Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks
<p>Schematic diagram of the cosine similarity mutation strategy. The red dotted line represents the average cosine similarity of the population, and the dotted arrow shows one possible position of the particle after the variation.</p> "> Figure 2
<p>Flowchart of SMCPSO-based CNNs.</p> "> Figure 3
<p>Comparison of the results for PSO, COBL, and SMCPSO in relation to multi-peak test functions. (<math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> represents the optimal solution of the current iteration, and <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∗</mo> <mo stretchy="false">)</mo> </mrow> </semantics></math> represents the actual optimal solution of the function. <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∗</mo> <mo stretchy="false">)</mo> </mrow> </semantics></math> is the current error represented by a logarithm, and the smaller the error is, the better the algorithm performance is.) (<b>a</b>) Errors between the optimal value of each iteration and the actual optimal value of the f6 multi-peak test function by the standard PSO, COBL, and SMCPSO methods, respectively; similarly, this is shown for (<b>b</b>) f8, (<b>c</b>) f10, (<b>d</b>) f12, (<b>e</b>) f14, (<b>f</b>) f16, (<b>g</b>) f18, (<b>h</b>) f20.</p> "> Figure 3 Cont.
<p>Comparison of the results for PSO, COBL, and SMCPSO in relation to multi-peak test functions. (<math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> represents the optimal solution of the current iteration, and <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∗</mo> <mo stretchy="false">)</mo> </mrow> </semantics></math> represents the actual optimal solution of the function. <math display="inline"><semantics> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∗</mo> <mo stretchy="false">)</mo> </mrow> </semantics></math> is the current error represented by a logarithm, and the smaller the error is, the better the algorithm performance is.) (<b>a</b>) Errors between the optimal value of each iteration and the actual optimal value of the f6 multi-peak test function by the standard PSO, COBL, and SMCPSO methods, respectively; similarly, this is shown for (<b>b</b>) f8, (<b>c</b>) f10, (<b>d</b>) f12, (<b>e</b>) f14, (<b>f</b>) f16, (<b>g</b>) f18, (<b>h</b>) f20.</p> "> Figure 4
<p>Comparison of SGD-alone training and SMCPSO-SGD combined training with SET5. In (<b>a</b>,<b>b</b>), PNSR and SSIM of images generated during SGD and SMCPSO-SGD training are compared. The red curve is smoother than the black curve, and the PNSR and SSIM of the images are higher in each epoch, indicating better quality of the generated image. In (<b>c</b>,<b>d</b>), the train loss and eval loss of the red curve are always lower, and the black curve declines steadily in (<b>c</b>) but fluctuates greatly in (<b>d</b>), while the red curve declines steadily all the time, indicating that SMCPSO helps SGD to better train.</p> "> Figure 5
<p>Pneumonia diagnosis flow diagram. (The SMCPSO-SGD network was first used to convert LR X-rays into HR X-rays, then ResNet34 was used to classify the HR X-ray images).</p> "> Figure 6
<p>Examples of CXR HR, LR, and SR images for the COVID-19 category (<b>a</b>), Lung Opacity category (<b>b</b>), Normal category (<b>c</b>), Viral Pneumonia category (<b>d</b>).</p> "> Figure 7
<p>Classification mixing matrix for three kinds of images. (The vertical axis represents the true category, the horizontal axis represents the predicted category, the ratio matrix on the right represents the accuracy of each of the four categories, and the lower ratio matrix represents the recall rate of each of the four categories.) (<b>A</b>) Classification result for the CXR LR images. Since the CXR LR images were obtained from CXR HR images by using the down-sampling method, there was a loss of information, resulting in the worst classification. (<b>B</b>) Classification results for the CXR SR images. The SMCPOS-SGD model was used to process the CXR LR images, and the details of the CXR LR images could be restored. The generated CXR SR images could effectively improve the number of correct classifications for the four categories. (<b>C</b>) Classification results for the CXR HR images. The CXR HR images are the most primitive images; therefore, it is important to classify them correctly.</p> "> Figure 7 Cont.
<p>Classification mixing matrix for three kinds of images. (The vertical axis represents the true category, the horizontal axis represents the predicted category, the ratio matrix on the right represents the accuracy of each of the four categories, and the lower ratio matrix represents the recall rate of each of the four categories.) (<b>A</b>) Classification result for the CXR LR images. Since the CXR LR images were obtained from CXR HR images by using the down-sampling method, there was a loss of information, resulting in the worst classification. (<b>B</b>) Classification results for the CXR SR images. The SMCPOS-SGD model was used to process the CXR LR images, and the details of the CXR LR images could be restored. The generated CXR SR images could effectively improve the number of correct classifications for the four categories. (<b>C</b>) Classification results for the CXR HR images. The CXR HR images are the most primitive images; therefore, it is important to classify them correctly.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Deep Learning for SR
2.2. PSO Based on Centroid Opposition-Based Learning
3. Methods
3.1. Cosine Similarity Variation Strategy
3.2. FSRCNN Model Based on SMCPSO
3.3. Classification of Pneumonia
4. Experiments and Results
4.1. Improved Particle Swarm Optimization
4.2. FSRCNN Model Based on SMCPSO
4.3. Classification Evaluation
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Proceedings of the European Conference on Computer Vision(ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Huang, J.; Wang, L.; Qin, J.; Chen, Y.; Cheng, X.; Zhu, Y. Super-Resolution of Intravoxel Incoherent Motion Imaging Based on Multisimilarity. IEEE Sens. J. 2020, 20, 10963–10973. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, L.; Fu, H. RRSGAN: Reference-Based Super-Resolution for Remote Sensing Image. IEEE T. Geosci. Remote 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Ha, Y.; Tian, J.; Miao, Q.; Yang, Q.; Guo, J.; Jiang, R. Part-Based Enhanced Super Resolution Network for Low-Resolution Person Re-Identification. IEEE Access 2020, 8, 57594–57605. [Google Scholar] [CrossRef]
- Li, X.; Orchard, M.T. New Edge Directed Interpolation. In Proceedings of the International Conference on Information Processing (ICIP), Vancouver, BC, Canada, 10–13 September 2000; pp. 311–314. [Google Scholar]
- Capel, D.; Zisserman, A. Super-Resolution Enhancement of Text Image Sequences. In Proceedings of the 15th International Conference on Pattern Recognition (ICPR), Barcelona, Spain, 3–7 September 2000; pp. 311–314. [Google Scholar]
- Huang, Y.; Jiang, Z.; Lan, R.; Zhang, S.; Pi, K. Infrared Image Super-Resolution via Transfer Learning and PSRGAN. IEEE Signal Proc. Let. 2021, 28, 982–986. [Google Scholar] [CrossRef]
- Shen, H.; Hou, B.; Wen, Z.; Jiao, L. Structural-Correlated Self-Examples Based Super-Resolution of Single Remote Sensing Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3209–3223. [Google Scholar] [CrossRef]
- Hu, J.; Li, T.; Zhao, M.; Ning, J. Hyperspectral Image Super-Resolution via Deep Structure and Texture Interfusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8665–8678. [Google Scholar] [CrossRef]
- Shang, C.; Li, X.; Foody, G.M.; Du, Y.; Ling, F. Super-Resolution Land Cover Mapping Using a Generative Adversarial Network. IEEE Geosci. Remote Sens. 2022, 19, 1–5. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407. [Google Scholar]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms; National University of Ireland Galway: Galway, Ireland, 2017. [Google Scholar]
- Tu, S.; Waqas, M.; Shah, Z.; Rehman, O.; Yang, Z.; Koubaa, A.; Rehman, S.U. ModPSO-CNN: An Evolutionary Convolution Neural Network with Application to Visual Recognition. Soft Comput. 2021, 25, 2165–2176. [Google Scholar] [CrossRef]
- Dong, X.; Lian, Y.; Liu, Y. Small and Multi-Peak Nonlinear Time Series Forecasting Using a Hybrid Back Propagation Neural Network. Inform. Sci. 2017, 424, 39–54. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks (ICNN), Perth, WA, Australia, 27–30 November 1995; pp. 1942–1948. [Google Scholar]
- Peng, Y.; Deng, W.; Wu, W.; Luo, Z.; Huang, J. Hybrid Modeling Routine for Metal-Oxide TFTs Based on Particle Swarm Optimization and Artificial Neural Network. Electron. Lett. 2020, 56, 453–456. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L. High-Quality Face Image Generation Using Particle Swarm Optimization-Based Generative Adversarial Networks. Future Gener. Comp. Syst. 2021, 122, 98–104. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.; Shi, Y. Swarm Intelligence; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2001. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L.A. Review of Opposition-Based Learning from 2005 to 2012. Eng. Appl. Artif. Intell. 2014, 29, 1–12. [Google Scholar] [CrossRef]
- Rahnamayan, S.; Jesuthasan, J.; Bourennani, F.; Salehinejad, H.; Naterer, G. Computing opposition by involving entire population. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1800–1807. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1026–1034. [Google Scholar]
- Chowdhury, M.E.H.; Khandakar, A.; Mazhar, R.; Rahman, T.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al-Emadi, N.; Islam, M.T.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. Tech. Rep. 2013, 201212, 281–295. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC), Guildford, UK, 3 September 2012; pp. 135.1–135.10. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; pp. 711–730. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-Resolution from Ttransformed Self-Exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 5197–5206. [Google Scholar]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of International Conference on Pattern Recognition(ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fun | Alg | Best | Worst | Mean | Std | Mae | Time |
---|---|---|---|---|---|---|---|
PSO | −6.86 × 102 | −3.61 × 102 | −5.53 × 102 | 7.89× 10 | 3.47 × 102 | 5.18 | |
F6 | COBL | −754 × 102 | −4.83 × 102 | −5.89 × 102 | 7.10 × 10 | 3.11 × 102 | 6.31 |
SECPSO | −9.00 × 102 | −7.55 × 102 | −8.20 × 102 | 2.35 × 10 | 8.05 × 10 | 7.24 | |
PSO | −7.12 × 102 | −6.47 × 102 | −6.79 × 102 | 1.87 × 10 | 1.21 × 102 | 9.12 | |
F7 | COBL | −7.57 × 102 | −6.53 × 102 | −7.09 × 102 | 2.53 × 10 | 9.07 × 10 | 15.34 |
SECPSO | −7.58 × 102 | −6.95 × 102 | −7.31 × 102 | 1.81 × 10 | 6.90 × 10 | 17.23 | |
PSO | −6.79 × 102 | −6.79 × 102 | −6.79 × 102 | 4.67 × 10−2 | 2.09 × 10 | 7.34 | |
F8 | COBL | −6.79 × 102 | −6.79 × 102 | −6.79 × 102 | 6.34 × 10−2 | 2.09 × 10 | 10.85 |
SECPSO | −6.79 × 102 | −6.79 × 102 | −6.79 × 102 | 5.23 × 10−2 | 2.08 × 10 | 13.33 | |
PSO | −5.71 × 102 | −5.61 × 102 | −5.66 × 102 | 2.36 | 3.41 × 10 | 61.09 | |
F9 | COBL | −5.77 × 102 | −5.70 × 102 | −5.73 × 102 | 2.52 | 2.71 × 10 | 90.7 |
SECPSO | −5.77 × 102 | −5.66 × 102 | −5.72 × 102 | 3.58 | 2.83 × 10 | 108.47 | |
PSO | −2.53 × 102 | 3.74 × 102 | 1.06 | 1.54 × 102 | 5.01 × 102 | 6.45 | |
F10 | COBL | −4.25 × 102 | 2.46 × 102 | −2.35 × 102 | 1.81 × 102 | 2.65 × 102 | 7.99 |
SECPSO | −5.00 × 102 | −5.00× 102 | −5.00 × 102 | 1.10 × 10−1 | 1.42 × 10−1 | 10.62 | |
PSO | −1.51 × 102 | −7.53 × 10 | −1.19 × 102 | 2.05 × 10 | 2.81 × 102 | 6.97 | |
F11 | COBL | −2.74 × 102 | −1.78 × 102 | −2.35 × 102 | 2.51 × 10 | 1.65 × 102 | 8.43 |
SECPSO | −3.90 × 102 | −3.66 × 102 | −3.77 × 102 | 7.21 | 2.30 × 10 | 11.77 | |
PSO | −7.63 × 10 | 1.26 × 10 | −2.28 × 10 | 2.29 × 10 | 2.77 × 102 | 7.99 | |
F12 | COBL | −2.03 × 102 | −2.74 × 10 | −1.43 × 102 | 4.10 × 10 | 1.57 × 102 | 10.66 |
SECPSO | −2.26 × 102 | −8.61 × 10 | −1.59 × 102 | 4.07 × 10 | 1.41 × 102 | 15.08 | |
PSO | 2.10 × 10 | 1.24× 102 | 8.03 × 10 | 2.21 × 10 | 2.80 × 102 | 7.75 | |
F13 | COBL | −2.58 × 10 | 5.11 × 10 | 7.34 | 2.69 × 10 | 2.07 × 102 | 10.96 |
SECPSO | −8.52 × 10 | 2.05 × 10 | −1.66 × 10 | 3.70 × 10 | 1.83 × 102 | 14.74 | |
PSO | 5.86 × 103 | 6.87 × 103 | 6.46 × 103 | 2.65 × 102 | 6.56 × 103 | 6.99 | |
F14 | COBL | 3.39 × 10 | 4.73 × 102 | 1.99 × 102 | 1.18 × 102 | 2.99 × 102 | 9.41 |
SECPSO | −1.08 × 10 | 4.77 × 102 | 1.97 × 102 | 1.93 × 102 | 2.97 × 102 | 15.07 | |
PSO | 6.41 × 103 | 7.69 × 103 | 7.20 × 103 | 2.87 × 102 | 7.10 × 103 | 7.98 | |
F15 | COBL | 3.26 × 103 | 7.11 × 103 | 5.26 × 103 | 1.25 × 103 | 5.16 × 103 | 10.51 |
SECPSO | 2.84 × 103 | 4.99 × 103 | 4.04 × 103 | 7.36 × 102 | 3.94 × 103 | 15.25 | |
PSO | 2.02 × 102 | 2.03 × 102 | 2.02 × 102 | 2.86 × 10−1 | 2.28 | 37.05 | |
F16 | COBL | 2.02 × 102 | 2.02 × 102 | 2.02 × 102 | 2.08 × 10−1 | 2.04 | 69.27 |
SECPSO | 2.01 × 102 | 2.02 × 102 | 2.01 × 102 | 3.93 × 10−1 | 1.47 | 80.66 | |
PSO | 5.88 × 102 | 7.54 × 102 | 6.69 × 102 | 4.07 × 10 | 3.69 × 102 | 5.24 | |
F17 | COBL | 4.08 × 102 | 4.76 × 102 | 4.38 × 102 | 1.74 × 10 | 1.38 × 102 | 7.17 |
SECPSO | 3.63 × 102 | 4.06 × 102 | 3.90 × 102 | 1.29 × 10 | 9.25 × 10 | 10.96 | |
PSO | 7.06 × 102 | 8.34 × 102 | 7.76 × 102 | 3.22 × 10 | 3.76 × 102 | 6.45 | |
F18 | COBL | 5.00 × 102 | 6.65 × 102 | 5.91 × 102 | 4.83 × 10 | 1.91 × 102 | 8.85 |
SECPSO | 4.99 × 102 | 6.31 × 102 | 5.54 × 102 | 4.17 × 10 | 1.53 × 102 | 11.8 | |
PSO | 5.50 × 102 | 8.76 × 102 | 6.04 × 102 | 9.81 × 10 | 7.04 × 102 | 5.49 | |
F19 | COBL | 5.43 × 102 | 6.67 × 102 | 5.84 × 102 | 2.92 × 10 | 8.36 × 10 | 9.31 |
SECPSO | 5.04 × 102 | 5.11 × 102 | 5.09 × 102 | 2.12 | 6.65 | 9.32 | |
PSO | 6.12 × 102 | 6.14 × 102 | 6.13 × 102 | 3.95 × 10−1 | 1.33 × 10 | 6.54 | |
F20 | COBL | 6.11 × 102 | 6.13 × 102 | 6.12 × 102 | 6.28 × 10−1 | 1.22 × 10 | 9.18 |
SECPSO | 6.11 × 102 | 6.12 × 102 | 6.11 × 102 | 6.17 × 10−1 | 1.17 × 10 | 8.74 |
Model | Factor | Set5 | Set14 | BSD100 | Urban |
---|---|---|---|---|---|
PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | ||
Bicubic | 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | |
SGD | ×2 | 37.00/0.9558 | 32.63/0.9088 | 31.80/0.9074 | - |
SMCPSO | 37.20/0.9590 | 32.67/0.9137 | 33.34/0.9214 | 29.91/0.9048 | |
Bicubic | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | |
SGD | ×3 | 33.16/0.9140 | 29.43/0.8242 | 28.60/0.8137 | - |
SMCPSO | 33.77/0.9305 | 29.85/0.8479 | 29.03/0.8113 | 27.40/0.8340 | |
Bicubic | 33.66/0.9299 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | |
SGD | ×4 | 30.71/0.8657 | 27.59/0.7535 | 26.98/0.7398 | - |
SMCPSO | 31.75/0.8755 | 27.69/0.7706 | 27.90/0.7535 | 24.63/0.7340 |
Type | No. of Image | Train | Augmented | Valid | Test |
---|---|---|---|---|---|
COVID-19 | 3616 | 2894 | 2894 | 361 | 361 |
Lung Opacity | 6012 | 4810 | - | 601 | 601 |
Normal | 10,192 | 8154 | - | 1019 | 1019 |
Viral Pneumonia | 1345 | 1077 | 4308 | 134 | 134 |
Accuracy | Precision | Sensitivity | F1 Scores | Specificity | |
---|---|---|---|---|---|
CXR LR | 76.79% | 70.90% | 56.60% | 0.5810 | 0.8655 |
CXR SR | 90.25% | 84.87% | 83.40% | 0.8170 | 0.8992 |
CXR HR | 96.03% | 94.34% | 94.18% | 0.9417 | 0.9556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Xiong, A. Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks. Sensors 2023, 23, 1923. https://doi.org/10.3390/s23041923
Zhou C, Xiong A. Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks. Sensors. 2023; 23(4):1923. https://doi.org/10.3390/s23041923
Chicago/Turabian StyleZhou, Chaowei, and Aimin Xiong. 2023. "Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks" Sensors 23, no. 4: 1923. https://doi.org/10.3390/s23041923
APA StyleZhou, C., & Xiong, A. (2023). Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks. Sensors, 23(4), 1923. https://doi.org/10.3390/s23041923