurological disease. InnovAiT Educ. Inspir. Gen. Pract. 2015, 8, 291–297. [Google Scholar] [CrossRef]
- Ness, T.J.; McNaught, J.; Clodfelder-Miller, B.; Su, X. Medications used to treat bladder disorders may alter effects of neuromodulation. Neurourol. Urodyn. 2020, 39, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Root, N.; Horigan, A.E.; Lough, M.E. External female urinary catheter: Implementation in the emergency department. J. Emerg. Nurs. 2021, 47, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Iguchi, Y.; Igawa, Y.; Yoshida, M.; Sanada, H.; Miyazaki, H.; Homma, Y. Ultrasound-assisted prompted voiding for management of urinary incontinence of nursing home residents: Efficacy and feasibility. Int. J. Urol. 2016, 23, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Miyazaki, H.; Kamei, J.; Yoshida, M.; Taniguchi, T.; Nishimura, K.; Igawa, Y.; Sanada, H.; Homma, Y. Ultrasound-assisted prompted voiding care for managing urinary incontinence in nursing homes: A randomized clinical trial. Neurourol. Urodyn. 2019, 38, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Noyori, S.S.; Nakagami, G.; Sanada, H. Non-invasive urine volume estimation in the bladder by electrical impedance-based methods: A review. Med. Eng. Phys. 2021, 101, 103748. [Google Scholar] [CrossRef]
- Nasrabadi, M.Z.; Tabibi, H.; Salmani, M.; Torkashvand, M.; Zarepour, E. A comprehensive survey on non-invasive wearable bladder volume monitoring systems. Med. Biol. Eng. Comput. 2021, 59, 1373–1402. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Nagle, A.S.; Bernardo, R.J.; Varghese, J.; Carucci, L.R.; Klausner, A.P.; Speich, J.E. Comparison of 2D and 3D ultrasound methods to measure serial bladder volumes during filling: Steps toward development of non-invasive ultrasound urodynamics. Bladder 2018, 5, e32. [Google Scholar] [CrossRef]
- Akkus, Z.; Kim, B.H.; Nayak, R.; Gregory, A.; Alizad, A.; Fatemi, M. Fully Automated Segmentation of Bladder Sac and Measurement of Detrusor Wall Thickness from Transabdominal Ultrasound Images. Sensors 2020, 20, 4175. [Google Scholar] [CrossRef]
- Rix, A.; Lederle, W.; Theek, B.; Lammers, T.; Moonen, C.; Schmitz, G.; Kiessling, F. Advanced ultrasound technologies for diagnosis and therapy. J. Nucl. Med. 2018, 59, 740–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correas, J.-M.; Halpern, E.J.; Barr, R.G.; Ghai, S.; Walz, J.; Bodard, S.; Dariane, C.; de la Rosette, J. Advanced ultrasound in the diagnosis of prostate cancer. World J. Urol. 2021, 39, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Petrican, P.; Sawan, M.A.J.I.T.o.R.E. Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. IEEE Trans. Rehabil. Eng. 1998, 6, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Bih, L.-I.; Chen, S.-L.; Tsai, S.-J.; Teng, C.-H. The accuracy of ultrasonic estimation of bladder volume: A comparison of portable and stationary equipment. Arch. Phys. Med. Rehabil. 2004, 85, 138–141. [Google Scholar] [CrossRef] [PubMed]
- van Leuteren, P.G.; Klijn, A.J.; de Jong, T.P.; Dik, P. SENS-U: Validation of a wearable ultrasonic bladder monitor in children during urodynamic studies. J. Pediatr. Urol. 2018, 14, 569.e561–569.e566. [Google Scholar] [CrossRef] [PubMed]
- van Leuteren, P.G.; de Vries, B.A.; de Joode-Smink, G.C.J.; ten Haken, B.; de Jong, T.P.V.M.; Dik, P. URIKA, continuous ultrasound monitoring for the detection of a full bladder in children with dysfunctional voiding: A feasibility study. Biomed. Phys. Eng. Express 2017, 3, 017005. [Google Scholar] [CrossRef]
- Hofstetter, S.; Zilezinski, M.; Wolf, A.; Behr, D.; Paulicke, D.; Stoevesandt, D.; Schwarz, K.; Schönburg, S.; Jahn, P. Dfree ultrasonic sensor in supporting quality of life and patient satisfaction with bladder dysfunction. Int. J. Urol. Nurs. 2022, 17, 62–69. [Google Scholar] [CrossRef]
- Fournelle, M.; Grün, T.; Speicher, D.; Weber, S.; Yilmaz, M.; Schoeb, D.; Miernik, A.; Reis, G.; Tretbar, S.; Hewener, H. Portable ultrasound research system for use in automated bladder monitoring with machine-learning-based segmentation. Sensors 2021, 21, 6481. [Google Scholar] [CrossRef]
- Shadgan, B.; Stothers, L.; Molavi, B.; Mutabazi, S.; Mukisa, R.; Macnab, A. Near infrared spectroscopy evaluation of bladder function: The impact of skin pigmentation on detection of physiologic change during voiding. In Proceedings of the Photonic Therapeutics and Diagnostics XI, San Francisco, CA, USA, 7–8 February 2015; pp. 106–116. [Google Scholar]
- Koven, A.; Herschorn, S. NIRS: Past, Present, and Future in Functional Urology. Curr. Bladder Dysfunct. Rep. 2022, 17, 241–249. [Google Scholar] [CrossRef]
- Macnab, A.; Stothers, L. 1522: Receiver Operator Curves Describing Near Infrared Spectroscopy (NIRS) Changes during Pressure Flow Studies in Men with Obstruction. J. Urol. 2007, 177, 502–503. [Google Scholar] [CrossRef]
- Macnab, A.J.; Shadgan, B.; Molavi, B.; Stothers, L. Transcutaneous NIRS of the bladder: Optimal photon migration in pigmented subjects. Biomed. Spectrosc. Imaging 2015, 4, 283–297. [Google Scholar] [CrossRef]
- Fong, D.D.; Yu, X.; Mao, J.; Saffarpour, M.; Gupta, P.; Abueshsheikh, R.; Alcantar, A.V.; Kurzrock, E.A.; Ghiasi, S. Restoring the sense of bladder fullness for spinal cord injury patients. Smart Health 2018, 9, 12–22. [Google Scholar] [CrossRef]
- Macnab, A.J.; van Dongen, I.; Bronkhorst, M.; Stothers, L. Simultaneous functional near infrared spectroscopy of the brain and bladder. In Proceedings of the Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables, San Francisco, CA, USA, 22–27 January 2022; pp. 90–98. [Google Scholar]
- Gaubert, V.; Gidik, H.; Koncar, V. Smart underwear, incorporating textrodes, to estimate the bladder volume: Proof of concept on a test bench. Smart Mater. Struct. 2020, 29, 085028. [Google Scholar] [CrossRef]
- Sakai, R.; Nakatake, S. An impedance measurement of intravesical urine volume appropriate to seated posture. In Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 11–14 November 2019; pp. 385–388. [Google Scholar]
- Wang, Q.; Wang, H.-B.; Xu, H.; Zhou, W.; Liu, G.-Z. Noninvasive urination-desire sensing method based on bladder bioimpedance spectrum analysis. J. Med. Biol. Eng. 2016, 36, 191–196. [Google Scholar] [CrossRef]
- Noguchi, T.; Fukai, S.; Ishikawa, Y.; Shimizu, A.; Kimoto, A.; Toyoda, I. A urinary bladder volume measurement circuit using a simplified very small phase difference measurement circuit. Electr. Eng. Jpn. 2018, 203, 28–36. [Google Scholar] [CrossRef]
- Reichmuth, M.; Schürle, S.; Magno, M. A non-invasive wearable bioimpedance system to wirelessly monitor bladder filling. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 338–341. [Google Scholar]
- Palla, A.; Rossi, S.; Fanucci, L. Bioimpedance based monitoring system for people with neurogenic dysfunction of the urinary bladder. In Assistive Technology; IOS Press: Amsterdam, The Netherlands, 2015; pp. 892–896. [Google Scholar]
- Palla, A.; Crema, C.; Fanucci, L.; Bellagente, P. Kalman-based approach to bladder volume estimation for people with neurogenic dysfunction of the urinary bladder. In Proceedings of the International Conference on Computers Helping People with Special Needs, Linz, Austria, 13–15 July 2016; pp. 521–528. [Google Scholar]
- Li, Y.; Peng, Y.; Yang, X.; Lu, S.; Gao, J.; Lin, C.; Li, R. Analysis of measurement electrode location in bladder urine monitoring using electrical impedance. Biomed. Eng. Online 2019, 18, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Gao, J.; Li, Y.; Wu, J.; Zhao, Z.; Liu, Y. Preliminary study of assessing bladder urinary volume using electrical impedance tomography. J. Med. Biol. Eng. 2016, 36, 71–79. [Google Scholar] [CrossRef]
- Leonhäuser, D.; Castelar, C.; Schlebusch, T.; Rohm, M.; Rupp, R.; Leonhardt, S.; Walter, M.; Grosse, J.O. Evaluation of electrical impedance tomography for determination of urinary bladder volume: Comparison with standard ultrasound methods in healthy volunteers. Biomed. Eng. Online 2018, 17, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyori, S.S.; Nakagami, G.; Noguchi, H.; Mori, T.; Sanada, H. A Small 8-Electrode Electrical Impedance Measurement Device for Urine Volume Estimation in the Bladder. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), online, 1–5 November 2021; pp. 7174–7177. [Google Scholar]
- Shin, S.-c.; Moon, J.; Kye, S.; Lee, K.; Lee, Y.S.; Kang, H.-G. Continuous bladder volume monitoring system for wearable applications. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 1–15 July 2017; pp. 4435–4438. [Google Scholar]
- Rodas, M.; Amoroso, L.; Huerta, M. Estimation of emptying urinary bladder in paraplegic and elderly people based on bioimpedance, hypogastric region temperature and neural network. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018, Prague, Czech Republic, 3–8 June 2018; pp. 931–935. [Google Scholar]
- Kurihara, Y.; Yamasaki, T.; Kaburagi, T.; Kumagai, S.; Matsumoto, T. Model of urine accumulation in the bladder and method for predicting unconstrained urine volume based on absorption spectrum of urine. IEEE Access 2020, 8, 69368–69377. [Google Scholar] [CrossRef]
- Beeson, T.; Davis, C. Urinary management with an external female collection device. J. Wound Ostomy Cont. Nurs. 2018, 45, 187. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, H.; Tanaka, A.; Suematsu, R.; Nakajima, Y.; Douseki, T. Self-powered wireless urinary-incontinence sensor system detecting urine amount and diaper change timing in under 10 minutes. In Proceedings of the 2018 12th International Symposium on Medical Information and Communication Technology (ISMICT), Sydney, Australia, 26–28 March 2018; pp. 1–4. [Google Scholar]
- Long, A.; Edwards, J.; Worthington, J.; Cotterill, N.; Weir, I.; Drake, M.J.; Van Den Heuvel, E. Clinical evaluation of a prototype underwear designed to detect urine leakage from continence pads. J. Wound Ostomy Cont. Nurs. 2015, 42, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Sun, F.; Lu, Z.; Zhang, J.; Zhang, W.; Liu, J. A wearable sensing system based on smartphone and diaper to detect urine in-situ for patients with urinary incontinence. Sens. Actuators B Chem. 2022, 357, 131459. [Google Scholar] [CrossRef]
- Gratzke, C.; Bachmann, A.; Descazeaud, A.; Drake, M.J.; Madersbacher, S.; Mamoulakis, C.; Oelke, M.; Tikkinen, K.A.O.; Gravas, S. EAU guidelines on the assessment of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur. Urol. 2015, 67, 1099–1109. [Google Scholar] [CrossRef]
Device | Wearable | Wireless | Real-Time Analysis | Tested in Children | Tested in Adults | Accuracy in Detecting Full Bladder |
---|---|---|---|---|---|---|
SENS-U | ✓ | ✓ | ✓ | ✓ | - | 90% |
UBM | ✓ | ✓ | - | ✓ | - | 85% |
DFree | ✓ | ✓ | ✓ | - | ✓ | - |
References | Year | Technical Characteristics (Current/Frequenc/N° Electrodes) | N° Healthy Volunteers | Results |
---|---|---|---|---|
[60] | 2015 | 100 μA/50 kHz/4 | 1 | There was a clear and detectable trend in the electrical bioimpedance during the bladder filling process, although the presence of random noise decreased the reliability of the measurement. |
[57] | 2016 | 200 μA/50 kHz/4 | 12 | The method can be used to check the necessity to void since the higher-frequency spectral power (0.15–0.4 Hz) decreased (p = 0.05) and the low-to-high frequency ratio significantly increased (p = 0.001) during natural bladder filling. |
[63] | 2016 | 1 mAp-p/50 kHz/16 | 6 | A high positive linear correlation between the average conductivity index parameter and the BUV in all subjects (correlation coefficient R = 0.98 ± 0.01), with the performance of the four-electrode method being much poorer (R = −0.27 ± 0.82). |
[66] | 2017 | 100 μA/10, 50 kHz/3 | 3 | Results indicate that there is a close relationship between BUV and impedance variation. This confirms the feasibility of their system for detecting enuretic events. |
[64] | 2018 | 5 mA/50 kHz/16 | 10 | The mean error of the ultrasound estimation methods (ellipsoid (37 ± 17%) and L × W × H (36 ± 15%) and EIT (32 ± 18%) showed no significant differences in estimating the maximum bladder capacity. |
[58] | 2018 | 500 μA/50 kHz/4 | 1 | The circuit can infer the changes in BUV by measuring the electrical bioimpedance and phase difference of the urinary bladder. The rates of change for impedance and phase difference were different. |
[62] | 2019 | 1 mAp-p/10 kHz/4 | 8 | There is a strong negative correlation between the measured voltages and BUV during bladder activity. The leftmost and rightmost points of the abdomen were preferable points to place the two electrodes that inject the AC current, and it was preferable to place the other two sensor electrodes around 3 cm from the center of the abdomen. |
[56] | 2019 | -/50 kHz/- | 1 | The time for which urine storage could be tolerated was different in all the experiments. It was observed that the impedance value gradually decreased with passing time, even when body movement occurred. |
[59] | 2020 | -/-/4 | 1 | The device can be used for long-term monitoring since the results demonstrated the accuracy of the sensors and low power consumption of only 80 μW at 3 mHz. |
[65] | 2021 | 833 μAp-p/50 kHz/8 | 1 | The portable device realized an SNR of 79.1 dB with a resolution of 0.017 Ω. It can estimate the BUV, although the estimation error was large when the voided volume was small. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafid, A.; Difallah, S.; Alves, C.; Abdullah, S.; Folke, M.; Lindén, M.; Kristoffersson, A. State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review. Sensors 2023, 23, 2758. https://doi.org/10.3390/s23052758
Hafid A, Difallah S, Alves C, Abdullah S, Folke M, Lindén M, Kristoffersson A. State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review. Sensors. 2023; 23(5):2758. https://doi.org/10.3390/s23052758
Chicago/Turabian StyleHafid, Abdelakram, Sabrina Difallah, Camille Alves, Saad Abdullah, Mia Folke, Maria Lindén, and Annica Kristoffersson. 2023. "State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review" Sensors 23, no. 5: 2758. https://doi.org/10.3390/s23052758
APA StyleHafid, A., Difallah, S., Alves, C., Abdullah, S., Folke, M., Lindén, M., & Kristoffersson, A. (2023). State of the Art of Non-Invasive Technologies for Bladder Monitoring: A Scoping Review. Sensors, 23(5), 2758. https://doi.org/10.3390/s23052758