Phononic Crystal Made of Silicon Ridges on a Membrane for Liquid Sensing
<p>Schematic model used to study the transmission of elastic waves along a membrane and through a PnC of twelve periodic ridges excited by a transverse force <span class="html-italic">F<sub>y</sub></span> (1 N/m). The membrane has a thickness <span class="html-italic">h</span><sub>1</sub> = 100 µm, the ridges are defined by their length <span class="html-italic">h<sub>p</sub></span> = 800 µm and their thickness <span class="html-italic">d</span> = 100 µm, and the period of the PnC is <span class="html-italic">a</span> = 628 µm.</p> "> Figure 2
<p>(<b>a</b>) Unit cell used for the calculation of the dispersion curves, (<b>b</b>) dispersion and (<b>c</b>) transmission curves considering 12 ridges obtained with parameters <span class="html-italic">a</span> = 628 µm, <span class="html-italic">d</span> = 100 µm, <span class="html-italic">h<sub>p</sub></span> = 800 µm. The black line represents the sound velocity in water, the color on the branches corresponds to the ratio between the <span class="html-italic">Uy</span> component in the solid part, and the total displacement field in the whole structure. The gray areas indicate the bandgap regions.</p> "> Figure 3
<p>Zoom around the cavity created in the middle of the PnC. The cavity is defined by the geometrical parameter <span class="html-italic">a<sub>d</sub></span> indicated by the red arrow.</p> "> Figure 4
<p>Frequency responses of the displacement excited by a transverse force and detected on the opposite side of a PnC of 12 ridges with defect (<b>a</b>) <span class="html-italic">a</span><sub>0</sub> ≥ 1 and (<b>b</b>) <span class="html-italic">a</span><sub>0</sub> ≤ 1, showing the variation in the peaks with a value of <span class="html-italic">a</span><sub>0</sub>. The insets show a schematic view of the PnCs with a central defect. (<b>c</b>) Displacement field (solid) and absolute acoustic pressure (liquid) maps obtained with the parameters <span class="html-italic">a</span><sub>0</sub> = 1.5 and <span class="html-italic">a</span><sub>0</sub> = 0.6.</p> "> Figure 5
<p>Comparison of transmission peak calculated for the PnC made of 12, 14, and 18 ridges. The inserted cavity corresponds to <span class="html-italic">a</span><sub>0</sub> = 0.6.</p> "> Figure 6
<p>Displacement field recorded on the air/membrane interface at the cavity mode frequency. The PnC is made of 18 ridges.</p> "> Figure 7
<p>(<b>a</b>) Transmission peaks with three non-dissipative liquids of different acoustic properties. The PnC is defined by <span class="html-italic">h<sub>p</sub></span> = 800µm, 18 ridges, and <span class="html-italic">a</span><sub>0</sub> = 0.6 The black curve corresponds to the reference liquid, i.e., water (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s and <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>). The red and blue curves correspond to a change in acoustic velocity by 10% (<span class="html-italic">C<sub>lf</sub></span> = 1341 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>) or mass density by 10% (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 900 kg/m<sup>3</sup>), respectively. (<b>b</b>) Transmission peak frequency as a function of the percentage change in mass density <span class="html-italic">ρ<sub>f</sub></span> (blue curve) and sound velocity <span class="html-italic">C<sub>lf</sub></span> (red curve).</p> "> Figure 8
<p>Transmission peaks with three dissipative liquids of different acoustic properties. The parameters of the PnC are <span class="html-italic">h<sub>p</sub></span> = 800 µm, 18 ridges, and <span class="html-italic">a</span><sub>0</sub> = 0.6. The black curve corresponds to the reference liquid, i.e., water (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s and <span class="html-italic">ρf</span> = 1000 kg/m<sup>3</sup>). The red and the blue curves correspond to (<span class="html-italic">C<sub>lf</sub></span> = 1341 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>) and (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 900 kg/m<sup>3</sup>), respectively. The viscosity of liquids is taken for all the three cases as <span class="html-italic">μ</span> = 0.89 mPa.s and <span class="html-italic">μ<sub>B</sub></span> = 2.3 mPa s.</p> "> Figure 9
<p>(<b>a</b>) Sound velocity and mass density of NaI–water mixture for different NaI concentrations [<a href="#B45-sensors-23-02080" class="html-bibr">45</a>]. (<b>b</b>) Dynamic and bulk viscosities of NaI–water mixture for different NaI concentrations. (<b>c</b>) Transmission peak of the phononic cavity as a function of the NaI concentration. (<b>d</b>) Frequency of the peaks as a function of the associated NaI concentration.</p> "> Figure A1
<p>Transmission peaks with three non-dissipative liquids of different acoustic properties obtained with transverse excitation (<span class="html-italic">F<sub>y</sub></span> = 1 N/m) of the Si membrane with only two ridges. The black curve corresponds to the reference liquid, i.e., water (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s and <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>). The red and the blue curves correspond, respectively, to a change in acoustic velocity by 10% (<span class="html-italic">C<sub>lf</sub></span> = 1341 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>) or mass density by 10% (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 900 kg/m<sup>3</sup>). The inset shows the displacement field (solid) and the absolute acoustic pressure (liquid) of the dip.</p> "> Figure A2
<p>Transmission peaks with three non-dissipative liquids of different acoustic properties obtained with the longitudinal excitation (<span class="html-italic">F<sub>x</sub></span> = 1 N/m) of the Si membrane with only two ridges. The black curve corresponds to the reference liquid, i.e., water (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s and <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>). The red and the blue curves correspond, respectively, to a change in acoustic velocity by 10% (<span class="html-italic">C<sub>lf</sub></span> = 1341 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 1000 kg/m<sup>3</sup>) or mass density by 10% (<span class="html-italic">C<sub>lf</sub></span> = 1490 m/s, <span class="html-italic">ρ<sub>f</sub></span> = 900 kg/m<sup>3</sup>). The inset shows the displacement field (solid) and the absolute acoustic pressure (liquid) of the dip.</p> ">
Abstract
:1. Introduction
2. Dispersion Curves and Transmission Spectra
3. Design of a Cavity and Defect Modes
4. Sensitivity of the Sensor to the Acoustic Properties of the Liquid
5. Effects of Liquid Viscosity on Frequency Response
6. Sensing of NaI Concentration in NaI–Water Mixtures
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Transverse Excitation
Appendix A.2. Longitudinal Excitation
References
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic Band Structure of Periodic Elastic Composites. Phys. Rev. Lett. 1993, 71, 2022. [Google Scholar] [CrossRef]
- Pennec, Y.; Vasseur, J.O.; Djafari-Rouhani, B.; Dobrzyński, L.; Deymier, P.A. Two-Dimensional Phononic Crystals: Examples and Applications. Surf. Sci. Rep. 2010, 65, 229. [Google Scholar] [CrossRef]
- Laude, V. Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves; Walter de Gruyter GmbH & Co. KG.: Berlin, Germany, 2015; Volume 26, ISBN 3110302667. [Google Scholar]
- Khelif, A.; Adibi, A. (Eds.) Phononic Crystals: Fundamentals and Applications; Springer: New York, NY, USA, 2016. [Google Scholar]
- Pennec, Y.; Jin, Y.; Djafari-Rouhani, B. Chapter Two—Phononic and Photonic Crystals for Sensing Applications. In Advances in Applied Mechanics; Hussein, M.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 52, pp. 105–145. [Google Scholar]
- Lucklum, R.; Mukhin, N.; Rouhani, B.D.; Pennec, Y. Phononic Crystal Sensors: A New Class of Resonant Sensors—Chances and Challenges for the Determination of Liquid Properties. Front. Mech. Eng. 2021, 7, 705194. [Google Scholar] [CrossRef]
- Shehatah, A.A.; Mehaney, A. Temperature Influences on the Performance of Biodiesel Phononic Crystal Sensor. Mater. Res. Express 2020, 6, 125556. [Google Scholar] [CrossRef]
- Oseev, A.; Mukhin, N.; Lucklum, R.; Zubtsov, M.; Schmidt, M.-P.; Steinmann, U.; Fomin, A.; Kozyrev, A.; Hirsch, S. Study of Liquid Resonances in Solid-Liquid Composite Periodic Structures (Phononic Crystals)—Theoretical Investigations and Practical Application for in-Line Analysis of Conventional Petroleum Products. Sens. Actuators B Chem. 2018, 257, 469. [Google Scholar] [CrossRef]
- Sato, A.; Pennec, Y.; Shingne, N.; Thurn-Albrecht, T.; Knoll, W.; Steinhart, M.; Djafari-Rouhani, B.; Fytas, G. Tuning and Switching the Hypersonic Phononic Properties of Elastic Impedance Contrast Nanocomposites. ACS Nano 2010, 4, 3471. [Google Scholar] [CrossRef] [PubMed]
- Lucklum, R.; Li, J. Phononic Crystals for Liquid Sensor Applications. Meas. Sci. Technol. 2009, 20, 124014. [Google Scholar] [CrossRef]
- Villa-Arango, S.; Torres, R.; Kyriacou, P.A.; Lucklum, R. Fully-Disposable Multilayered Phononic Crystal Liquid Sensor with Symmetry Reduction and a Resonant Cavity. Measurement 2017, 102, 20. [Google Scholar] [CrossRef]
- Khateib, F.; Mehaney, A.; Amin, R.M.; Aly, A.H. Ultra-Sensitive Acoustic Biosensor Based on a 1D Phononic Crystal. Phys. Scr. 2020, 95, 075704. [Google Scholar] [CrossRef]
- Lucklum, R.; Ke, M.; Zubtsov, M. Two-Dimensional Phononic Crystal Sensor Based on a Cavity Mode. Sens. Actuators B Chem. 2012, 171, 271–277. [Google Scholar] [CrossRef]
- Amoudache, S.; Pennec, Y.; Rouhani, B.D.; Khater, A.; Lucklum, R.; Tigrine, R. Simultaneous Sensing of Light and Sound Velocities of Fluids in a Two-Dimensional PhoXonic Crystal with Defects. J. Appl. Phys. 2014, 115, 134503. [Google Scholar] [CrossRef]
- Gharibi, H.; Mehaney, A.; Bahrami, A. High Performance Design for Detecting NaI–Water Concentrations Using a Two-Dimensional Phononic Crystal Biosensor. J. Phys. D Appl. Phys. 2020, 54, 015304. [Google Scholar] [CrossRef]
- Cicek, A.; Trak, D.; Arslan, Y.; Korozlu, N.; Kaya, O.A.; Ulug, B. Ultrasonic Gas Sensing by Two-Dimensional Surface Phononic Crystal Ring Resonators. ACS Sens. 2019, 4, 1761. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Pennec, Y.; Pan, Y.; Djafari-Rouhani, B. Phononic Crystal Plate with Hollow Pillars Actively Controlled by Fluid Filling. Crystals 2016, 6, 64. [Google Scholar] [CrossRef]
- Wang, T.-T.; Wang, Y.-F.; Wang, Y.-S.; Laude, V. Tunable Fluid-Filled Phononic Metastrip. Appl. Phys. Lett. 2017, 111, 041906. [Google Scholar] [CrossRef]
- Bonhomme, J.; Oudich, M.; Djafari-Rouhani, B.; Sarry, F.; Pennec, Y.; Bonello, B.; Beyssen, D.; Charette, P.G. Love Waves Dispersion by Phononic Pillars for Nano-Particle Mass Sensing. Appl. Phys. Lett. 2019, 114, 013501. [Google Scholar] [CrossRef]
- Tubular Bell–New Class of (Bio)Chemical Microsensors. Procedia Eng. 2015, 120, 520. [CrossRef]
- Gueddida, A.; Pennec, Y.; Zhang, V.; Lucklum, F.; Vellekoop, M.; Mukhin, N.; Lucklum, R.; Bonello, B.; Rouhani, B.D. Tubular Phononic Crystal Sensor. J. Appl. Phys. 2021, 130, 105103. [Google Scholar] [CrossRef]
- Mukhin, N.; Lucklum, R. Periodic Tubular Structures and Phononic Crystals towards High-Q Liquid Ultrasonic Inline Sensors for Pipes. Sensors 2021, 21, 5982. [Google Scholar] [CrossRef]
- Oseev, A.; Zubtsov, M.; Lucklum, R. Gasoline Properties Determination with Phononic Crystal Cavity Sensor. Sens. Actuators B Chem. 2013, 189, 208. [Google Scholar] [CrossRef]
- Atashbar, M.Z.; Bejcek, B.; Vijh, A.; Singamaneni, S. QCM Biosensor with Ultra Thin Polymer Film. Sens. Actuators B Chem. 2005, 107, 945. [Google Scholar] [CrossRef]
- Mannelli, I.; Minunni, M.; Tombelli, S.; Mascini, M. Quartz Crystal Microbalance (QCM) Affinity Biosensor for Genetically Modified Organisms (GMOs) Detection. Biosens. Bioelectron. 2003, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhu, T.; Tang, J.; Wu, R.; Chen, Q.; Chen, M.; Zhang, B.; Huang, J.; Fu, W. Hybridization Assay of Hepatitis B Virus by QCM Peptide Nucleic Acid Biosensor. Biosens. Bioelectron. 2008, 23, 879. [Google Scholar] [CrossRef] [PubMed]
- Masdor, N.A.; Altintas, Z.; Tothill, I.E. Sensitive Detection of Campylobacter Jejuni Using Nanoparticles Enhanced QCM Sensor. Biosens. Bioelectron. 2016, 78, 328. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Haupt, K.; Feller, K.-H. Development of a QCM-D Biosensor for Ochratoxin A Detection in Red Wine. Talanta 2017, 166, 193. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Shih, W.-C.; Chang, W.-T.; Yang, C.-H.; Kao, K.-S.; Cheng, C.-C. Biosensor for Human IgE Detection Using Shear-Mode FBAR Devices. Nanoscale Res. Lett. 2015, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Xiong, J.; Zheng, D.; Zhang, W.; Liu, L.; Wang, S.; Gu, H. A Biosensor Based on a Film Bulk Acoustic Resonator and Biotin–Avidin System for the Detection of the Epithelial Tumor Marker Mucin 1. RSC Adv. 2015, 5, 66355. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Flewitt, A.J.; Cai, Z.; Zhao, X. Film Bulk Acoustic Resonators (FBARs) as Biosensors: A Review. Biosens. Bioelectron. 2018, 116, 1. [Google Scholar] [CrossRef]
- Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Verona, E.; Girasole, M.; Fosca, M.; Dinarelli, S.; Staiano, M.; Marzullo, V.; Capo, A.; et al. A Shear Horizontal Surface Acoustic Wave Biosensor for a Rapid and Specific Detection of D-Serine. Sens. Actuators B Chem. 2016, 226, 1. [Google Scholar] [CrossRef]
- Ten, S.T.; Hashim, U.; Gopinath, S.C.B.; Liu, W.W.; Foo, K.L.; Sam, S.T.; Rahman, S.F.A.; Voon, C.H.; Nordin, A.N. Highly Sensitive Escherichia Coli Shear Horizontal Surface Acoustic Wave Biosensor with Silicon Dioxide Nanostructures. Biosens. Bioelectron. 2017, 93, 146. [Google Scholar] [CrossRef]
- Ji, J.; Yang, C.; Zhang, F.; Shang, Z.; Xu, Y.; Chen, Y.; Chen, M.; Mu, X. A High Sensitive SH-SAW Biosensor Based 36° Y-X Black LiTaO3 for Label-Free Detection of Pseudomonas Aeruginosa. Sens. Actuators B Chem. 2019, 281, 757. [Google Scholar] [CrossRef]
- White, R.M.; Wenzel, S.W. Fluid Loading of a Lamb-wave Sensor. Appl. Phys. Lett. 1988, 52, 1653. [Google Scholar] [CrossRef]
- Wenzel, S.W.; White, R.M. A Multisensor Employing an Ultrasonic Lamb-Wave Oscillator. IEEE Trans. Electron. Devices 1988, 35, 735. [Google Scholar] [CrossRef]
- Costello, B.J.; Martin, B.A.; White, R.M. Ultrasonic Plate Waves for Biochemical Measurements. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 3–6 October 1989; Volume 2, pp. 977–981. [Google Scholar]
- Vellekoop, M.J.; Lubking, G.W.; Sarro, P.M.; Venema, A. Integrated-Circuit-Compatible Design and Technology of Acoustic-Wave-Based Microsensors. Sens. Actuators A Phys. 1994, 44, 249. [Google Scholar] [CrossRef]
- Laude, V.; Robert, L.; Daniau, W.; Khelif, A.; Ballandras, S. Surface Acoustic Wave Trapping in a Periodic Array of Mechanical Resonators. Appl. Phys. Lett. 2006, 89, 083515. [Google Scholar] [CrossRef]
- Gao, F.; Al-Qahtani, A.M.; Khelif, A.; Boussaid, F.; Benchabane, S.; Cheng, Y.; Agnaf, O.E.; Bermak, A. Towards Acoustic Radiation Free Lamb Wave Resonators for High-Resolution Gravimetric Biosensing. IEEE Sens. J. 2021, 21, 2725. [Google Scholar] [CrossRef]
- Shen, G.; Toulouse, J.; Beaufils, S.; Bonello, B.; Hwang, Y.; Finkel, P.; Hernandez, J.; Bertault, M.; Maglione, M.; Ecolivet, C.; et al. Experimental Studies of the Liquid-Glass Transition in Trimethylheptane. Phys. Rev. E 2000, 62, 783. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bonello, B.; Marchal, R.; Boyko, O. Beam Path and Focusing of Flexural Lamb Waves within Phononic Crystal-Based Acoustic Lenses. New J. Phys. 2014, 16, 063031. [Google Scholar] [CrossRef]
- Lu, L.; Charron, E.; Glushkov, E.; Glushkova, N.; Bonello, B.; Julien, F.H.; Gogneau, N.; Tchernycheva, M.; Boyko, O. Probing Elastic Properties of Nanowire-Based Structures. Appl. Phys. Lett. 2018, 113, 161903. [Google Scholar] [CrossRef]
- Gueddida, A.; Pennec, Y.; Fiates, A.L.S.; Vellekoop, M.J.; Bonello, B.; Djafari-Rouhani, B. Acoustic Sensor Based on a Cylindrical Resonator for Monitoring a Liquid Flow. Crystals 2022, 12, 1398. [Google Scholar] [CrossRef]
- Lin, Q.; Cai, F.; Li, F.; Zhao, D.; Xia, X.; Zhou, W.; Meng, L.; Zheng, H. The Compact Acoustic Liquid Sensor Based on the Circumferential Modes of a Cylindrical Shell. Sens. Actuators A Phys. 2020, 304, 111843. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueddida, A.; Zhang, V.; Carpentier, L.; Bonhomme, J.; Bonello, B.; Pennec, Y.; Djafari-Rouhani, B. Phononic Crystal Made of Silicon Ridges on a Membrane for Liquid Sensing. Sensors 2023, 23, 2080. https://doi.org/10.3390/s23042080
Gueddida A, Zhang V, Carpentier L, Bonhomme J, Bonello B, Pennec Y, Djafari-Rouhani B. Phononic Crystal Made of Silicon Ridges on a Membrane for Liquid Sensing. Sensors. 2023; 23(4):2080. https://doi.org/10.3390/s23042080
Chicago/Turabian StyleGueddida, Abdellatif, Victor Zhang, Laurent Carpentier, Jérémy Bonhomme, Bernard Bonello, Yan Pennec, and Bahram Djafari-Rouhani. 2023. "Phononic Crystal Made of Silicon Ridges on a Membrane for Liquid Sensing" Sensors 23, no. 4: 2080. https://doi.org/10.3390/s23042080
APA StyleGueddida, A., Zhang, V., Carpentier, L., Bonhomme, J., Bonello, B., Pennec, Y., & Djafari-Rouhani, B. (2023). Phononic Crystal Made of Silicon Ridges on a Membrane for Liquid Sensing. Sensors, 23(4), 2080. https://doi.org/10.3390/s23042080