Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis
<p>PRISMA diagram for the systematic literature review on low-cost sensors for monitoring coastal climate hazards.</p> "> Figure 2
<p>Percentage of the low-cost sensors/sensing methods.</p> "> Figure 3
<p>The coastal zone characteristics, metocean variables, and coastal hazards monitored by the sensors reviewed in this paper.</p> "> Figure 4
<p>The different variables obtained from the sensors/sensing methods; variables have been colour coded, with similar variables being coloured the same.</p> "> Figure 5
<p>Photogrammetric software employed for the extraction of DEM/DSM/point clouds/orthophoto/orthomosaics.</p> "> Figure 6
<p>Distribution of the 60 papers during 2010–2021.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Categories of Low-Cost Sensors for Monitoring Climate Induced Coastal Hazards
- What is the low-cost sensor/sensing method used?
- What is/are the variable(s) derived from the low-cost sensor/sensing method, and consequently, what is the hazard or forcing agent monitored?
- Have the outputs of the low-cost sensors been validated? If yes, how?
3.1. Terrestrial Photogrammetry
3.1.1. Video Monitoring Systems
3.1.2. Structure from Motion-Terrestrial Photogrammetry (SfM-TP)
3.1.3. Surf Cameras
3.1.4. Geotagged Photos
3.1.5. A Smartphone-Based Technology for Coastal Monitoring
3.1.6. Time-Lapse Photography
Authors | Journal/Conference | Principal Sensing Components Used | Variables(s) Derived | Software Used to Extract Variables(s) | Hazard/Coastal Zone Characteristic/Forcing Agent Monitored | Validation | Accuracy |
---|---|---|---|---|---|---|---|
[38] | Journal | IP-video MOBOTIX | Wave characteristics, shoreline position, intertidal topography | Rectify extreme, COSMOS IPT, ArcGIS | Coastline change, storm-induced morphological changes and inlet migration/intertidal topography | GCPs measured using RTK-GPS | Positional accuracy decreases with increasing distances from the camera with greater error in the alongshore direction (RMSE = 9.93 m) than in the cross-shore direction (RMSE = 1.18 m). The RMSE for the swash line was 1.4 m, and for the intertidal topography the vertical RMSE was found to be 0.08 m |
[43] | Conference | Raspberry Pi and 8 MP camera | Shoreline position and wave run-up | Not mentioned | Coastal erosion and coastal flooding | Not mentioned | Not mentioned |
[44] | Journal | Raspberry Pi and 8 MP camera | Shoreline position and wave run-up | Not mentioned | Coastal retreat and coastal flooding | GPS measurements of the shoreline | Bias = 0.14 m, RMSE = 1.41 m |
[45] | Journal | Super HAD CCD ½’’ and two 8-megapixel digital still cameras; Olympus SP500 UZ | Shoreline position and wave run-up | Not mentioned | Shoreline change and flooding | Computed shoreline validated with RTK-DGPS measurement | Not mentioned |
[47] | Conference | Video station with low-cost cameras-no specificities mentioned | Shoreline position | MATLAB/ArcGIS | Coastal erosion | Comparison with manually digitised shorelines | Average = 2.7 pixels, sd = 2.2 pixels |
[50] | Conference | ARGUS VMS | Digital elevation model | MATLAB and Erdas-Image | Vertical changes (erosion/accretion) | In situ field altimetry data | Largest biases = 0.18 m–0.22 m, R squared = 0.80–0.92 |
[51] | Thesis | Not mentioned | Shoreline position | C-Pro/SHOREX | Coastal evolution | Not mentioned | Not mentioned |
[54] | Journal | Not mentioned | Waterline | Not mentioned | Coastline change/intertidal topography | Intertidal topography validated with DGNSS measurement | RMSE = 0.22 m–0.33 m, R squared = 0.93–0.99 |
[55] | Journal | Video station with 5–6 cameras-no specificities mentioned | Shoreline position | Not mentioned | Coastal erosion | Comparison with manually digitised shorelines | RMSE = 1.7 m, bias = –0.03 m |
[59] | Journal | Panasonic Lumix DMC-FZ 1000 camera | 3D point cloud | Agisoft Metashape, CloudCompare | Coastal cliff changes | Terrestrial laser scanner | Non-significant differences in the point clouds of SfM-TP and TLS |
[60] | Journal | Ricoh GR Digital IV camera | 3D point cloud | Agisoft Metashape, CloudCompare | Coastal cliff changes | RTK-GPS | RMS of vertical offset = 7 cm, RMS of horizontal offset = 6 cm |
[61] | Journal | GoPro Hero 4 Black action camera | 3D point cloud | Agisoft Metashape, CloudCompare | Coastal cliff changes | Terrestrial laser scanner | Mean difference = 4–10 mm, sd = 5.30–9.69 mm |
[62] | Journal | Nikon D800 Reflex camera/Huawei Y5 2016 Smartphone, Topcon® HiPer V GNSS receiver | 3D point cloud | Agisoft Metashape | Coastal cliff changes | Terrestrial laser scanner | For Nikon D800: mean error = 0.03 m, sd = 0.047 mFor Huawei Y5 2016: mean error = 0.02 m, sd = 0.038 m |
[69] | Journal | Existing surfcam network | Shoreline | Propriety software used by CoastalCOMS | Shoreline change | RTK-GPS | RMSE = 4.4 m–16.4 m and R squared = 0.58 m−0.91 m at the 9 sites after geometric correction |
[70] | Journal | Existing surfcam network | Shoreline | Propriety software used by CoastalCOMS | Shoreline change | RTK-GPS | Cross-shore error < 1 m and sd = 1–4 m |
[73] | Journal | Olympus TG-860 GPS camera | Sand level variation from street signs (used as ad hoc erosion pins) from geotagged photos | ArcGIS | Coastal erosion | Not mentioned | Not mentioned |
[75] | Journal | Smartphone; Samsung Galaxy S | Shoreline | Not mentioned | Shoreline change | Terrestrial laser scanner | Vertical accuracy; sd = 0.037 m |
[77] | Journal | Time-lapse camera | Shoreline and water level | MATLAB | Shoreline change and storm surge | Water level validated against iGauge and shoreline validated against tape measure | RMSE for water level = 0.14 m and for shoreline = 0.44 m |
[79] | Journal | Time-lapse camera; Brinno TLC200 | Intertidal bar and dune edge used as shoreline proxy | Not mentioned | Bar migration and cliff changes | DGPS | Not mentioned |
3.2. Aerial Photogrammetry
3.2.1. Unmanned Aerial Vehicles
3.2.2. Kite Aerial Photography
3.3. Terrestrial and Aerial Photogrammetry
Authors | Journal/Conference/Book Chapter | Aerial Platform/Sensors | Variables Derived | Software Used to Extract Variabless | Hazard/Coastal Zone Characteristics/Forcing Agent Monitored | Validation | Accuracy |
---|---|---|---|---|---|---|---|
[42] | Conference | UAV and VMS with Raspberry Pi | Topography, shoreline position, and wave run-up | Not mentioned | Storm surge | UAV validation with TLS. Not mentioned for the VMS | Not mentioned |
[67] | Journal | Precision Hawk’s Lancaster Rev 3 fixed wing/RGB: Converted Nikon J3 14.2 MP and 3Drobotics Iris + Mapper VTOL quadcopter/RGB: canon S110 12 MP | DSM | PIX4Dmapper | Cliff/bluff morphological change | Check points using NRTK-GPS | Total average difference was used; fixed-wing DSM: −0.117 m; quadcopter DSM: −0.0224 m |
[82,83,84] | Review papers | ||||||
[86] | Journal | Skywalker X8 flying wing (platform)/Sony Nex-5 R RGB camera (sensor onboard) | DSM | PIX4Dmapper | Storm-induced beach erosion | Ground control points measured with RTK-GPS, LoD (using a known reference area) | RMSE for the GCPs = 2.34–3.26 cm, S.d. using the reference area = 3.74 cm |
[87] | Journal | FV-8 Atyges octocopter/24 Mpix Sony Alpha 7 full-frame sensor RGB camera | DEM | PIX4Dmapper | Storm-induced beach erosion | Individual checkpoints (ICPs) using DGPS | RMSE 6.89 cm for pre-storm DEM and 5.54 cm for post-storm DEM |
[88] | Journal | DJI Phantom 2 (DP2) quadcopter/GoPro Hero 4 Black and DJI Phantom 4 Pro (DP4P)/20 Mpix camera | DSM | Agisoft Metashape and MATLAB | Beach-dune morphological change | Validation points using DGPS | RMSE and bias: for DP2 (0.13 m, −0.1 m, respectively); for DP4P (0.05, −0.02, respectively) |
[89] | Journal | DJI Phantom 4 quadcopter/built-in camera FC330 and a ½.3″ CMOS sensor (12.4 Mpixel resolution) | DSM | Agisoft Metashape | Beach-dune morphological change | ICPs using GNSS | and RMSE = 0.173 |
[90] | Journal | DJI Phantom 4 Pro/CMOS sensor acquiring 20 Mpix RGB images | DSM | PIX4Dmapper | Beach erosion | ICPS using RTK-GPS | Normalised median absolute deviation (nmad) = 0.048 m–0.054 m. Mean errors and standard deviation; for 2018 ICPs (−0.044 m, 0.077 m, respectively) and for 2019 (0.128 m, 0.063 m) |
[91] | Conference | DJI Phantom 3 pro/12 Mpix RGB camera | Shoreline position | Agisoft Metashape | Shoreline change | Not mentioned | Not mentioned |
[92] | Book chapter | Aibotix Aibot X6V2/LiveMos 16 Mpix camera | DSM | Agisoft Metashape | Shoreline change | Control points (CPs) using GNSS | RMSE = 0.036 m |
[93] | Journal | DJI Phantom 3 advanced quadcopter/Sony EXMOR 12.4 Mpix RGB camera | DSM | PIX4Dmapper | Dune morphological changes | GCP measured using RTK-GNSS followed by LOOCV | Mean error = −3 cm, RMSE = 8 cm |
[94] | Journal | DJI Phantom 4 Pro/1″CMOS 20 Mpix RGB images | DEM | Agisoft Metashape | Sand dune migration and volume change | TLS | RMSE = 0.08 m, MAE = 0.06 m = 0.999 |
[95] | Journal | DJI Inspire 2 UAV/Zenmuse X7 camera | DEM | PIX4Dmapper | Coastal erosion | Control points using RTK-GNSS and TLS | RMSE and root sum of squared errors (RSSE) from the control points = 0.040 m and 0.046 m, respectively. Mean error and RMSE from the TLS = 0.02 m and 0.04 m, respectively. |
[96] | Book chapter | Not mentioned | DEM | Agisoft Metashape | Sandy beach erosion | Validation points using DGPS | RMSE 0.95–30 cm |
[108] | Journal | HQ KAP foil 1.6 and 5 m2/Canon D30 compact digital camera | 3D point cloud | Agisoft Metashape | Dune erosion | GCPs measured using DGNSS | RMSE = 27.9 mm |
[110] | Journal | Not mentioned | DEM/shoreline position | Not mentioned | Beach erosion/intertidal topography | GCPS using RTK-DGPS | RMSE for the VMS derived DEM = 1.4 m–4.6 m.Mean error for the UAV derived DEM = 0.25 m. |
3.4. Global Navigation Satellite System Reflectometry (GNSS-R)
3.5. Wireless Sensor Network
3.6. GPS Buoys
3.7. DIY Pressure Sensor/Gauge
3.8. Water Level Sensor
3.9. Ground-Based Beach Profiler
3.10. High Wind Speed Recording System
3.11. UAV RTK-Lidar System
3.12. Cable-Mounted Robot for Near Shore Monitoring
Authors | Journal/Conference | Principal Sensing Components Used | Variables(s) Derived | Software(s) Used to Extract Variables | Hazard/Coastal zone Characteristics/Forcing Agent Monitored | Validation | Accuracy |
---|---|---|---|---|---|---|---|
[26] | Journal | U-blox M8T GNSS receiver | Coastal water level | RTKLIB open-source software | Sea level rise | Tide gauge | Difference = −0.011 m, standard deviation = 0.009 m, and RMSE = 0.014 m |
[111] | Journal | Arduino-based sensor with a single-frequency GPS L1 C/A add-on (Adafruit GPS FeatherWing); and an external GPS patch antenna (28- dB active, Chang Hong GPS-01-174-1M-0102) | Sea level | Arduino IDE and MATLAB | Sea level | Radar gauge | r = 0.989 and RMSE = 2.9 cm |
[112] | Journal | Maestro A2200A SiRFstar IV module | Tidal water level | Not mentioned | Tidal water level | Tide gauge | RMSE of 1.7 cm for daily averages and 5.7 cm for tidal range exceeding 3 m at spring tides |
[113] | Journal | GNSS occultation, reflectometry, and scatterometry (GORS) receiver; Antcom L1/L2 dual frequency antenna | Sea level | Not mentioned | Sea level | Tide gauge | r = 0.93, RMSE = 4.37 cm |
[115] | Conference | Same VSN as [121] with the added advantage of an Arduino-based instrument scheduler | No quantitative parameter derived | Not mentioned | Coastal erosion and the corresponding forcing agents such as tides, waves, wind | Not mentioned | Not mentioned |
[116] | Journal | Sensor node consisting of many different electronic components with the principal sensors being the LDR | Sand level variation | Not mentioned | Coastal erosion | Manual validation | Not mentioned (just qualitative “good accuracy”) |
[117] | Journal | Sensor unit consisting of many electronic components with the principal sensor being the water pressure sensor | Coastal water level | MATLAB, ThingSpeak | Storm surge | NOAA tide gauges | Not mentioned |
[118] | Journal | Sensor node consisting of various sensors such as water pressure sensor, temperature and salinity probe | Multiple parameters, but the parameter of interest within this review is coastal water level | LabVIEW | Sea level rise | Atmospheric data from the Spanish meteorological agency | Squared coherence of 0.85 |
[119] | Journal | A VSN with a camera node made up of AXIS M1101 network camera and a PicoStation2 antenna | No quantitative parameter derived | Not mentioned | Coastal erosion and the corresponding forcing agents such as tides, winds, waves | Not mentioned | Not mentioned |
[123] | Journal | GPS receivers; Magellan mobile mapper CX, Locosys Genie GT-31 and GlobalSet MR-350 | Wave parameters | Not mentioned | Waves | Wave rider Datawell buoys | Good accuracy except at high frequency |
[124] | Conference | A GPS buoy called directional wave spectra drifter. There is no specific mention of the type of GPS receiver | Wave parameters | Not mentioned | Waves | ADCP | Bias and RMSE for significant wave height, mean wave period, peak wave period, and peak wave direction are (0.03 m, 0.05 m),(−0.02 s,0.2 s), (0.3 s,0.7 s), and (3.7°,9.9°), respectively |
[125] | Conference | Geodetic-grade Trimble R4 GNSS receiver and an IMU unit | Wave parameters | Not mentioned | Waves | Reference wave gauge | Qualitative: “good agreement with the reference wave gauge only with increasing wave height” |
[133] | Journal | HOBO U20 Water Level Logger and HOBO MicroStation | Coastal water level | MATLAB | Storm surge | Not mentioned | Not mentioned |
[134] | Journal | Arduino-based pressure sensor MS5803-14BA | Coastal water level | Arduino IDE, MATLAB, and R | Waves | Commercial wave and tide gauge | Lab; p ≥ 0.7, R2 = 0.69 to 0.91Field; R2 = 0.997 |
[135] | Journal | Arduino-based pressure sensor MS5803-14BA | Coastal water level | Arduino IDE, and R | Waves | Commercial wave and tide gauge | r > 0.99, p < 0.0001 |
[137] | Journal | Solinst Levelogger LT Gold Series and a Barologger Gold pressure sensor | Coastal water level | Solinst Levelogger V3.4.0 Software | Waves and tides | Reference gauges located far away >80 km from the low-cost sensors | Not mentioned |
[140] | Conference | Valarms IoT ultrasonic sensors | Coastal water level | Not mentioned | Storm surge | USGS radar sensors | Lab; RMSE = 5 mm Field; RMSE = 18 mm |
[143] | Journal | Topcon total station | Beach profile | Not mentioned | Coastal erosion | Not mentioned | Not mentioned |
[144] | Journal | 1 L1 GPS antenna, 2 low-grade GPS receivers, 1 L2 GPS antenna, 1 high-grade GPS receiver | Shoreline position and DEM | Not mentioned | Coastal erosion | Test grid of control points measured with DGPS | Mean altimetric error was within 2 cm |
[145] | Journal | Wireless beach profiler | Beach profile | Associated software of the PDA (Hewlett-Packard iPAQ hx2790, Palo Alto, California) | Coastal erosion | Electronic distance meter and the Emery method | No statistically significant difference (p > 0.05) |
[150] | Journal | Potentiometric wind vane, optical anemometer, and various other electronic parts | Wind speed and direction | Not mentioned | Storms | Cup counter anemometer in the conventional observatories | Qualitative: “good agreement” |
[151] | Journal | UAV: DJI, S1000, scanning lidar (Hokuyo, UTM-30LX), AHRS (Xsens Technologies, mTi 30), two GNSS receivers (NovAtel, OEM 628), two antennas, and two lightweight portable radios (433 MHz) | Tides and waves | Not mentioned | Tides and waves | Strain gauge pressure sensor equipped in an acoustic Doppler velocimetry (SonTek ADV-Oceans) | RMS error for the tidal elevation, significant wave height, and wave period measurements between the two techniques is 4.9 cm, 4.8 cm, and 0.028 s respectively |
[152] | Conference | A robotic platform consisting of the Aqua TROLL 500 sonde, which is a multiparameter sonde | Multiple parameters, but the parameter of interest within the review is barometric pressure | Not mentioned | Storms | Human-collected data | % difference is 1.04 |
4. Discussion
Variable(s) Hazard(s) | Coastal Topography (DEM/DSM, 3D Point Cloud/Beach Profile/Sand Level Variation) | Shoreline Position/Shoreline Proxies/Waterline | Coastal Water Level | Tides | Wave Run-up/Wave Characteristics | Wind Direction/Speed | Barometric Pressure |
---|---|---|---|---|---|---|---|
Coastal flooding/storm surge flooding | √ | √ | √ | √ | √ | √ | |
Coastal erosion | √ | √ | √ | √ | √ | √ | |
Shoreline change | √ | √ | √ | √ | √ | √ |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADCP | Acoustic Doppler current profiler |
AEMET | Spanish Meteorological Agency |
CDIP | Coastal Data Information Program |
CoastalCOMS | Coastal Conditions Observation and Monitoring Solutions |
CSI | Coastal state indicators |
DEM | Digital elevation model |
DGPS | Differential global positioning system |
DIY | Do-it-yourself |
DoD | DEM/DSM of difference |
DSM | Digital surface elevation |
DWSD | Directional wave spectra drifter |
EO | Earth observation |
ESL | Extreme sea level |
FOV | Field of view |
GCP | Ground control point |
GNSS | Global navigation satellite system |
GNSS-R | Global navigation satellite system-reflectometry |
GPS | Global positioning system |
GSD | Ground sampling distance |
HWSR | High wind speed recording system |
ICP | Individual check point |
IMU | Inertial measurement unit |
INSHORE | INtegrated System for High Operational REsolution in Shore monitoring |
INTGN | Irish national tide gauge network |
LDL | Lagrangian drifter laboratory |
LDR | Light-dependent resistor |
LHCP | Left-hand circularly polarised |
Lidar | Light detection and ranging |
LoD | Limit of detection |
LoRaWAN | Long-range wireless area networks |
NBS | Nature-based solutions |
NOAA | National Oceanic and Atmospheric Administration |
OWHL | Open wave height logger |
PPK | Post-processed kinematic |
PRISMA | Preferred reporting items for systematic reviews and meta-analyses |
RHCP | Right-hand circularly polarised |
RPA | Remotely piloted aircraft |
RPAS | Remotely piloted aerial systems |
RTK | Real-time kinematic |
SfM | Structure from motion |
SNR | Signal-to-noise ratio |
SSSP | Sensing Storm Surge Project |
TLS | Terrestrial laser scanner |
UAS | Unmanned aerial systems |
UAV | Unmanned aerial vehicle |
USGS | United States Geological Survey |
VIMS | Virginia Institute of Marine Science |
VLM | Vertical land motion |
VSN | Video sensor network |
WBP | Wireless beach profiler |
WSN | Wireless sensor network |
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Arias, P.A.; Bellouin, N.; Jones, R.G.; Naik, V.; Plattner, G.-K.; Rogelj, J.; Sillmann, J.; Storelvmo, T.; Thorne, P.W.; Trewin, B.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Pillai, U.P.A.; Pinardi, N.; Alessandri, J.; Federico, I.; Causio, S.; Unguendoli, S.; Valentini, A.; Staneva, J. A Digital Twin modelling framework for the assessment of seagrass Nature Based Solutions against storm surges. Sci. Total Environ. 2022, 847, 157603. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Finkl, C.W. (Ed.) Coastal Hazards; Springer: Dordrecht, The Netherlands, 2013; Volume 1000. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed]
- Kron, W. Flood Risk = Hazard Values Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Giardino, A.; Nederhoff, K.; Vousdoukas, M. Coastal hazard risk assessment for small islands: Assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands). Reg. Environ. Change 2018, 18, 2237–2248. [Google Scholar] [CrossRef]
- Melet, A.; Teatini, P.; Le Cozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R. Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers. Surv. Geophys. 2020, 41, 1489–1534. [Google Scholar] [CrossRef]
- Rahmstorf, S. Rising hazard of storm-surge flooding. In Proceedings of the National Academy of Sciences of the United States of America, Washington, DC, USA, 14–16 October 2017; Volume 114, pp. 11806–11808. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P. Impacts of climate change on coastal erosion. MCCIP Sci. Rev. 2013, 16, 71–86. [Google Scholar] [CrossRef]
- Cozannet, G.L.; Garcin, M.; Yates, M.; Idier, D.; Meyssignac, B. Approaches to evaluate the recent impacts of sea-level rise on shoreline changes. Earth-Sci. Rev. 2014, 138, 47–60. [Google Scholar] [CrossRef]
- Perez, J.; Menendez, M.; Camus, P.; Mendez, F.J.; Losada, I.J. Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Model. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim Change 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Marcos, M.; Jordà, G.; Gomis, D.; Pérez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet. Change 2011, 77, 116–128. [Google Scholar] [CrossRef]
- Little, C.M.; Horton, R.M.; Kopp, R.E.; Oppenheimer, M.; Villarini, G. Joint projections of US East Coast sea level and storm surge using a novel flood index. Nat. Clim. Change 2015, 5, 22. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, Y.N.; Cirano, M.; Hibbert, A.; Huthnance, J.M.; Monserrat, S.; et al. Forcing Factors Affecting Sea Level Changes at the Coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef]
- Ponte, R.M.; Carson, M.; Cirano, M.; Domingues, C.M.; Jevrejeva, S.; Marcos, M.; Mitchum, G.; van de Wal, R.S.W.; Woodworth, P.L.; Ablain, M.; et al. Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level. Front. Mar. Sci. 2019, 6, 437. [Google Scholar] [CrossRef]
- Johnston, J.; Cassalho, F.; Miesse, T.; Ferreira, C.M. Projecting the effects of land subsidence and sea level rise on storm surge flooding in Coastal North Carolina. Sci. Rep. 2021, 11, 21679. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.K.M. Muography for a dense tide monitoring network. Sci. Rep. 2022, 12, 6725. [Google Scholar] [CrossRef]
- Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard, J.; et al. Requirements for a coastal hazards observing system. Front. Mar. Sci. 2019, 6, 348. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Sabatino, S.D.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef]
- Marine Institute. Irish National Tide Gauge Network. The Irish National Tide Gauge,and Free for Public Use. 2022. Available online: https://www.marine.ie/site-area/infrastructure-facilities/marine-research-infrastructures/irish-national-tide-gauge#:$\sim$:text= (accessed on 19 January 2023).
- Marine Institute. Celtic Voyager. 2022. Available online: https://www.marine.ie/site-area/infrastructure-facilities/research-vessels/celtic-voyager (accessed on 19 January 2023).
- Knight, P.J.; Bird, C.O.; Sinclair, A.; Plater, A.J. A low-cost GNSS buoy platform for measuring coastal sea levels. Ocean Eng. 2020, 203, 107198. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, 160. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan Sharif, S.; Mura, P.; Wijesinghe, S.N.R. Systematic Reviews in Asia: Introducing the “PRISMA” Protocol to Tourism and Hospitality Scholars. In Quantitative Tourism Researchin Asia; Springer: Berlin/Heidelberg, Germany, 2019; pp. 13–33. [Google Scholar] [CrossRef]
- Pahlevan-Sharif, S.; Mura, P.; Wijesinghe, S.N.R. A systematic review of systematic reviews in tourism. J. Hosp. Tour. Manag. 2019, 39, 158–165. [Google Scholar] [CrossRef]
- Tiwari, A.; Rodrigues, L.C.; Lucy, F.E.; Gharbia, S. Building Climate Resilience in Coastal City Living Labs Using Ecosystem-Based Adaptation: A Systematic Review. Sustainability 2022, 14, 10863. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.; Sallenger, A.; Lippmann, T.; Haines, J. The Application of Video Image Processing to the Study of Nearshore Processes. Oceanography 1993, 6, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Davidson, M.; Van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof, S. The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coast. Eng. 2007, 54, 463–475. [Google Scholar] [CrossRef]
- Van Koningsveld, M.; Davidson, M.; Huntley, D.; Medina, R.; Aarninkhof, S.; Jiménez, J.A.; Ridgewell, J.; de Kruif, A. A critical review of the CoastView project: Recent and future developments in coastal management video systems. Coast. Eng. 2007, 54, 567–576. [Google Scholar] [CrossRef]
- Davidson, M.A.; Aarninkhof, S.G.J.; Van Koningsveld, M.; Holman, R.A. Developing coastal video monitoring systems in support of coastal zone management. J. Coast. Res. 2006, 2004, 49–56. [Google Scholar]
- Zarruka, G.A.; Orfilaa, A.; Nietoa, M.A.; Garaua, B.; Ballea, S.; Simarroc, G.; Ortizb, A.; Vizosoa, G.; Tintorea, J. SIRENA: An Open Source, Low Cost Video-Based Coastal Zone Monitoring System. Env. Model. Softw. 2008. [Google Scholar]
- Taborda, R.; Silva, A. COSMOS: A lightweight coastal video monitoring system. Comput. Geosci. 2012, 49, 248–255. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Balaguer-Beser, Á.; Pardo-Pascual, J.E. Photogrammetry and image processing techniques for beach monitoring. Rev. Teledetección 2020, 2020, 175. [Google Scholar] [CrossRef]
- Azti Kostasystem. Available online: https://www.kostasystem.com/en/ (accessed on 30 March 2021).
- Brignone, M.; Schiaffino, C.F.; Isla, F.I.; Ferrari, M. A system for beach video-monitoring: Beachkeeper plus. Comput. Geosci. 2012, 49, 53–61. [Google Scholar] [CrossRef]
- Archetti, R.; Damiani, L.; Bianchini, A.; Romagnoli, C.; Abbiati, M.; Addona, F.; Airoldi, L.; Cantelli, L.; Gaeta, M.G.; Guerrero, M.; et al. Innovative strategies, monitoring and analysis of the coastal erosion risk: The stimare project. In Proceedings of the International Offshore and Polar Engineering Conference, Shanghai, China, 16–21 June 2019; Volume 3, pp. 3836–3841. [Google Scholar]
- Archetti, R.; Addona, F.; Gaeta, M.G.; Cantelli, L.; Romagnoli, C.; Sistilli, F.; Stanghellini, G. Coastal vulnerability assessment through complementary monitoring technologies: The case of riccione. Ital. J. Eng. Geol. Environ. 2020, 1, 5–12. [Google Scholar] [CrossRef]
- Archetti, R.; Gaeta, M.G.; Addona, F.; Damiani, L.; Saponieri, A.; Molfetta, M.G.; Bruno, M.F. Assessment of Coastal Vulnerability Based on the Use of Integrated Low-Cost Monitoring Approach and Beach Modelling: Two Italian Study. Coast. Eng. Proc. 2020, 36v, management.13. [Google Scholar] [CrossRef]
- Archetti, R.; Zanuttigh, B. Integrated monitoring of the hydro-morphodynamics of a beach protected by low crested detached breakwaters. Coast. Eng. 2010, 57, 879–891. [Google Scholar] [CrossRef]
- de Vriend, H.J.; Zyserman, J.; Nicholson, J.; Roelvink, J.A.; Péchon, P.; Southgate, H.N. Medium-term 2DH coastal area modelling. Coast. Eng. 1993, 21, 193–224. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Pais-Barbosa, J.; Teodoro, A.C.; Gonçalves, H.; Baptista, P.; Moreira, A.; Veloso-Gomes, F.; Taveira-Pinto, F.; Gomes-Costa, P.; Lopes, V.; et al. Coastal morphodynamic features/patterns analysis through a video based system and image processing. In Earth Resources and Environmental Remote Sensing/GIS Applications III; SPIE: Bellingham, WA, USA, 2012; Volume 8538. [Google Scholar]
- Cosmos Cosmos. 2011. Available online: http://cosmos.rd.ciencias.ulisboa.pt/ (accessed on 30 March 2021).
- Esri ArcGIS. 2022. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on 1 March 2021).
- Marcel de Almeida Espinoza, J.; da Guia Albuquerque, M.; Silva, M.; Calliar, L. Use of technicals of remote sensing for the development of digital elevation model from video images. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; Volume 86, pp. 2653–2656. [Google Scholar]
- Sánchez-García, E.; Balaguer-Beser, A.; Pardo-Pascual, J.E. C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS J. Photogramm. Remote Sens. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Palomar-Vázquez, J.M.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez-Pujol, L. An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coast. Eng. 2020, 160, 103732. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Lecoq, N.; Gutiérrez Barceló, Á.D.; Costa, S.; Laignel, B.; Bazin, B.; Soufflet, Y.; Le Louargant, L.; Maquaire, O. A fully automated method for monitoring the intertidal topography using Video Monitoring Systems. Coast. Eng. 2021, 167, 103894. [Google Scholar] [CrossRef]
- Ribas, F.; Simarro, G.; Arriaga, J.; Luque, P. Automatic Shoreline Detection from Video Images by Combining Information from Different Methods. Remote Sens. 2020, 12, 3717. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 4104–4113. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Schwind, M.; Starek, M. Structure-from-motion photogrammetry. GIM Int. 2017, 31, 36–39. [Google Scholar]
- Lim, M.; Rosser, N.J.; Allison, R.J.; Petley, D.N. Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire. Geomorphology 2010, 114, 12–21. [Google Scholar] [CrossRef]
- Río, L.D.; Posanski, D.; Gracia, F.J.; Pérez-Romero, A.M. A comparative approach of monitoring techniques to assess erosion processes on soft cliffs. Bull. Eng. Geol. Environ. 2020, 79, 1797–1814. [Google Scholar] [CrossRef]
- Ružić, I.; Marović, I.; Benac, Č.; Ilić, S. Coastal cliff geometry derived from structure-from-motion photogrammetry at Stara Baška, Krk Island, Croatia. Geo-Mar. Lett. 2014, 34, 555–565. [Google Scholar] [CrossRef]
- Godfrey, S.; Cooper, J.; Bezombes, F.; Plater, A. Monitoring coastal morphology: The potential of low-cost fixed array action cameras for 3D reconstruction. Earth Surf. Process. Landf. 2020, 45, 2478–2494. [Google Scholar] [CrossRef]
- Jaud, M.; Bertin, S.; Beauverger, M.; Augereau, E.; Delacourt, C. RTK GNSS-Assisted Terrestrial SfM Photogrammetry without GCP: Application to Coastal Morphodynamics Monitoring. Remote Sens. 2020, 12, 1889. [Google Scholar] [CrossRef]
- Agisoft Agisoft Metashape 1.8.3. Available online: https://www.agisoft.com/downloads/installer/ (accessed on 1 April 2021).
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- CloudCompare. 3D Point Cloud and Mesh Processing Software Open Source Project. Available online: http://www.cloudcompare.org/ (accessed on 1 April 2021).
- Autodesk ReCap Pro: Turn the Physical into Digital. Available online: https://www.autodesk.eu/products/recap/overview?term=1-YEAR&tab=subscription&plc=RECAP (accessed on 1 April 2021).
- Clark, A. Small unmanned aerial systems comparative analysis for the application to coastal erosion monitoring. GeoResJ 2017, 13, 175–185. [Google Scholar] [CrossRef]
- Chudley, T.R.; Christoffersen, P.; Doyle, S.H.; Abellan, A.; Snooke, N. High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. Cryosphere 2019, 13, 955–968. [Google Scholar] [CrossRef]
- Mole, M.A.; Mortlock, T.R.C.; Turner, I.L.; Goodwin, I.D.; Splinter, K.D.; Short, A.D. Capitalizing on the surfcam phenomenon: A pilot study in regional-scale shoreline and inshore wave monitoring utilizing existing camera infrastructure. No. 12th International Coastal Symposium (ICS). J. Coast. Res. 2013, 165 (sp2), 1433–1438. [Google Scholar] [CrossRef]
- Bracs, M.A.; Turner, I.L.; Splinter, K.D.; Short, A.D.; Lane, C.; Davidson, M.A.; Goodwin, I.D.; Pritchard, T.; Cameron, D. Evaluation of Opportunistic Shoreline Monitoring Capability Utilizing Existing “Surfcam” Infrastructure. J. Coast. Res. 2016, 32, 542–554. [Google Scholar] [CrossRef]
- Coastalcoms Coastalcoms. Available online: https://www.coastalcoms.com/ (accessed on 1 May 2021).
- Lane, C.; Gal, Y.; Browne, M.; Short, A.; Strauss, D.; Tomlinson, R.; Jackson, K.; Tan, C.; Blumenstein, M. A new system for breakzone location and the measurement of breaking wave heights and periods. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 20–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2234–2236. [Google Scholar]
- Tereszkiewicz, P.A.; Ellis, J.T.; Gould, H.A. Introducing a cost-effective method to assess beach-dune dynamics using existing infrastructure. J. Coast. Conserv. 2019, 23, 563–569. [Google Scholar] [CrossRef]
- Kearney, S.P.; Fonte, S.J.; García, E.; Smukler, S.M. Improving the utility of erosion pins: Absolute value of pin height change as an indicator of relative erosion. Catena 2018, 163, 427–432. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Ahn, H.; Seo, D.D.D.; Seo, D.D.D.; Lee, J.; Choi, C. Accuracy evaluation of a smartphone-based technology for coastal monitoring. Measurement 2013, 46, 233–248. [Google Scholar] [CrossRef]
- Hexagon Imagine Photogrammetry: A Complete Suite of Photogrammetry Software Tools. Available online: https://www.hexagongeospatial.com/products/power-portfolio/imagine-photogrammetry (accessed on 1 May 2021).
- Overbeck, J. Storm Impacts in Western Alaska monitoring. In Proceedings of the Oceans 2017, New York, NY, USA, 5–9 June 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 4170079, pp. 1–6. [Google Scholar]
- Plumb, E.W.; NOAA/NWS; Fairbanks, A.K.; Johnson, B. Using an Iridium Satellite Telemetered Gage (iGage) for Hydrologic, Snowfall, and Coastal Storm Surge Measurements to Support Forecast Operations in Alaska. In Proceedings of the 8th Symposium on Meteorological Observation and Instrumentation, Washington, DC, USA, 10–14 February 1969; AMS: Providence, RI, USA, 2016. Available online: https://ams.confex.com/ams/96Annual/webprogram/18SMOI.html (accessed on 1 May 2021).
- Guisado-Pintado, E.; Jackson, D.W.T. Monitoring Cross-shore Intertidal Beach Dynamics using Oblique Time-lapse Photography. J. Coast. Res. 2020, 95, 1106. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 31, 1260–1267. [Google Scholar] [CrossRef]
- Green, D.R.; Hagon, J.J.; Gómez, C.; Gregory, B.J. Using Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling: Examples From the Coastal Zone. In Coastal Management; Krishnamurthy, R.R., Jonathan, M.P., Srinivasalu, S., Glaeser, B.B.T.-C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 465–501. [Google Scholar] [CrossRef]
- Adade, R.; Aibinu, A.M.; Ekumah, B.; Asaana, J. Unmanned Aerial Vehicle (UAV) applications in coastal zone management-a review. Environ. Monit. Assess. 2021, 193, 1–12. [Google Scholar] [CrossRef]
- Apostolopoulos, D.; Nikolakopoulos, K. A review and meta-analysis of remote sensing data, GIS methods, materials and indices used for monitoring the coastline evolution over the last twenty years. Eur. J. Remote Sens. 2021, 54, 240–265. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Jackson, D.W.T.; Navas, F.; Mckenna, J.; Malvarez, G. Identifying storm impacts on an embayed, high-energy coastline: Examples from western Ireland. Mar. Geol. 2004, 210, 261–280. [Google Scholar] [CrossRef]
- Ierodiaconou, D.; Schimel, A.C.G.; Kennedy, D.M. A new perspective of storm bite on sandy beaches using Unmanned Aerial Vehicles. Z. Fur Geomorphol. 2016, 60, 123–137. [Google Scholar] [CrossRef]
- Talavera, L.; Del Rio, L.; Benavente, J.; Barbero, L.; Lopez-Ramirez, J.A. UAS as tools for rapid detection of storm-induced morphodynamic changes at Camposoto beach, SW Spain. Int. J. Remote Sens. 2018, 39, 5550–5567. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Pagán, J.I.; Bañón, L.; López, I.; Bañón, C.; Aragonés, L. Monitoring the dune-beach system of Guardamar del Segura (Spain) using UAV, SfM and GIS techniques. Sci. Total Environ. 2019, 687, 1034–1045. [Google Scholar] [CrossRef]
- Pucino, N.; Kennedy, D.M.; Carvalho, R.C.; Allan, B.; Ierodiaconou, D. Citizen science for monitoring seasonal-scale beach erosion and behaviour with aerial drones. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Arif, F.; Rahman, A.A.A.; Maulud, K.N.A. Low-cost unmanned aerial vehicle photogrammetric survey and its application for high-resolution shoreline changes survey. In Proceedings of the 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, Kuala Lumpur, Malaysia, 15–19 October 2018; ACRS: Seattle, WA, USA, 2018; Volume 3, pp. 1391–1395. [Google Scholar]
- Caroti, G.; Piemonte, A.; Pieracci, Y. Low-Altitude UAV-Borne Remote Sensing in Dunes Environment: Shoreline Monitoring and Coastal Resilience. In Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 10964, pp. 281–293. [Google Scholar] [CrossRef]
- Moloney, J.G.; Hilton, M.J.; Sirguey, P.; Simons-Smith, T. Coastal Dune Surveying Using a Low-Cost Remotely Piloted Aerial System (RPAS). J. Coast. Res. 2018, 34, 1244–1255. [Google Scholar] [CrossRef]
- Grohmann, C.H.; Garcia, G.P.B.; Affonso, A.A.; Albuquerque, R.W. Dune migration and volume change from airborne LiDAR, terrestrial LiDAR and Structure from Motion-Multi View Stereo. Comput. Geosci. 2020, 143, 104569. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Han, J.; Son, S.; Lee, S.; Han, K.; Kim, J.; Kim, J. Feasibility of UAV Photogrammetry for Coastal Monitoring: A Case Study in Imlang Beach, South Korea. J. Coast. Res. 2019, 90, 386. [Google Scholar] [CrossRef]
- Appeaning Addo, K.; Jayson-Quashigah, P.-N. UAV photogrammetry and 3D reconstruction: Application in coastal monitoring. In Unmanned Aerial Systems; Koubaa, A., Azar, A.T.B.T.-U.A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 157–174. [Google Scholar] [CrossRef]
- PIX4D. Ground Sampling Distance (GSD) in Photogrammetry. 2021. Available online: https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry (accessed on 1 June 2021).
- ArduPilot. ARDUPILOT. 2021. Available online: https://ardupilot.org/planner/index.html (accessed on 1 June 2021).
- MikroKopter. MikroKopterTool-OSD. Available online: https://wiki.mikrokopter.de/en/MikroKopterTool-OSD (accessed on 1 June 2021).
- VC Technology Ltd. Litchi. 2022. Available online: https://flylitchi.com/ (accessed on 1 June 2021).
- PIX4D. PIX4Dcapture. 2022. Available online: https://www.pix4d.com/product/pix4dcapture (accessed on 1 June 2021).
- Dronesmadeeasy Map Pilot for DJI. Available online: https://support.dronesmadeeasy.com/hc/en-us (accessed on 1 June 2021).
- DroneDeploy. Available online: https://www.dronedeploy.com/ (accessed on 1 June 2021).
- PIX4D. PIX4Dmapper. 2022. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 1 June 2021).
- Küng, O.; Strecha, C.; Beyeler, A.; Zufferey, J.-C.; Floreano, D.; Fua, P.; Gervaix, F. The accuracy of automatic photogrammetric techniques on ultra-light uav imagery. In Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Bonn, Germany, 4–7 September 2017; ISPRS Archives 2012: Zurich, Switzerland, 2011; Volume XXXVIII-1/. Available online: https://infoscience.epfl.ch/record/168806?ln=en (accessed on 1 June 2021).
- Duffy, J.P.; Cunliffe, A.M.; DeBell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K. Location, location, location: Considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Duffy, J.P.; Anderson, K. A 21st-century renaissance of kites as platforms for proximal sensing. Prog. Phys. Geogr. 2016, 40, 352–361. [Google Scholar] [CrossRef]
- Duffy, J.P.; Shutler, J.D.; Witt, M.J.; DeBell, L.; Anderson, K. Tracking fine-scale structural changes in coastal dune morphology using kite aerial photography and uncertainty-assessed structure-from-motion photogrammetry. Remote Sens. 2018, 10, 1494. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Jayson-Quashigah, P.N.; Almar, R.; Stieglitz, T.C.; Anthony, E.J.; Aheto, D.W.; Addo, K.A. Application of shore-based video and unmanned aerial vehicles (Drones): Complementary tools for beach studies. Remote Sens. 2020, 12, 394. [Google Scholar] [CrossRef]
- Fagundes, M.A.R.R.; Mendonca-Tinti, I.; Iescheck, A.L.; Akos, D.M.; Geremia-Nievinski, F.; Mendonça-Tinti, I.; Iescheck, A.L.; Akos, D.M.; Geremia-Nievinski, F. An open-source low-cost sensor for SNR-based GNSS reflectometry: Design and long-term validation towards sea-level altimetry. GPS Solut. 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Williams, S.D.P.P.; Bell, P.S.; McCann, D.L.; Cooke, R.; Sams, C. Demonstrating the Potential of Low-Cost GPS Units for the Remote Measurement of Tides and Water Levels Using Interferometric Reflectometry. J. Atmos. Ocean. Technol. 2020, 37, 1925–1935. [Google Scholar] [CrossRef]
- Liu, W.; Beckheinrich, J.; Semmling, M.; Ramatschi, M.; Vey, S.; Wickert, J.; Hobiger, T.; Haas, R. Coastal Sea-Level Measurements Based on GNSS-R Phase Altimetry: A Case Study at the Onsala Space Observatory, Sweden. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5625–5636. [Google Scholar] [CrossRef]
- Darrozes, J.; Roussel, N.; Zribi, M. The Reflected Global Navigation Satellite System (GNSS-R): From Theory to Practice. In Microwave Remote Sensing of Land Surfaces: Techniques and Methods; Elsevier: Amsterdam, The Netherlands, 2016; pp. 303–355. [Google Scholar] [CrossRef]
- Zhang, Y.; Little, T.D.C.; Wetherill, B.R.; Peri, F.; Chen, R.F. An instrument scheduler design for energy neutral coastal monitoring systems deployment. In Proceedings of the 2nd International Workshop on Energy Neutral Sensing Systems, Memphis, TN, USA, 6 November 2014; ACM: New York, NY, USA, 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Pozzebon, A.; Andreadis, A.; Bertoni, D.; Bove, C. A wireless sensor network framework for real-time monitoring of height and volume variations on sandy beaches and dunes. ISPRS Int. J. Geo-Inf. 2018, 7, 141. [Google Scholar] [CrossRef]
- Chintalapati, S.; Subramanian, C.S. A wireless sensors network system for local multipoint storm surge measurements. Mar. Technol. Soc. J. 2018, 52, 32–41. [Google Scholar] [CrossRef]
- Albaladejo Perez, C.; Soto Valles, F.; Torres Sanchez, R.; Jimenez Buendia, M.; Lopez-Castejon, F.; Gilabert Cervera, J. Design and Deployment of a Wireless Sensor Network for the Mar Menor Coastal Observation System. IEEE J. Ocean. Eng. 2017, 42, 966–976. [Google Scholar] [CrossRef]
- Zhang, Y.; Wetherill, B.R.; Chen, R.F.; Peri, F.; Rosen, P.; Little, T.D.C.C. Design and implementation of a wireless video camera network for coastal erosion monitoring. Ecol. Inform. 2014, 23, 98–106. [Google Scholar] [CrossRef]
- Martinez, K.; Hart, J.K.; Ong, R. Environmental sensor networks. Computer 2004, 37, 50–56. [Google Scholar] [CrossRef]
- Tadesse, M.; Wahl, T.; Cid, A. Data-Driven Modeling of Global Storm Surges. Front. Mar. Sci. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Instruments, N. LabVIEW. 2022. Available online: https://www.ni.com/en-ie/shop/labview.html#pinned-nav-section2 (accessed on 8 January 2023).
- Herbers, T.H.C.C.; Jessen, P.F.; Janssen, T.T.; Colbert, D.B.; MacMahan, J.H. Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Ocean. Technol. 2012, 29, 944–959. [Google Scholar] [CrossRef]
- Centurioni, L.; Braasch, L.; Lauro, E.D.; Contestabile, P.; De Leo, F.; Casotti, R.; Franco, L.; Vicinanza, D. A new strategic wave measurement station off naples port main breakwater. Coast. Eng. Proc. 2016, 35, 36. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Kuo, C.-Y.; Shih, C.-H.; Lin, L.-C.; Chiang, K.; Cheng, K.-C. Monitoring high-frequency ocean signals using low-cost gnss/imu buoys. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1127–1134. [Google Scholar] [CrossRef]
- Johnson, D.; Stocker, R.; Head, R.; Imberger, J.; Pattiaratchi, C. A compact, low-cost GPS drifter for use in the oceanic nearshore zone, lakes and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 1880–1884. [Google Scholar] [CrossRef]
- Schmidt, W.E.; Woodward, B.T.; Millikan, K.S.; Guza, R.T. A GPS-tracked surf zone drfiter. J. Atmos. Ocean. Technol. 2003, 20, 1069–1075. [Google Scholar] [CrossRef]
- MacMahan, J.; Brown, J.; Thornton, E. Low-Cost handheld global positioning system for measuring surf-zone currents. J. Coast. Res. 2009, 25, 744–754. [Google Scholar] [CrossRef]
- Barstow, S.F.; Bidlot, J.; Caires, S.; Donelan, M.A.; Drennan, W.M.; Dupuis, H.; Graber, H.C.; Green, J.J.; Guérin, C.; Barstow, S.F.; et al. Ocean Waves to Cite This Version : Measuring and Analysing. 2010. Available online: https://hal.archives-ouvertes.fr/hal-00529755/PDF/QSNA21367ENC_002.pdf (accessed on 1 August 2021).
- U-blox Product Summary: NEO/LEA-M8T Series. Available online: https://content.u-blox.com/sites/default/files/products/documents/NEO-LEA-M8T_ProductSummary_%28UBX-16000801%29.pdf (accessed on 8 January 2023).
- Takasu, T. RTKLIB: An Open Source Program Package for GNSS Positioning. Available online: https://www.rtklib.com/ (accessed on 1 August 2021).
- Miguez, B.M.; Testut, L.; Wöppelmann, G. The Van de Casteele test revisited: An efficient approach to tide gauge error characterization. J. Atmos. Ocean. Technol. 2008, 25, 1238–1244. [Google Scholar] [CrossRef]
- Spicer, P.; Schlichting, D.; Huguenard, K.; Roche, A.J.; Rickard, L.N. Sensing storm surge: A framework for establishing a citizen scientist monitored water level network. Ocean Coast. Manag. 2021, 211, 105802. [Google Scholar] [CrossRef]
- Temple, N.A.; Webb, B.M.; Sparks, E.L.; Linhoss, A.C. Low-Cost Pressure Gauges for Measuring Water Waves. J. Coast. Res. 2020, 36, 661–667. [Google Scholar] [CrossRef]
- Lyman, T.P.; Elsmore, K.; Gaylord, B.; Byrnes, J.E.K.; Miller, L.P. Open Wave Height Logger: An open source pressure sensor data logger for wave measurement. Limnol. Oceanogr.-Methods 2020, 18, 335–345. [Google Scholar] [CrossRef]
- Ellis, J.T.; Sherman, D.J.; Bauer, B.O. Depth Compensation for Pressure Transducer Measurements of Boat Wakes. Special Issue No. Proceedings of the 8th International Coastal Symposium (ICS 2004) J. Coast. Res. 2004, 39, 488–492. [Google Scholar]
- Oakley, A.; Cornell, S.; Bochicchio, C.; Carney, J.; Sabetta, M. Using groundwater data sondes to produce high-quality in situ tide and wave hydrographs along Wallops Island, Virginia. J. Coast. Res. 2015, 31, 1275–1283. [Google Scholar] [CrossRef]
- Spicer, P.; Huguenard, K.; Ross, L.; Rickard, L.N. High-Frequency Tide-Surge-River Interaction in Estuaries: Causes and Implications for Coastal Flooding. J. Geophys. Res. Ocean. 2019, 124, 9517–9530. [Google Scholar] [CrossRef]
- VIMS. StormSense. 2022. Available online: https://www.vims.edu/people/loftis_jd/StormSense/index.php (accessed on 1 September 2021).
- Loftis, J.D.; Katragadda, S.; Rhee, S.; Nguyen, C. StormSense: A Blueprint for Coastal Flood Forecast Information & Automated Alert Messaging Systems. In Proceedings of the 2018 IEEE International Science of Smart City Operations and Platforms Engineering in Partnership with Global City Teams Challenge (SCOPE-GCTC), Porto, Portugal, 10–13 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 12–17. [Google Scholar]
- Loftis, J.D.; Forrest, D.; Katragadda, S.; Spencer, K.; Organski, T.; Nguyen, C.; Rhee, S. StormSense: A new integrated network of IoT water level sensors in the smart cities of Hampton roads, VA. Mar. Technol. Soc. J. 2018, 52, 56–67. [Google Scholar] [CrossRef]
- Maupin, T.P.; Agouridis, C.T.; Barton, C.D.; Warner, R.C.; Yu, X. Specific conductivity sensor performance: I. Laboratory evaluation. Int. J. Min. Reclam. Environ. 2013, 27, 329–344. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, P.; Guo, Q. Measuring Beach Profiles along a Low-Wave Energy Microtidal Coast, West-Central Florida, USA. Geosciences 2016, 6, 44. [Google Scholar] [CrossRef]
- Baptista, P.R.B.; Bernardes, C.; Cunha, T.R.; Baganha Baptista, P.R.; Bernardes, C.; Cunha, T.R.; Baptista, P.R.B.; Bernardes, C.; Cunha, T.R.; Baganha Baptista, P.R.; et al. The validation analysis of the INSHORE system-a precise and efficient coastal survey system. Environ. Monit. Assess. 2011, 179, 589–604. [Google Scholar] [CrossRef]
- Gutirrez, J.; Gmez-Muñoz, V.; Villa-Medina, F.; Porta-Gndara, M.N. Wireless Beach Profiler. J. Coast. Res. 2012, 28, 868. [Google Scholar] [CrossRef]
- Zheng, Q.; Klemas, V.V. Coastal Ocean Environment; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1. [Google Scholar] [CrossRef]
- Lee, J.-M.; Park, J.-Y.; Choi, J.-Y. Evaluation of Sub-aerial Topographic Surveying Techniques Using Total Station and RTK-GPS for Applications in Macrotidal Sand Beach Environment. J. Coast. Res. 2013, 65, 535–540. [Google Scholar] [CrossRef]
- EMERY, K.O. A Simple Method of Measuring Beach Profiles. Limnol. Oceanogr. 1961, 6, 90–93. [Google Scholar] [CrossRef]
- Baptista, P.; Bastos, L.; Bernardes, C.; Cunha, T.; Dias, J. Monitoring sandy shores morphologies by DGPS—A practical tool to generate digital elevation models. J. Coast. Res. 2008, 24, 1516–1528. [Google Scholar] [CrossRef]
- Vashistha, R.D.; Mohan, K.N.; Biju, P.S. An indigenous state-of-the-art High Wind Speed Recording (HWSR) system for coastal meteorological observatories. MAUSAM 2010, 61, 361–368. [Google Scholar] [CrossRef]
- Huang, Z.-C.C.; Yeh, C.-Y.Y.; Tseng, K.-H.H.; Hsu, W.-Y.Y. A UAV–RTK Lidar System for Wave and Tide Measurements in Coastal Zones. J. Atmos. Ocean. Technol. 2018, 35, 1557–1570. [Google Scholar] [CrossRef]
- Snow, C.; Zeng, J.; Nonas-Hunter, L.; Diggins, D.; Bennett, K.; Bennett, A. Design of a Cable-Mounted Robot for Near Shore Monitoring. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Singapore, 5–31 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Bennett, K.R.; Zeng, J.; Diggins, D.; Nonas-Hunter, L.; Snow, C.; Bennett, A.A. The Development and Implementation of an Automated Coastal Environment Monitoring System. In Proceedings of the 2020 Global Oceans 2020: Singapore—U.S. Gulf Coast, Singapore, 5–31 October 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Myers, D.T.; Rediske, R.R.; McNair, J.N. Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner. Water 2019, 11, 1846. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H.; Hadian Amri, M.A. Soil erosion modeling using erosion pins and artificial neural networks. Catena 2021, 196, 104902. [Google Scholar] [CrossRef]
- Ward, D.L.; Wibner, C.G.; Zhang, J.; Edge, B. Wind Effects on Runup and Overtopping. In Proceedings of the Coastal Engineering 1994, Orleans, MA, USA, 8–14 September 2024; American Society of Civil Engineers: Kobe, Japan, 1995; pp. 1687–1699. [Google Scholar] [CrossRef]
- Kroon, A.; Davidson, M.A.; Aarninkhof, S.G.J.; Archetti, R.; Armaroli, C.; Gonzalez, M.; Medri, S.; Osorio, A.; Aagaard, T.; Holman, R.A.; et al. Application of remote sensing video systems to coastline management problems. Coast. Eng. 2007, 54, 493–505. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Tang, C.-K.; Shum, H.-Y. Lazy_snapping. ACM Trans. Graph. 2004, 23, 303–308. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J.; Turner, I.L.; Dronkers, T.D.T.; Caljouw, M.; Nipius, L. A video-based technique for mapping intertidal beach bathymetry. Coast. Eng. 2003, 49, 275–289. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Melet, A.; Almar, R.; Hemer, M.; Le Cozannet, G.; Meyssignac, B.; Ruggiero, P. Contribution of Wave Setup to Projected Coastal Sea Level Changes. J. Geophys. Res. Ocean. 2020, 125, e2020JC016078. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.; Saito, Y.; Sallenger, A. Coastal systems and low-lying areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. [Google Scholar]
Keyword Search Strings | Science Direct | Web of Science | Scopus |
---|---|---|---|
(coast OR coastal OR hazard OR climate) AND (low-cost sensors OR citizen science sensors) AND NOT Air quality | 140 | 102 | 39 |
Monitoring AND low-cost AND (coast OR coastal OR hazard) | 195 | 622 | 719 |
(low-cost sensors OR citizen science sensors) AND (coastal OR coast OR climate OR erosion OR flooding OR storm surge OR sea level rise) | 124 | 776 | 1 |
(climate OR coast OR coastal) AND (low-cost sensors OR citizen science sensors) AND NOT air-quality | 96 | 534 | 30 |
Total | 3378 |
Criterion | Inclusion | Exclusion |
---|---|---|
Coastal hazards | Coastal flooding Coastal erosion Beach, dune, and cliff erosion Storm surge Shoreline changes | Coastal hazards not included in the inclusion criteria, such as maritime security hazards, marine pollution, marine ecosystem shifts, coastal landslides/slope stability, tsunamis, compound floods, flash floods |
Forcing agents | Sea level/water level Surface wind Surface wind-wave Tide Extreme events such as stormsBarometric pressure (related to storms) | Forcing agents not included in the inclusion criteria such as vertical land motion, land cover and land use, fluvial sediment supply, river discharge, ground water level, sea surface temperature, precipitation |
Coastal zone characteristics | Coastal topography Intertidal topography | Bathymetry |
Type of sensors | Low-cost sensors or citizen science sensors | High-end sensors, unsuitable for citizen science activities |
Nature of Hazard | Climate-induced | Not related to climate or not climate-induced |
Geographical coverage | Coastal regions other than the Arctic (except for coastal regions inhabited by humans) and Antarctic, as these are exceptionally harsh environments requiring special types of sensors | Arctic and Antarctic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, T.; Creedon, L.; Gharbia, S.S. Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis. Sensors 2023, 23, 1717. https://doi.org/10.3390/s23031717
Ahmed T, Creedon L, Gharbia SS. Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis. Sensors. 2023; 23(3):1717. https://doi.org/10.3390/s23031717
Chicago/Turabian StyleAhmed, Tasneem, Leo Creedon, and Salem S. Gharbia. 2023. "Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis" Sensors 23, no. 3: 1717. https://doi.org/10.3390/s23031717
APA StyleAhmed, T., Creedon, L., & Gharbia, S. S. (2023). Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis. Sensors, 23(3), 1717. https://doi.org/10.3390/s23031717