Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer
<p>The <b>top</b> image shows a simulation of GaN on top of sapphire without a guiding layer. The <b>bottom</b> image is a simulation of GaN on top of sapphire with a guiding layer. The scale bar showed the higher energy to lower energy density.</p> "> Figure 2
<p>Thermal cleaning of the sapphire substrate by using gaseous H2 at 1200 °C for 30 min (<b>a</b>), cross-section of GaN growth on top of sapphire with an AlN buffer (<b>b</b>), coplanar wavepad deposited on top of the GaN layer (<b>c</b>), variation in IDTs: 2.5 µm-, 5 µm-, and 7.5 µm-width are deposited (<b>d</b>,<b>e</b>), a thin film of Au/Ti (200 nm/20 nm) is deposited, which acts as a guiding layer, (<b>f</b>) final SEM structure of the SAW devices.</p> "> Figure 3
<p>Schematic diagram of the 3D model of a unit cell of a GaN/sapphire device used in the FEM simulation method.</p> "> Figure 4
<p>AFM analysis of a 5 × 5 µm scanning area for a 2 µm-thick GaN epitaxial layer on top of a sapphire substrate.</p> "> Figure 5
<p>The symmetric (002) and asymmetric (102) rocking curves of GaN grown on the sapphire substrate with am AlN buffer by using the MOCVD method.</p> "> Figure 6
<p>Return loss measurement at room temperature versus frequency under the conditions of without and with a guiding layer for W = 2.5 µm. R, S, and PB denote Rayleigh, Sezawa, and pseudo-bulk, respectively.</p> "> Figure 7
<p>Phase velocity versus IDT width size with the condition of a guiding layer. R is the Rayleigh mode, S is the Sezawa mode, and PB is the pseudo-bulk mode.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Methods
2.2. Theoretical Modelling
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, J.S.; Wong, J.; Grabar, B.; Antcliffe, M.; Chen, P.; Arkun, E.; Khalaf, I.; Corrion, A.; Post, T. Novel High-speed Linear GaN Technology with High Efficiency. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1130–1132. [Google Scholar] [CrossRef]
- Meneghini, M.; De Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Khadar, R.A.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-based power devices: Physics, reliability, and perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- Tian, J.; Liu, L.; Xia, S.; Diao, Y.; Lu, F. Optoelectronic properties of two-dimensional GaN adsorbed with H, N and O: A first-principle study. Phys. Lett. A 2019, 383, 3018–3024. [Google Scholar] [CrossRef]
- Ding, X.; Zhou, Y.; Cheng, J. A review of gallium nitride power device and its applications in motor drive. CES Trans. Electr. Mach. Syst. 2019, 3, 54–64. [Google Scholar] [CrossRef]
- Wang, J.; Cao, L.; Xie, J.; Beam, E.; McCarthy, R.; Youtsey, C.; Fay, P. High voltage, high current GaN-on-GaN p-n diodes with partially compensated edge termination. Appl. Phys. Lett. 2018, 113, 023502. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.; Rais-Zadeh, M. Coupled BAW/SAW Resonators Using AlN/Mo/Si and AlN/Mo/GaN Layered Structures. IEEE Electron. Device Lett. 2019, 40, 321–324. [Google Scholar] [CrossRef]
- Justice, J.; Lee, K.; Korakakis, D. Harmonic surface acoustic waves on gallium nitride thin films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Semond, F.; Schenck, D.; Jibard, M.; Camou, S.; Pastureaud, T.; Soufyane, A.; Ballandras, S. Epitaxy of AIN and GaN thin films on silicon or sapphire for the development of high frequency saw devices. In Annales de Chimie Science des Materiaux; Elsevier: Amsterdam, The Netherlands, 2001; Volume 26, pp. 177–182. [Google Scholar]
- Müller, A.; Konstantinidis, G.; Buiculescu, V.; Dinescu, A.; Stavrinidis, A.; Stefanescu, A.; Stavrinidis, G.; Giangu, I.; Cismaru, A.; Modoveanu, A. GaN/Si based single SAW resonator temperature sensor operating in the GHz frequency range. Sens. Actuators A Phys. 2014, 209, 115–123. [Google Scholar] [CrossRef]
- Huang, W.C.; Chu, C.M.; Wong, Y.Y.; Chen, K.W.; Lin, Y.K.; Wu, C.H.; Lee, W.I.; Chang, E.Y. Investigations of GaN growth on the sapphire substrate by MOCVD method with different AlN buffer deposition temperatures. Mater. Sci. Semicond. Process. 2016, 45, 1–8. [Google Scholar] [CrossRef]
- Lin, H.F.; Wu, C.T.; Chien, W.C.; Chen, S.W.; Kao, H.L.; Chyi, J.I.; Chen, J.S. Investigation of layered structure SAW devices fabricated using low temperature grown AlN thin film on GaN/sapphire. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 923–926. [Google Scholar] [PubMed]
- Jeong, H.H.; Kim, S.K.; Jung, Y.C.; Choi, H.C.; Lee, J.H.; Lee, Y.H. Characteristic analysis of SAW filters fabricated using GaN thin films. Phys. Status Solidi A 2001, 188, 247–250. [Google Scholar] [CrossRef]
- Pedrós, J.; Calle, F.; Grajal, J.; Jiménez Riobóo, R.J.; Takagaki, Y.; Ploog, K.H.; Bougrioua, Z. Anisotropy-induced polarization mixture of surface acoustic waves in GaN/c-sapphire heterostructures. Phys. Rev. B 2005, 72, 075306. [Google Scholar] [CrossRef]
- Brookes, J.; Bufacchi, R.; Kondoh, J.; Duffy, D.M.; McKendry, R.A. Determining biosensing modes in SH-SAW device using 3D finite element analysis. Sens. Actuators B Chem. 2016, 234, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Park, A.H.; Seo, T.H.; Chandramohan, S.; Lee, G.H.; Min, K.H.; Lee, S.; Kim, M.J.; Hwang, Y.G.; Suh, E.K. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale 2015, 7, 15099–15105. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Xu, B.; Ma, S.; Liu, Q.; Ouyang, H.; Shan, H.; Hao, X.; Han, B. The Surface Morphology Evolution of GaN Nucleation Layer during Annealing and Its Influence on the Crystal Quality of GaN Films. Coatings 2021, 11, 188. [Google Scholar] [CrossRef]
- Riobóo, R.J.J.; Rodríguez-Cañas, E.; Vila, M.; Prieto, C.; Calle, F.; Palacios, T.; Sánchez, M.A.; Omnès, F.; Ambacher, O.; Assouar, B.; et al. Hypersonic characterization of sound propagation velocity in AlxGa1–xN thin films. J. Appl. Phys. 2002, 92, 6868–6874. [Google Scholar] [CrossRef]
- Pedrós, J.; Calle, F.; Grajal, J.; Jiménez Riobóo, R.; Prieto, C.; Pau, J.; Pereiro, J.; Hermann, M.; Eickhoff, M.; Bougrioua, Z. Anisotropic propagation of surface acoustic waves on nitride layers. Superlattices Microstruct. 2004, 36, 815–823. [Google Scholar] [CrossRef]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaafar, M.M.; Mohd Razip Wee, M.F.; Nguyen, H.-T.-N.; Hieu, L.T.; Rai, R.; Sahoo, A.K.; Dee, C.F.; Chang, E.Y.; Yeop Majlis, B.; Tee, C.A.T. Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer. Sensors 2023, 23, 2464. https://doi.org/10.3390/s23052464
Jaafar MM, Mohd Razip Wee MF, Nguyen H-T-N, Hieu LT, Rai R, Sahoo AK, Dee CF, Chang EY, Yeop Majlis B, Tee CAT. Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer. Sensors. 2023; 23(5):2464. https://doi.org/10.3390/s23052464
Chicago/Turabian StyleJaafar, Muhammad Musoddiq, Mohd Farhanulhakim Mohd Razip Wee, Hoang-Tan-Ngoc Nguyen, Le Trung Hieu, Rahul Rai, Ashish Kumar Sahoo, Chang Fu Dee, Edward Yi Chang, Burhanuddin Yeop Majlis, and Clarence Augustine TH Tee. 2023. "Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer" Sensors 23, no. 5: 2464. https://doi.org/10.3390/s23052464
APA StyleJaafar, M. M., Mohd Razip Wee, M. F., Nguyen, H.-T.-N., Hieu, L. T., Rai, R., Sahoo, A. K., Dee, C. F., Chang, E. Y., Yeop Majlis, B., & Tee, C. A. T. (2023). Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer. Sensors, 23(5), 2464. https://doi.org/10.3390/s23052464