Vortex-Induced Vibrations of an Elastic Micro-Beam with Gas Modeled by DSMC
<p>Geometry of flow past elastic cantilever beam placed normal to free stream.</p> "> Figure 2
<p>(<b>a</b>) Macroscopic field of horizontal velocity; (<b>b</b>) SIMPLE-TS staggered grid with 10,600 × 4300 cells; (<b>c</b>) zoomed-in SIMPLE-TS staggered grid with 10,600 × 4300 cells around cantilever; (<b>d</b>) mesh near cantilever of DSMC; (<b>e</b>) zoomed-in mesh near cantilever of DSMC around cantilever; (<b>f</b>) application of TAS in basic cells; and (<b>g</b>) horizontal velocity profiles at center of flat plate along <span class="html-italic">x</span>-axis. Profiles were obtained by SIMPLE-TS GPU (continuum model) and DSMC.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Macroscopic field of horizontal velocity; (<b>b</b>) SIMPLE-TS staggered grid with 10,600 × 4300 cells; (<b>c</b>) zoomed-in SIMPLE-TS staggered grid with 10,600 × 4300 cells around cantilever; (<b>d</b>) mesh near cantilever of DSMC; (<b>e</b>) zoomed-in mesh near cantilever of DSMC around cantilever; (<b>f</b>) application of TAS in basic cells; and (<b>g</b>) horizontal velocity profiles at center of flat plate along <span class="html-italic">x</span>-axis. Profiles were obtained by SIMPLE-TS GPU (continuum model) and DSMC.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Macroscopic field of horizontal velocity; (<b>b</b>) SIMPLE-TS staggered grid with 10,600 × 4300 cells; (<b>c</b>) zoomed-in SIMPLE-TS staggered grid with 10,600 × 4300 cells around cantilever; (<b>d</b>) mesh near cantilever of DSMC; (<b>e</b>) zoomed-in mesh near cantilever of DSMC around cantilever; (<b>f</b>) application of TAS in basic cells; and (<b>g</b>) horizontal velocity profiles at center of flat plate along <span class="html-italic">x</span>-axis. Profiles were obtained by SIMPLE-TS GPU (continuum model) and DSMC.</p> "> Figure 3
<p>Comparison of convergence of time series of lift coefficients at established regime obtained by continuum approach (SIMPLE-TS) and DSMC.</p> "> Figure 4
<p>Comparison of continuous 1D wavelet transform with bump wavelet to analyze time series of lift coefficients at established regime obtained by continuum approach (SIMPLE-TS) on computational domain with size (<b>a</b>) 50 <span class="html-italic">L</span> × 20 <span class="html-italic">L</span> and mesh with 1850 × 400 cells and (<b>b</b>) 100 <span class="html-italic">L</span> × 40 <span class="html-italic">L</span> and mesh with 10,600 × 4300 cells, and DSMC obtained on computational domain with size 50 <span class="html-italic">L</span> × 20 <span class="html-italic">L</span> and (<b>c</b>) 88 million particles and (<b>d</b>) 352 million particles.</p> "> Figure 5
<p>Time–history diagram of response of tip of beam subjected to uniformly distributed step load with <span class="html-italic">p</span><sub>0</sub> = 100 N/m. Blue indicates presented model, red indicates MSC Nastran.</p> "> Figure 6
<p>Time–history diagram of response of tip of beam subjected to uniformly distributed step load with <span class="html-italic">p</span><sub><span class="html-italic">h</span></sub> = 200 N/m and ω<sub><span class="html-italic">e</span></sub> = 67.4 rad/s.</p> "> Figure 7
<p>Load on beam. (<b>a</b>) Load along beam length for three sequential time steps; (<b>b</b>) probability density function of load of a node near the tip; (<b>c</b>) load at a node near the tip in time. Beam thickness is <span class="html-italic">c<sub>h</sub></span> = 0.0201.</p> "> Figure 8
<p>Time–history diagram of deflection of tip of beam for beams with 9 thicknesses.</p> "> Figure 9
<p>Continuous 1D wavelet transform with bump wavelet analysis of deflection of tip of beam for thickness of (<b>a</b>) 0.0175 <span class="html-italic">L</span>, (<b>b</b>) 0.0195 <span class="html-italic">L</span>, (<b>c</b>) 0.0201 <span class="html-italic">L</span>, and (<b>d</b>) 0.0225 <span class="html-italic">L</span>.</p> "> Figure 10
<p>Amplitude of displacement of beam as a function of (<b>a</b>) frequency ratio (first natural frequency over VIV frequency) and (<b>b</b>) cantilever thickness.</p> "> Figure 11
<p>A MEMS contains a cluster of micro-sized elastic beams with different properties and appropriate electronics for wireless data transfer.</p> ">
Abstract
:1. Introduction
2. Mathematical Models and Validation
2.1. DSMC
2.2. Mathematical Model of Elastic Obstacle
2.3. Verification of the Beam Model
3. Results and Discussion
3.1. Dimensional Analysis
3.2. Results
4. Conclusions and Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paidoussis, M.P. Fluid-Structure Interactions; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-397312-2. Available online: https://www.sciencedirect.com/book/9780123973122/fluid-structure-interactions?via=ihub= (accessed on 1 February 2023).
- Bungartz, H.-J.; Schäfer, M. (Eds.) Fluid-Structure Interaction; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2006; Volume 53, ISBN 978-3-540-34595-4. [Google Scholar]
- Pan, F.; Kubby, J.; Chen, J. Numerical Simulation of Fluid-Structure Interaction in a MEMS Diaphragm Drop Ejector. J. Micromech. Microeng. 2002, 12, 70–76. [Google Scholar] [CrossRef]
- Baudille, R.; Biancolini, M.E. A General Approach for Studying the Motion of a Cantilever Beam Interacting with a 2D Fluid Flow. Interact. Multiscale Mech. 2008, 1, 449–465. [Google Scholar] [CrossRef]
- Ma, R.-H.; Chou, P.-C.; Wang, Y.-H.; Hsueh, T.-H.; Fu, L.-M.; Lee, C.-Y. A Microcantilever-Based Gas Flow Sensor for Flow Rate and Direction Detection. Microsyst. Technol. 2009, 15, 1201–1205. [Google Scholar] [CrossRef]
- Badarlis, A.; Pfau, A.; Kalfas, A. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam. Sensors 2015, 15, 24318–24342. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.G.; Clark, R.L. Fluid-Structure Interaction in Atomic Force Microscope Cantilever Dynamics and Thermal Response. J. Appl. Phys. 2007, 101, 034303. [Google Scholar] [CrossRef]
- Li, P.; Fang, Y. An Analytical Model for Squeeze-Film Damping of Perforated Torsional Microplates Resonators. Sensors 2015, 15, 7388–7411. [Google Scholar] [CrossRef]
- Wang, S.; Han, F.; Sun, B.; Li, H. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors. Sensors 2017, 17, 1119. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Zhuo, C.; Zhong, C. Investigation of Nonlinear Squeeze-Film Damping Involving Rarefied Gas Effect in Micro-Electro-Mechanical Systems. Comput. Math. Appl. 2022, 114, 188–209. [Google Scholar] [CrossRef]
- Diab, N.A.; Lakkis, I.A. DSMC Simulations of Squeeze Film Under a Harmonically Oscillating Micro RF Switch With Large Tip Displacements. In Volume 9: Micro- and Nano-Systems Engineering and Packaging, Parts A and B, Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9 November 2012; American Society of Mechanical Engineers: New York, NY, USA; pp. 187–197.
- Diab, N.A.; Lakkis, I.A. Investigation of the Squeeze Film Dynamics Underneath a Microstructure With Large Oscillation Amplitudes and Inertia Effects. J. Tribol. 2016, 138, 031704. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, C.; Liu, S. Arbitrary Lagrangian-Eulerian-Type Discrete Unified Gas Kinetic Scheme for Low-Speed Continuum and Rarefied Flow Simulations with Moving Boundaries. Phys. Rev. E 2019, 100, 063310. [Google Scholar] [CrossRef] [Green Version]
- Oosthuizen, D.N.; Motaung, D.E.; Swart, H.C. Selective Detection of CO at Room Temperature with CuO Nanoplatelets Sensor for Indoor Air Quality Monitoring Manifested by Crystallinity. Appl. Surf. Sci. 2019, 466, 545–553. [Google Scholar] [CrossRef]
- Kim, G.S.; Park, Y.; Shin, J.; Song, Y.G.; Kang, C.-Y. Metal Oxide Nanorods-Based Sensor Array for Selective Detection of Biomarker Gases. Sensors 2021, 21, 1922. [Google Scholar] [CrossRef] [PubMed]
- Corke, T.C.; Bowles, P.O.; He, C.; Matlis, E.H. Sensing and Control of Flow Separation Using Plasma Actuators. Phil. Trans. R. Soc. A. 2011, 369, 1459–1475. [Google Scholar] [CrossRef] [PubMed]
- Sturm, H.; Dumstorff, G.; Busche, P.; Westermann, D.; Lang, W. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors. Sensors 2012, 12, 14292–14306. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.H.K.; Govardhan, R. VORTEX -INDUCED VIBRATIONS. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Li, J.; Liu, S. Experimental Study on Vortex-Induced Vibration of Steel Tubes in Transmission Towers at Various Inflow Conditions. Buildings 2023, 13, 252. [Google Scholar] [CrossRef]
- Lee, Y.J.; Qi, Y.; Zhou, G.; Lua, K.B. Vortex-Induced Vibration Wind Energy Harvesting by Piezoelectric MEMS Device in Formation. Sci. Rep. 2019, 9, 20404. [Google Scholar] [CrossRef]
- Lu, D.; Li, Z.; Hu, G.; Zhou, B.; Yang, Y.; Zhang, G. Two-Degree-of-Freedom Piezoelectric Energy Harvesting from Vortex-Induced Vibration. Micromachines 2022, 13, 1936. [Google Scholar] [CrossRef]
- Gad-el-Hak, M. The Fluid Mechanics of Microdevices: The Freeman Scholar Lecture. ASME J. Fluid Eng. 1999, 121, 5–33. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Roohi, E.; Niazmand, H.; Stefanov, S.; Myong, R.S. Thermal and Second-Law Analysis of a Micro- or Nanocavity Using Direct-Simulation Monte Carlo. Phys. Rev. E 2012, 85, 056310. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.S.; Mohammadzadeh, A.; Struchtrup, H. A Numerical Study of the Heat Transfer through a Rarefied Gas Confined in a Microcavity. Continuum Mech. Thermodyn. 2015, 27, 433–446. [Google Scholar] [CrossRef]
- Garcia, A. Surprising Hydrodynamic Results Discovered by Means of Direct Simulation Monte Carlo. 2011. Available online: https://apps.dtic.mil/sti/citations/ADA582768 (accessed on 1 February 2023).
- Xu, K. Super-Burnett Solutions for Poiseuille Flow. Phys. Fluids 2003, 15, 2077–2080. [Google Scholar] [CrossRef]
- Shterev, K.; Manoach, E.; Stefanov, S. Hybrid Numerical Approach to Study the Interaction of the Rarefied Gas Flow in a Microchannel with a Cantilever. Int. J. Non-Linear Mech. 2019, 117, 103239. [Google Scholar] [CrossRef]
- Bird, G.A. Molecular, Gas Dynamics and the Direct Simulation of Gas Flows; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Gerrard, J.H. The Wakes of Cylindrical Bluff Bodies at Low Reynolds Number. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1978, 288, 351–382. [Google Scholar]
- Thompson, M.C.; Radi, A.; Rao, A.; Sheridan, J.; Hourigan, K. Low-Reynolds-Number Wakes of Elliptical Cylinders: From the Circular Cylinder to the Normal Flat Plate. J. Fluid Mech. 2014, 751, 570–600. [Google Scholar] [CrossRef]
- Shterev, K.S.; Stefanov, S.K. A Two-Dimensional Computational Study of Gas Flow Regimes Past of Square Cylinder Confined in a Long Microchannel. Eur. J. Mech.-B/Fluids 2017, 64, 47–54. [Google Scholar] [CrossRef]
- Stefanov, S.K.; Barber, R.W.; Ota, M.; Emerson, D.R. Comparison between Navier-Stokes and DSMC Calculations for Low Reynolds Number Slip Flow Past a Confined Microsphere. AIP Conf. Proc. 2005, 762, 701–706. [Google Scholar] [CrossRef]
- Stefanov, S.; Roussinov, V.; Cercignani, C. Rayleigh-Bénard Flow of a Rarefied Gas and Its Attractors. I. Convection Regime. Phys. Fluids 2002, 14, 2255–2269. [Google Scholar] [CrossRef]
- Shterev, K.S.; Stefanov, S.K. Pressure Based Finite Volume Method for Calculation of Compressible Viscous Gas Flows. J. Comput. Phys. 2010, 229, 461–480. [Google Scholar] [CrossRef]
- Shterev, K.S. GPU Implementation of Algorithm SIMPLE-TS for Calculation of Unsteady, Viscous, Compressible and Heat-Conductive Gas Flows. arXiv 2018. [Google Scholar] [CrossRef]
- Stefanov, S.K. On DSMC Calculations of Rarefied Gas Flows with Small Number of Particles in Cells. SIAM J. Sci. Comput. 2011, 33, 677–702. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities: THE GMSH PAPER. Int. J. Numer. Meth. Engng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Bird, G.A. Visual DSMC Program for Two-Dimensional and Axially Symmetric Flows, the DS2V Program User’s Guide; Version 2.1; G.A.B. Consulting Pty Ltd.: Sydney, Australia, 2003. [Google Scholar]
- Shterev, K. The Correctness of the Simplified Bernoulli Trial (SBT) Collision Scheme of Calculations of Two-Dimensional Flows. Micromachines 2021, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Shterev, K.S. Boundary Condition at Infinity for DSMC Method; Heraklion: Crete, Greece, 2022. [Google Scholar]
- Manoach, E.; de Paz, G.; Kostadinov, K.; Montoya, F. Dynamic Response of Single-Link Flexible Manipulators. In Structural Dynamics: Recent Advances, Proceedings of the 6th International Conference; University of Southampton: Southampton, UK, 1997; Volume I, pp. 1275–1290. ISBN 0-85432-6375. Available online: https://apps.dtic.mil/sti/pdfs/ADA328147.pdf (accessed on 1 February 2023).
- Meirovitch, L. Fundamentals of Vibrations; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations, 2nd ed.; Prentice-Hall Series in Automatic Computation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971; ISBN 978-0-13-626606-8. [Google Scholar]
- Лoйцянский, Л.Г. Механика Жидкoсти и Газа; Дрoфа: Moscow, Russia, 2003; ISBN 5-7107-6327-6. [Google Scholar]
- White, F.M.; Xue, H. Fluid Mechanics, 9th ed.; McGraw-Hill: New York, NY, USA, 2021; ISBN 978-1-260-57554-5. [Google Scholar]
Algorithm (Size of Computation Domain, Mesh/Particles) | Fast Fourier Transform | Continuous 1D Wavelet Transform | ||||
---|---|---|---|---|---|---|
Frequency | Amplitude | Stg | Frequency | Amplitude | Stg | |
SIMPE-TS GPU (50 L × 20 L, mesh 1850 × 400 cells) | 2.127 MHz | 0.04345 | 0.1274 | 2.143 MHz | 0.0447 | 0.1283 |
SIMPE-TS GPU (100 L × 40 L, mesh 10,600 × 4300 cells) | 2.136 MHz | 0.04398 | 0.1279 | 2.143 MHz | 0.0508 | 0.1283 |
DSMC (50 L × 20 L, 22 106 particles) | 1.9 MHz | 0.01709 | 0.1138 | 1.874 MHz | 0.03314 | 0.1122 |
DSMC (50 L × 20 L, 88 106 particles) | 2.074 MHz | 0.03116 | 0.1242 | 2.008 MHz | 0.04213 | 0.1202 |
DSMC (50 L × 20 L, 352 106 particles) | 2.09 MHz | 0.04061 | 0.1252 | 2.153 MHz | 0.04982 | 0.1289 |
No. | Euler–Bernoulli | Timoshenko | MSC Nastran | |||
---|---|---|---|---|---|---|
Rad/s | Hz | Rad/s | Hz | Rad/s | Hz | |
1 | 13.478 | 21.452 | 13.478 | 21.445 | 13.3216 | 21.3779 |
2 | 84.468 | 134.44 | 84.466 | 134.15 | 84.006 | 133.7 |
3 | 2365.1 | 376.42 | 2365.0 | 374.5 | 2345.574 | 373.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shterev, K.; Manoach, E.; Doneva, S. Vortex-Induced Vibrations of an Elastic Micro-Beam with Gas Modeled by DSMC. Sensors 2023, 23, 1933. https://doi.org/10.3390/s23041933
Shterev K, Manoach E, Doneva S. Vortex-Induced Vibrations of an Elastic Micro-Beam with Gas Modeled by DSMC. Sensors. 2023; 23(4):1933. https://doi.org/10.3390/s23041933
Chicago/Turabian StyleShterev, Kiril, Emil Manoach, and Simona Doneva. 2023. "Vortex-Induced Vibrations of an Elastic Micro-Beam with Gas Modeled by DSMC" Sensors 23, no. 4: 1933. https://doi.org/10.3390/s23041933
APA StyleShterev, K., Manoach, E., & Doneva, S. (2023). Vortex-Induced Vibrations of an Elastic Micro-Beam with Gas Modeled by DSMC. Sensors, 23(4), 1933. https://doi.org/10.3390/s23041933