Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model
<p>Workspace of the multiple-target path planning problem.</p> "> Figure 2
<p>Structure examples for mobile and motion modes. (<b>a</b>) Moving forward. (<b>b</b>) Rotating in situ.</p> "> Figure 3
<p>The target point distribution and the path solution. (<b>a</b>) Target points placed in the workspace. (<b>b</b>) The optimal path with the shortest length. (<b>c</b>) The optimal path with the least rotation.</p> "> Figure 4
<p>A realistic example of multiple-target position tracking. (<b>a</b>) Ideal positions and actual moving path in experiment. (<b>b</b>) Errors between the ideal positions and actual positions at each target point.</p> "> Figure 5
<p>The rotation center lateral offset caused by the velocity difference.</p> "> Figure 6
<p>The arc-shaped trajectory caused by the rotation center lateral offset.</p> "> Figure 7
<p>Position error when moving from one target point to the next one.</p> "> Figure 8
<p>Prototype of mobile robot and the motion capture system. (<b>a</b>) The four Mecanum wheels of the mobile robot. (<b>b</b>) The overall view of the mobile robot prototype. (<b>c</b>) Marked points on the mobile robot. (<b>d</b>) The rigid triangle formed by marked points that represents the motion of the mobile robot. (<b>e</b>) The geometric principle of the multiple-camera stereo system.</p> "> Figure 9
<p>The algorithm principle of stationary segment recognition. (<b>a</b>) The coordinates of the same marked point in time series. (<b>b</b>) The coordinate series in stationary status. (<b>c</b>) The coordinate series in motive status. (<b>d</b>) The coordinate series when the marked point is about to stop. (<b>e</b>) The coordinate series when the marked point is about to move.</p> "> Figure 10
<p>Stationary segment recognition.</p> "> Figure 11
<p>Arc fitting for forward-moving trajectory.</p> "> Figure 12
<p>The distribution of the error parameter from experiments. (<b>a</b>) The distribution of the forward moving error coefficient. (<b>b</b>) The distribution of the rotation angle error coefficient. (<b>c</b>) The distribution of the fitted trajectory radius.</p> "> Figure 13
<p>Destination offset caused by arc-shaped trajectory.</p> "> Figure 14
<p>Precision optimal path and the comparison with the characteristic path. (<b>a</b>)The ideal positions and the actual reached positions when the mobile robot moves along the precision-driven optimal path. (<b>b</b>)The distances between the ideal positions and the actual reached positions at each target position when mobile robot moves along three different paths.</p> "> Figure 15
<p>Simulated positions with different path and error parameters. (<b>a</b>) The simulated positions for mobile robot moving along the minimum rotation angle path with considering the forward moving error coefficient as a random variable. (<b>b</b>) The simulated positions for mobile robot moving along the minimum average position error path with considering the forward moving error coefficient as a random variable. (<b>c</b>) The simulated positions for mobile robot moving along the minimum forward moving distance path with considering the forward moving error coefficient as a random variable. (<b>d</b>) The simulated positions for mobile robot moving along the minimum rotation angle path with considering the rotation angle error coefficient as a random variable. (<b>e</b>) The simulated positions for mobile robot moving along the minimum average position error path with considering the rotation angle error coefficient as a random variable. (<b>f</b>) The simulated positions for mobile robot moving along the minimum forward moving distance path with considering the rotation angle error coefficient as a random variable. (<b>g</b>) The simulated positions for mobile robot moving along the minimum rotation angle path with considering the rotation center lateral offset as a random variable. (<b>h</b>) The simulated positions for mobile robot moving along the minimum average position error path with considering the rotation center lateral offset as a random variable. (<b>i</b>) The simulated positions for mobile robot moving along the minimum forward moving distance path with considering the rotation center lateral offset as a random variable. (<b>j</b>) The simulated positions for mobile robot moving along the minimum rotation angle path with considering all error parameters are random variables. (<b>k</b>) The simulated positions for mobile robot moving along the minimum average position error path with considering all error parameters are random variables. (<b>l</b>) The simulated positions for mobile robot moving along the minimum forward moving distance path with considering all error parameters are random variables.</p> "> Figure 16
<p>Position scatters of simulated results and experimental results. (<b>a</b>) The simulated and experimental positions for mobile robot moving along the minimum rotation angle path. (<b>b</b>) The simulated and experimental positions for mobile robot moving along the minimum average position error path. (<b>c</b>) The simulated and experimental positions for mobile robot moving along the minimum forward moving distance path.</p> "> Figure 17
<p>Movement precision experiment with different paths. (<b>a</b>) The simulated and experimental positions for mobile robot moving along the minimum rotation angle path with command compensation. (<b>b</b>) The simulated and experimental positions for mobile robot moving along the minimum average position error path with command compensation. (<b>c</b>) The simulated and experimental positions for mobile robot moving along the minimum forward moving distance path with command compensation.</p> "> Figure 18
<p>Flowchart for the movement command compensation.</p> "> Figure A1
<p>Random generated paths for parameter recognition. (<b>a</b>) The first random moving path. (<b>b</b>) The second random moving path. (<b>c</b>) The third random moving path. (<b>d</b>) The fourth random moving path.</p> ">
Abstract
:1. Introduction
2. Generalized Multiple-Target Path Planning Problem
3. Three Parameters’ Error Model for Mobile Robots
3.1. Forward Moving Error Coefficient
3.2. Rotation Angle Error Coefficient
3.3. Rotation Center Lateral Offset
3.4. Error Evaluation Function in Multi-Target Path Moving
4. Error Parameters’ Estimation on Prototype Experiment
4.1. Error Evaluation Function in Multi-Target Path Moving
4.2. High-Precision Motion Recognition with Motion Capture System
4.3. Parameter Recognition Based on Arbitrary Mobile Robot Motions
4.4. Rationality Discussion of Error Parameters
5. Estimation of Error Distribution on Multi-Point Path Motion
5.1. Precision Optimal Path with Invariant Measured Error Parameters
5.2. Simulation with Variant Error Parameters
5.3. Prototype Experiment and the Comparison with the Simulated Result
6. Optimal Path with Command Compensation of the Mobile Robot
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | x | y | Number | x | y | Number | x | y |
---|---|---|---|---|---|---|---|---|
1 | 280.55 | 498.39 | 9 | 208.69 | 217.62 | 17 | 572.88 | 733.00 |
2 | 478.30 | 750.55 | 10 | 908.04 | 707.02 | 18 | 659.59 | 654.93 |
3 | 364.05 | 979.02 | 11 | 443.71 | 75.28 | 19 | 29.41 | 751.03 |
4 | 302.14 | 898.32 | 12 | 110.49 | 415.21 | 20 | 375.17 | 551.08 |
5 | 211.25 | 49.67 | 13 | 320.87 | 682.16 | Start | 0 | 1000 |
6 | 171.07 | 332.16 | 14 | 981.18 | 317.89 | End | 1000 | 0 |
7 | 670.33 | 52.25 | 15 | 288.61 | 621.57 | |||
8 | 855.58 | 328.63 | 16 | 897.85 | 457.72 |
Appendix B
Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 97.79 | 809.73 | 789.08 | 631.07 | 615.79 | 631.07 | 615.78 | 602.78 | 585.86 | 100 | 96.73 | 973.53 | 952.52 | 100 | 98.21 | 1048.9 | 1022.81 |
809.73 | 790.71 | 631.07 | 616.99 | 670.29 | 654.97 | 670.29 | 654.12 | 592.43 | 578.50 | 100 | 98.04 | 285.34 | 278.90 | 973.53 | 948.56 | 729.79 | 709.58 |
631.07 | 617.23 | 670.29 | 655.86 | 476.02 | 462.47 | 476.02 | 463.60 | 723.51 | 708.75 | 595.13 | 581.54 | 810.24 | 787.61 | 285.34 | 278.12 | 656.35 | 640.54 |
670.29 | 654.06 | 476.02 | 463.22 | 667.21 | 651.28 | 667.21 | 648.87 | 318.45 | 313.54 | 476.02 | 465.10 | 589.69 | 573.47 | 810.24 | 789.58 | 641.02 | 624.25 |
476.02 | 462.84 | 667.21 | 648.83 | 696.59 | 679.78 | 696.59 | 679.45 | 595.13 | 581.33 | 676.15 | 662.62 | 567.89 | 553.35 | 589.69 | 575.55 | 339.82 | 329.97 |
667.21 | 650.07 | 696.59 | 679.30 | 625.29 | 608.53 | 625.29 | 607.08 | 476.02 | 464.07 | 96.193 | 93.28 | 411.78 | 402.62 | 567.89 | 553.03 | 438.61 | 427.65 |
696.59 | 679.20 | 625.29 | 609.26 | 289.73 | 281.09 | 289.73 | 282.69 | 676.15 | 658.84 | 543.77 | 530.22 | 490.37 | 478.13 | 411.78 | 400.16 | 428.08 | 417.77 |
625.29 | 608.04 | 289.73 | 282.28 | 724.55 | 707.60 | 724.55 | 707.27 | 543.77 | 531.20 | 927.89 | 905.36 | 720.36 | 703.90 | 490.37 | 477.49 | 268.68 | 262.32 |
289.73 | 282.24 | 724.55 | 706.41 | 753.23 | 733.93 | 753.23 | 734.65 | 927.89 | 907.62 | 638.18 | 622.81 | 339.82 | 330.63 | 720.36 | 701.77 | 567.57 | 553.56 |
724.55 | 706.59 | 753.23 | 736.95 | 585.52 | 568.96 | 585.52 | 571.51 | 638.18 | 624.41 | 277.07 | 270.03 | 317.22 | 309.09 | 339.82 | 331.84 | 312.37 | 305.06 |
753.23 | 736.06 | 585.52 | 571.70 | 519.08 | 506.15 | 519.08 | 507.22 | 277.07 | 271.23 | 141.88 | 139.54 | 354.83 | 347.51 | 116.68 | 114.03 | 625.29 | 608.59 |
585.52 | 573.51 | 519.08 | 506.99 | 663.38 | 648.65 | 663.38 | 647.37 | 101.71 | 100.01 | 530.96 | 520.61 | 530.96 | 517.91 | 317.22 | 308.99 | 661.26 | 644.83 |
519.08 | 507.26 | 663.38 | 647.41 | 126.05 | 122.46 | 126.05 | 122.80 | 299.98 | 293.03 | 798.71 | 781.08 | 618.64 | 602.83 | 354.83 | 348.12 | 592.43 | 576.84 |
663.38 | 647.33 | 126.05 | 122.84 | 794.26 | 773.71 | 794.26 | 776.27 | 530.96 | 519.52 | 957.93 | 934.81 | 661.26 | 644.00 | 530.96 | 516.47 | 408.89 | 397.36 |
794.26 | 775.83 | 794.26 | 775.10 | 101.71 | 100.13 | 101.71 | 99.93 | 798.71 | 780.83 | 853.58 | 834.82 | 879.73 | 857.44 | 618.64 | 601.94 | 815.31 | 793.78 |
428.08 | 419.41 | 428.08 | 418.84 | 428.08 | 418.46 | 428.08 | 418.78 | 957.93 | 933.01 | 120.56 | 117.08 | 927.89 | 904.45 | 661.26 | 644.92 | 853.51 | 832.41 |
141.88 | 139.70 | 618.64 | 602.72 | 141.88 | 138.76 | 188.14 | 185.11 | 853.58 | 832.37 | 585.52 | 570.97 | 566 | 551.51 | 879.73 | 858.11 | 835.13 | 813.66 |
188.14 | 185.03 | 468.97 | 458.36 | 188.14 | 183.44 | 618.64 | 602.12 | 120.56 | 117.86 | 602.78 | 589.04 | 497.73 | 484.64 | 927.89 | 906.33 | 792.64 | 772.84 |
618.64 | 603.59 | 100 | 98.17 | 618.64 | 603.32 | 468.97 | 458.14 | 585.52 | 572.27 | 592.43 | 576.30 | 618.2 | 603.26 | 566 | 552.30 | 448.89 | 439.12 |
468.97 | 456.55 | 100 | 96.90 | 468.97 | 458.08 | 100 | 97.29 | 602.78 | 588.03 | 723.51 | 707.40 | 1167.4 | 1139.15 | 497.73 | 486.37 | 497.73 | 485.22 |
100 | 97.41 | 809.73 | 790.55 | 100 | 97.76 | 100 | 98.21 | 592.43 | 576.32 | 100 | 97.50 | 100 | 97.63 | 618.2 | 604.82 | 981.65 | 955.33 |
100 | 98.20 | 631.07 | 616.47 | 100 | 98.24 | 595.13 | 582.76 | 723.51 | 706.37 | 595.13 | 580.83 | 973.53 | 949.59 | 1167.4 | 1138.42 | 1048.9 | 1023.95 |
809.73 | 791.37 | 670.29 | 657.43 | 809.73 | 788.88 | 476.02 | 465.07 | 318.45 | 313.15 | 476.02 | 465.33 | 285.34 | 277.28 | 973.53 | 949.63 | 729.79 | 710.29 |
631.07 | 615.97 | 476.02 | 462.89 | 631.07 | 616.27 | 676.15 | 661.24 | 595.13 | 580.55 | 676.15 | 657.86 | 810.24 | 789.93 | 285.34 | 277.27 | 656.35 | 639.56 |
670.29 | 653.41 | 667.21 | 649.63 | 670.29 | 656.92 | 543.77 | 532.61 | 476.02 | 465.09 | 543.77 | 531.23 | 589.69 | 573.31 | 810.24 | 791.17 | 641.02 | 626.48 |
476.02 | 463.56 | 696.59 | 680.01 | 476.02 | 462.61 | 927.89 | 905.21 | 676.15 | 660.60 | 927.89 | 906.01 | 567.89 | 554.50 | 589.69 | 575.02 | 339.82 | 330.34 |
667.21 | 651.67 | 625.29 | 609.64 | 667.21 | 650.38 | 638.18 | 623.11 | 96.193 | 93.47 | 638.18 | 625.20 | 411.78 | 401.68 | 567.89 | 552.81 | 438.61 | 429.20 |
696.59 | 679.86 | 289.73 | 283.36 | 696.59 | 682.01 | 277.07 | 272.40 | 543.77 | 529.48 | 277.07 | 271.80 | 490.37 | 477.79 | 411.78 | 400.38 | 428.08 | 417.00 |
625.29 | 609.51 | 724.55 | 706.99 | 625.29 | 608.89 | 299.98 | 291.37 | 927.89 | 906.13 | 101.71 | 99.56 | 720.36 | 702.37 | 490.37 | 476.72 | 268.68 | 262.65 |
289.73 | 283.40 | 753.23 | 737.80 | 289.73 | 282.04 | 530.96 | 519.93 | 638.18 | 625.14 | 299.98 | 292.02 | 339.82 | 329.97 | 720.36 | 702.35 | 567.57 | 554.58 |
724.55 | 707.81 | 585.52 | 573.97 | 724.55 | 706.00 | 798.71 | 779.90 | 277.07 | 270.88 | 141.88 | 139.11 | 116.68 | 114.10 | 339.82 | 331.11 | 312.37 | 303.23 |
753.23 | 734.88 | 519.08 | 507.48 | 753.23 | 734.76 | 957.93 | 936.57 | 101.71 | 99.60 | 530.96 | 518.46 | 317.22 | 308.12 | 354.83 | 347.38 | 625.29 | 609.72 |
585.52 | 571.73 | 663.38 | 648.47 | 585.52 | 569.49 | 853.58 | 832.92 | 299.98 | 292.07 | 798.71 | 777.72 | 354.83 | 346.28 | 530.96 | 515.28 | 661.26 | 645.18 |
519.08 | 505.44 | 126.05 | 122.24 | 519.08 | 506.06 | 120.56 | 117.58 | 141.88 | 138.04 | 957.93 | 934.38 | 530.96 | 516.76 | 618.64 | 600.89 | 592.43 | 576.91 |
663.38 | 648.17 | 794.26 | 775.45 | 663.38 | 647.87 | 585.52 | 570.21 | 530.96 | 520.13 | 853.58 | 831.69 | 618.64 | 601.34 | 661.26 | 643.53 | 408.89 | 398.97 |
126.05 | 123.23 | 101.71 | 99.81 | 126.05 | 123.59 | 602.78 | 589.45 | 798.71 | 779.55 | 120.56 | 117.39 | 661.26 | 645.18 | 879.73 | 856.41 | 815.31 | 791.94 |
794.26 | 774.59 | 428.08 | 419.12 | 794.26 | 772.12 | 592.43 | 578.60 | 957.93 | 932.98 | 585.52 | 571.88 | 879.73 | 858.38 | 927.89 | 904.51 | 853.51 | 832.91 |
101.71 | 100.12 | 618.64 | 601.68 | 101.71 | 99.19 | 723.51 | 705.84 | 853.58 | 834.70 | 602.78 | 589.58 | 927.89 | 904.20 | 566 | 550.48 | 835.13 | 815.25 |
428.08 | 419.01 | 468.97 | 458.74 | 428.08 | 416.09 | 141.88 | 139.48 | 120.56 | 116.95 | 592.43 | 576.43 | 566 | 551.90 | 497.73 | 486.63 | 792.64 | 771.19 |
188.14 | 183.65 | 100 | 98.44 | 141.88 | 138.82 | 530.96 | 519.40 | 585.52 | 571.15 | 723.51 | 707.51 | 497.73 | 486.35 | 618.2 | 604.23 | 448.89 | 439.08 |
618.64 | 603.18 | 100 | 97.31 | 188.14 | 184.55 | 798.71 | 779.88 | 602.78 | 587.32 | 100 | 98.14 | 618.2 | 603.06 | 1167.4 | 1138.10 | 497.73 | 486.80 |
468.97 | 456.92 | 809.73 | 791.09 | 618.64 | 603.62 | 957.93 | 934.01 | 592.43 | 576.73 | 973.53 | 952.28 | 1167.4 | 1139.92 | 973.53 | 947.39 | 981.65 | 954.97 |
809.73 | 791.82 | 631.07 | 616.34 | 468.97 | 459.06 | 853.58 | 834.89 | 723.51 | 706.67 | 285.34 | 277.37 | 100 | 97.11 | 285.34 | 276.21 | 1048.9 | 1021.95 |
631.07 | 616.63 | 670.29 | 655.47 | 809.73 | 789.05 | 120.56 | 117.48 | 318.45 | 313.15 | 810.24 | 789.63 | 973.53 | 951.80 | 810.24 | 790.20 | 729.79 | 710.41 |
670.29 | 654.97 | 476.02 | 462.45 | 631.07 | 615.92 | 585.52 | 570.52 | 100 | 97.85 | 589.69 | 575.69 | 285.34 | 279.07 | 589.69 | 573.28 | 656.35 | 638.43 |
476.02 | 462.95 | 667.21 | 649.42 | 670.29 | 656.88 | 602.78 | 589.31 | 595.13 | 582.18 | 567.89 | 554.32 | 810.24 | 788.12 | 567.89 | 552.72 | 641.02 | 626.01 |
667.21 | 650.00 | 696.59 | 679.64 | 476.02 | 463.32 | 592.43 | 575.76 | 476.02 | 465.87 | 411.78 | 401.59 | 589.69 | 573.94 | 411.78 | 402.33 | 339.82 | 332.02 |
696.59 | 680.37 | 625.29 | 610.75 | 667.21 | 649.28 | 723.51 | 706.56 | 676.15 | 658.95 | 490.37 | 479.22 | 567.89 | 553.01 | 490.37 | 476.50 | 438.61 | 426.73 |
625.29 | 610.80 | 289.73 | 284.21 | 696.59 | 682.36 | 595.13 | 581.91 | 543.77 | 529.64 | 720.36 | 704.65 | 411.78 | 401.19 | 720.36 | 700.77 | 428.08 | 418.40 |
289.73 | 281.84 | 724.55 | 708.30 | 625.29 | 608.89 | 476.02 | 464.85 | 927.89 | 906.92 | 339.82 | 330.60 | 490.37 | 478.93 | 339.82 | 331.69 | 268.68 | 263.46 |
724.55 | 707.93 | 753.23 | 733.78 | 289.73 | 282.18 | 676.15 | 659.50 | 638.18 | 624.51 | 116.68 | 114.66 | 720.36 | 703.65 | 116.68 | 114.88 | 567.57 | 554.87 |
753.23 | 734.30 | 585.52 | 570.62 | 724.55 | 705.96 | 96.193 | 94.20 | 277.07 | 271.81 | 317.22 | 310.12 | 339.82 | 330.38 | 317.22 | 307.05 | 312.37 | 302.64 |
585.52 | 569.97 | 519.08 | 506.35 | 753.23 | 735.11 | 543.77 | 529.68 | 299.98 | 292.95 | 354.83 | 347.10 | 317.22 | 308.21 | 354.83 | 346.36 | 625.29 | 608.88 |
519.08 | 505.96 | 663.38 | 649.30 | 585.52 | 571.91 | 927.89 | 906.14 | 141.88 | 138.75 | 530.96 | 519.24 | 354.83 | 347.69 | 530.96 | 515.31 | 661.26 | 646.31 |
663.38 | 649.33 | 126.05 | 122.80 | 519.08 | 504.54 | 638.18 | 625.08 | 530.96 | 519.24 | 618.64 | 600.58 | 530.96 | 517.28 | 618.64 | 601.57 | 592.43 | 576.44 |
126.05 | 123.17 | 794.26 | 775.08 | 663.38 | 647.65 | 277.07 | 269.85 | 798.71 | 780.18 | 661.26 | 645.24 | 618.64 | 605.14 | 661.26 | 643.72 | 408.89 | 398.89 |
794.26 | 774.02 | 101.71 | 100.13 | 126.05 | 123.18 | 299.98 | 292.43 | 957.93 | 934.04 | 879.73 | 857.89 | 661.26 | 645.15 | 879.73 | 857.34 | 815.31 | 795.86 |
101.71 | 98.95 | 428.08 | 418.13 | 794.26 | 774.21 | 141.88 | 139.16 | 853.58 | 833.01 | 927.89 | 905.61 | 879.73 | 857.13 | 927.89 | 905.01 | 853.51 | 833.18 |
428.08 | 417.37 | 141.88 | 139.32 | 101.71 | 98.39 | 530.96 | 517.70 | 120.56 | 117.24 | 566 | 552.36 | 927.89 | 904.48 | 566 | 551.72 | 835.13 | 815.27 |
141.88 | 139.17 | 618.64 | 603.56 | 428.08 | 417.75 | 798.71 | 780.75 | 585.52 | 573.76 | 497.73 | 486.91 | 566 | 551.96 | 497.73 | 485.67 | 792.64 | 771.82 |
188.14 | 184.96 | 468.97 | 458.27 | 618.64 | 602.39 | 957.93 | 933.28 | 602.78 | 587.67 | 618.2 | 603.56 | 497.73 | 483.31 | 618.2 | 603.32 | 448.89 | 436.06 |
618.64 | 603.01 | 100 | 97.84 | 468.97 | 460.27 | 853.58 | 831.77 | 592.43 | 578.34 | 1167.4 | 1138.59 | 618.2 | 604.72 | 1167.4 | 1138.43 | 497.73 | 485.76 |
468.97 | 457.49 | 100 | 98.27 | 100 | 98.31 | 120.56 | 118.54 | 723.51 | 707.95 | 100 | 97.39 | 1167.4 | 1139.57 | 100 | 97.23 | 981.65 | 955.18 |
100 | 97.49 | 809.73 | 790.08 | 809.73 | 788.31 | 585.52 | 572.78 | 318.45 | 311.64 | 100 | 96.92 | 100 | 96.92 | 100 | 97.71 | 100 | 98.03 |
Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance | Ideal Distance | True Distance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.261 | −0.257 | 1.285 | 1.280 | −1.721 | −1.731 | 1.285 | 1.270 | 2.922 | 2.912 | 1.304 | 1.310 | 2.733 | 2.703 | −0.995 | −0.991 | 2.263 | 2.248 |
−2.266 | −2.280 | −1.351 | −1.334 | 1.285 | 1.271 | −1.351 | −1.348 | −2.996 | −3.011 | 2.137 | 2.138 | 2.143 | 2.151 | −3.064 | −3.056 | −2.976 | −2.970 |
2.720 | 2.716 | −0.261 | −0.255 | −1.351 | −1.337 | −0.261 | −0.263 | 1.864 | 1.833 | 2.441 | 2.460 | −0.995 | −0.985 | 1.730 | 1.723 | −2.387 | −2.373 |
2.172 | 2.179 | −2.266 | −2.296 | −2.266 | −2.304 | −2.266 | −2.263 | 1.304 | 1.326 | 2.541 | 2.554 | −0.219 | −0.223 | 2.700 | 2.703 | 2.638 | 2.647 |
2.921 | 2.918 | 2.720 | 2.732 | 2.720 | 2.716 | 2.720 | 2.703 | 2.137 | 2.148 | 1.260 | 1.254 | −3.064 | −3.046 | 1.718 | 1.718 | −2.390 | −2.369 |
−1.798 | −1.806 | 2.172 | 2.162 | 2.172 | 2.156 | 2.172 | 2.178 | 2.441 | 2.438 | −1.512 | −1.527 | 1.730 | 1.719 | −2.670 | −2.674 | −2.428 | −2.436 |
−2.056 | −2.056 | 2.921 | 2.907 | 2.921 | 2.923 | 2.921 | 2.943 | 2.541 | 2.557 | −2.315 | −2.324 | 2.700 | 2.716 | −1.422 | −1.416 | −2.289 | −2.296 |
0.600 | 0.604 | −1.798 | −1.794 | −1.798 | −1.795 | −1.798 | −1.809 | 1.260 | 1.260 | 1.703 | 1.709 | 1.718 | 1.730 | −2.421 | −2.413 | 3.101 | 3.096 |
−2.288 | −2.286 | −2.056 | −2.058 | −2.056 | −2.056 | −2.056 | −2.056 | −1.512 | −1.550 | 2.991 | 2.992 | −2.670 | −2.695 | 2.158 | 2.154 | 2.741 | 2.719 |
−2.250 | −2.298 | 0.600 | 0.601 | 0.600 | 0.613 | −2.288 | −2.258 | −0.589 | −0.589 | −2.702 | −2.734 | −1.422 | −1.421 | −2.489 | −2.486 | 1.048 | 1.033 |
−2.792 | −2.790 | −2.288 | −2.268 | −2.288 | −2.277 | −2.250 | −2.264 | −2.315 | −2.334 | 1.143 | 1.161 | −2.421 | −2.433 | −2.326 | −2.317 | 2.958 | 2.961 |
2.788 | 2.754 | −2.250 | −2.286 | −2.250 | −2.306 | −2.792 | −2.797 | 1.703 | 1.701 | 0.606 | 0.613 | 2.158 | 2.177 | −1.187 | −1.169 | −1.968 | −1.998 |
1.648 | 1.662 | −2.792 | −2.791 | −2.792 | −2.800 | 2.788 | 2.768 | 2.991 | 2.980 | 2.632 | 2.631 | −2.489 | −2.492 | 3.031 | 3.026 | −1.560 | −1.553 |
2.516 | 2.514 | 2.788 | 2.779 | 2.788 | 2.755 | 1.648 | 1.658 | −2.702 | −2.664 | −0.537 | −0.552 | −2.326 | −2.343 | 2.755 | 2.789 | −2.770 | −2.774 |
0.715 | 0.720 | 1.648 | 1.654 | 1.648 | 1.648 | 2.516 | 2.514 | 1.143 | 1.141 | −1.001 | −0.995 | −1.187 | −1.183 | −2.771 | −2.770 | 2.013 | 1.997 |
1.425 | 1.425 | 2.516 | 2.521 | 2.516 | 2.513 | 0.715 | 0.714 | 0.606 | 0.600 | 2.429 | 2.444 | 3.031 | 3.015 | −2.719 | −2.718 | 2.865 | 2.885 |
2.461 | 2.461 | 0.715 | 0.717 | 0.715 | 0.705 | 1.425 | 1.424 | 2.632 | 2.615 | 2.922 | 2.919 | 2.755 | 2.757 | −2.773 | −2.762 | 2.762 | 2.772 |
2.775 | 2.784 | 1.425 | 1.438 | 1.425 | 1.432 | 2.461 | 2.479 | −0.537 | −0.545 | −2.996 | −2.997 | −2.771 | −2.761 | −1.580 | −1.586 | 2.122 | 2.095 |
−2.533 | −2.540 | 2.461 | 2.461 | 2.461 | 2.452 | 2.775 | 2.787 | −1.001 | −0.978 | 1.864 | 1.879 | −2.719 | −2.740 | 2.733 | 2.690 | 2.401 | 2.396 |
−1.721 | −1.700 | 2.775 | 2.797 | 2.775 | 2.772 | −2.533 | −2.547 | 2.429 | 2.411 | 1.304 | 1.281 | −2.773 | −2.768 | 2.143 | 2.165 | −1.966 | −1.963 |
1.285 | 1.265 | −2.533 | −2.542 | −2.533 | −2.536 | −1.721 | −1.711 | 2.922 | 2.917 | 2.137 | 2.137 | −1.580 | −1.602 | −0.995 | −0.974 | −0.437 | −0.436 |
−1.351 | −1.338 | −1.721 | −1.694 | −1.721 | −1.703 | 1.285 | 1.279 | −2.996 | −2.999 | 2.441 | 2.436 | 2.733 | 2.727 | −3.064 | −3.067 | 2.263 | 2.262 |
−0.261 | −0.257 | 1.285 | 1.277 | 1.285 | 1.291 | −1.351 | −1.350 | 1.864 | 1.843 | 2.541 | 2.551 | 2.143 | 2.168 | 1.730 | 1.722 | −2.976 | −2.984 |
−2.266 | −2.293 | −1.351 | −1.346 | −1.351 | −1.348 | −0.589 | −0.587 | 1.304 | 1.295 | 1.260 | 1.262 | −0.995 | −0.977 | 2.700 | 2.709 | −2.387 | −2.393 |
2.720 | 2.720 | −0.261 | −0.258 | −0.261 | −0.264 | −2.315 | −2.330 | 2.137 | 2.149 | −1.512 | −1.538 | −0.219 | −0.217 | 1.718 | 1.739 | 2.638 | 2.645 |
2.172 | 2.162 | −2.266 | −2.251 | −2.266 | −2.285 | 1.703 | 1.705 | 2.441 | 2.444 | −0.589 | −0.577 | −3.064 | −3.075 | −2.670 | −2.685 | −2.390 | −2.390 |
2.921 | 2.935 | 2.720 | 2.709 | 2.720 | 2.708 | 2.991 | 2.993 | 2.541 | 2.555 | −2.315 | −2.328 | 1.730 | 1.701 | −1.422 | −1.410 | −2.428 | −2.413 |
−1.798 | −1.805 | 2.172 | 2.184 | 2.172 | 2.171 | −2.702 | −2.718 | 1.260 | 1.254 | 1.703 | 1.708 | 2.700 | 2.715 | −2.421 | −2.432 | −2.289 | −2.292 |
−2.056 | −2.062 | 2.921 | 2.958 | 2.921 | 2.934 | 1.143 | 1.146 | −1.512 | −1.543 | 2.991 | 2.995 | 1.718 | 1.733 | 2.158 | 2.162 | 3.101 | 3.106 |
0.600 | 0.611 | −1.798 | −1.802 | −1.798 | −1.798 | 0.606 | 0.608 | −0.187 | −0.191 | −2.702 | −2.725 | −2.670 | −2.689 | −2.489 | −2.482 | 2.741 | 2.734 |
−2.288 | −2.259 | −2.056 | −2.064 | −2.056 | −2.069 | 2.632 | 2.654 | −0.589 | −0.596 | 1.143 | 1.148 | −1.422 | −1.416 | −0.185 | −0.185 | 1.048 | 1.064 |
−2.250 | −2.303 | 0.600 | 0.601 | 0.600 | 0.593 | −1.001 | −1.001 | −2.315 | −2.317 | 0.606 | 0.611 | −2.421 | −2.418 | −2.326 | −2.315 | 2.958 | 2.969 |
−2.792 | −2.796 | −2.288 | −2.263 | −2.288 | −2.272 | 2.429 | 2.429 | 1.703 | 1.722 | 2.632 | 2.651 | 2.158 | 2.174 | −1.187 | −1.170 | −1.968 | −1.963 |
2.788 | 2.778 | −2.250 | −2.279 | −2.250 | −2.264 | 2.922 | 2.909 | 2.991 | 2.991 | −0.537 | −0.543 | −2.489 | −2.499 | 3.031 | 3.035 | −1.560 | −1.556 |
1.648 | 1.653 | −2.792 | −2.799 | −2.792 | −2.804 | −2.996 | −3.000 | −2.702 | −2.713 | −1.001 | −0.992 | −2.326 | −2.317 | 2.755 | 2.763 | −2.770 | −2.786 |
2.516 | 2.519 | 2.788 | 2.796 | 2.788 | 2.758 | 1.864 | 1.842 | 1.143 | 1.146 | 2.429 | 2.421 | −1.187 | −1.183 | −2.771 | −2.771 | 2.013 | 2.017 |
0.715 | 0.716 | 1.648 | 1.672 | 1.648 | 1.663 | 1.304 | 1.295 | 0.606 | 0.613 | 2.922 | 2.925 | 3.031 | 3.044 | −2.719 | −2.721 | 2.865 | 2.852 |
1.425 | 1.403 | 2.516 | 2.507 | 2.516 | 2.517 | 2.137 | 2.142 | 2.632 | 2.628 | −2.996 | −2.999 | 2.755 | 2.748 | −2.773 | −2.780 | 2.762 | 2.747 |
2.461 | 2.462 | 0.715 | 0.723 | 1.425 | 1.414 | 2.441 | 2.454 | −0.537 | −0.526 | 1.864 | 1.866 | −2.771 | −2.764 | −1.580 | −1.582 | 2.122 | 2.090 |
2.775 | 2.772 | 1.425 | 1.427 | 2.461 | 2.473 | 2.541 | 2.565 | −1.001 | −1.007 | 1.304 | 1.314 | −2.719 | −2.714 | 2.733 | 2.723 | 2.401 | 2.384 |
−2.533 | −2.519 | 2.461 | 2.453 | 2.775 | 2.788 | 1.260 | 1.254 | 2.429 | 2.424 | 2.137 | 2.135 | −2.773 | −2.777 | 2.143 | 2.155 | −1.966 | −1.982 |
−1.721 | −1.698 | 2.775 | 2.757 | −2.533 | −2.533 | −1.512 | −1.522 | 2.922 | 2.935 | 2.441 | 2.447 | −1.580 | −1.583 | −0.995 | −0.991 | −1.027 | −1.055 |
1.285 | 1.270 | −2.533 | −2.536 | −1.721 | −1.724 | −1.001 | −0.986 | −2.996 | −2.999 | 2.541 | 2.539 | 2.733 | 2.713 | −3.064 | −3.095 | 2.263 | 2.257 |
−1.351 | −1.339 | −1.721 | −1.710 | 1.285 | 1.262 | 2.429 | 2.414 | 1.864 | 1.843 | 1.260 | 1.251 | 2.143 | 2.142 | 1.730 | 1.711 | −2.976 | −2.977 |
−0.261 | −0.264 | 1.285 | 1.272 | −1.351 | −1.340 | 2.922 | 2.921 | 1.304 | 1.309 | −1.512 | −1.543 | −0.995 | −0.983 | 2.700 | 2.699 | −2.387 | −2.387 |
−2.266 | −2.286 | −1.351 | −1.335 | −2.266 | −2.294 | −2.996 | −2.987 | 2.137 | 2.147 | −0.219 | −0.219 | −3.064 | −3.070 | 1.718 | 1.726 | 2.638 | 2.646 |
2.720 | 2.719 | −2.266 | −2.304 | 2.720 | 2.721 | 1.864 | 1.853 | 2.441 | 2.457 | −3.064 | −3.073 | 1.730 | 1.719 | −2.670 | −2.666 | −2.390 | −2.377 |
2.172 | 2.173 | 2.720 | 2.712 | 2.172 | 2.173 | 1.304 | 1.298 | 2.541 | 2.541 | 1.730 | 1.712 | 2.700 | 2.703 | −1.422 | −1.433 | −2.428 | −2.412 |
2.921 | 2.924 | 2.172 | 2.173 | 2.921 | 2.920 | 2.137 | 2.135 | 1.260 | 1.257 | 2.700 | 2.719 | 1.718 | 1.713 | −2.421 | −2.438 | −2.289 | −2.291 |
−1.798 | −1.797 | 2.921 | 2.949 | −1.798 | −1.824 | 2.441 | 2.450 | −1.512 | −1.545 | 1.718 | 1.729 | −2.670 | −2.669 | 2.158 | 2.155 | 3.101 | 3.101 |
−2.056 | −2.064 | −1.798 | −1.801 | −2.056 | −2.065 | 2.541 | 2.559 | −0.589 | −0.587 | −2.670 | −2.681 | −1.422 | −1.417 | −2.489 | −2.487 | 2.741 | 2.737 |
0.600 | 0.617 | −2.056 | −2.064 | 0.600 | 0.602 | 1.260 | 1.253 | −2.315 | −2.339 | −1.422 | −1.422 | −2.421 | −2.419 | −0.185 | −0.188 | 1.048 | 1.043 |
−2.288 | −2.281 | 0.600 | 0.611 | −2.288 | −2.261 | −1.512 | −1.506 | 1.703 | 1.701 | −2.421 | −2.421 | 2.158 | 2.158 | −2.326 | −2.317 | 2.958 | 2.981 |
−2.250 | −2.262 | −2.288 | −2.265 | −2.250 | −2.278 | −0.589 | −0.573 | 2.991 | 3.009 | 2.158 | 2.163 | −2.489 | −2.503 | −1.187 | −1.174 | −1.968 | −1.990 |
−2.792 | −2.789 | −2.250 | −2.282 | −2.792 | −2.795 | −2.315 | −2.321 | −2.702 | −2.720 | −2.489 | −2.492 | −2.326 | −2.330 | 3.031 | 3.012 | −1.560 | −1.554 |
2.788 | 2.757 | −2.792 | −2.807 | 2.788 | 2.770 | 1.703 | 1.711 | 1.143 | 1.135 | −0.185 | −0.184 | −1.187 | −1.162 | 2.755 | 2.763 | −2.770 | −2.772 |
1.648 | 1.662 | 2.788 | 2.788 | 1.648 | 1.672 | 2.991 | 2.989 | 0.606 | 0.605 | −2.326 | −2.315 | 3.031 | 3.023 | −2.771 | −2.776 | 2.013 | 2.027 |
2.516 | 2.516 | 1.648 | 1.665 | 2.516 | 2.506 | −2.702 | −2.704 | 2.632 | 2.612 | −1.187 | −1.191 | 2.755 | 2.772 | −2.719 | −2.718 | 2.865 | 2.866 |
0.715 | 0.715 | 2.516 | 2.513 | 0.715 | 0.730 | 1.143 | 1.152 | −0.537 | −0.543 | 3.031 | 3.026 | −2.771 | −2.769 | −2.773 | −2.774 | 2.762 | 2.753 |
1.425 | 1.440 | 0.715 | 0.721 | 1.425 | 1.427 | 0.606 | 0.612 | −1.001 | −0.993 | 2.755 | 2.760 | −2.719 | −2.740 | −1.580 | −1.577 | 2.122 | 2.121 |
2.461 | 2.441 | 1.425 | 1.434 | 2.461 | 2.461 | 2.632 | 2.633 | 2.429 | 2.431 | −2.771 | −2.763 | −2.773 | −2.777 | 2.733 | 2.713 | 2.401 | 2.397 |
2.775 | 2.770 | 2.461 | 2.455 | 2.775 | 2.772 | −0.537 | −0.543 | 2.922 | 2.912 | −2.719 | −2.715 | −1.580 | −1.576 | 2.143 | 2.159 | −1.966 | −1.990 |
−2.533 | −2.542 | 2.775 | 2.755 | −2.533 | −2.534 | −1.001 | −0.991 | −2.996 | −3.003 | −2.773 | −2.778 | 2.733 | 2.719 | −0.995 | −1.010 | ||
−1.721 | −1.679 | −2.533 | −2.537 | −1.721 | −1.697 | 2.429 | 2.427 | 1.864 | 1.874 | −1.580 | −1.593 | 2.143 | 2.180 | −1.027 | −1.053 |
Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius | Fitted Radius |
---|---|---|---|---|---|---|---|---|---|
−28,029.7 | −19,449.0 | −33,788.8 | −11,430.1 | −25,462.9 | −25,215.0 | −8146.3 | −13,963.1 | −14,818.2 | −8376.2 |
−22,911.8 | −31,819.5 | −22,466.3 | −22,694.8 | −11,062.5 | −35,623.9 | −31,148.0 | −3123.0 | −30,178.9 | −8405.2 |
−24,242.3 | −26,716.3 | −4471.8 | −23,169.3 | −12,850.5 | −34,830.9 | −21,131.2 | −20,201.8 | −18,567.2 | −13,766.4 |
−18,521.0 | −22,575.7 | −32,676.7 | −29,530.8 | −21,853.9 | −23,692.1 | −33,997.5 | −27,544.4 | −23,634.2 | −13,299.6 |
−30,536.7 | −17,972.2 | −24,614.5 | −17,959.6 | −24,801.8 | −19,994.6 | −21,647.1 | −36,128.8 | −27,933.3 | −38,306.7 |
−32,581.7 | −29,239.4 | −11,687.0 | −29,363.3 | −49,067.7 | −22,690.2 | −47,089.9 | −37,778.0 | −42,981.0 | −28,086.0 |
−35,707.8 | −30,478.8 | −26,447.4 | −24,564.1 | −24,467.1 | −25,509.8 | −33,334.1 | −26,938.1 | −44,137.3 | −28,784.3 |
−23,202.8 | −31,694.9 | −15,460.4 | −31,520.8 | −23,215.6 | −22,998.1 | −8102.5 | −22,826.6 | −18,737.1 | −29,612.3 |
−33,356.9 | −28,291.7 | −28,084.5 | −24,515.2 | −26,425.0 | −10,144.4 | −7689.9 | −6601.9 | −8725.7 | −25,736.0 |
−28,793.8 | −27,341.4 | −27,439.0 | −16,135.8 | −36,186.9 | −32,230.1 | −26,459.3 | −12,262.2 | −21,630.3 | −9853.3 |
−2074.4 | −25,432.9 | −16,804.3 | −23,460.3 | −24,860.5 | −16,176.3 | −28,263.9 | −24,127.8 | −31,551.3 | −20,570.0 |
−27,622.5 | −15,773.2 | −27,450.4 | −27,708.8 | −18,957.5 | −43,944.0 | −46,160.7 | −17,913.9 | −34,429.0 | −25,319.2 |
−24,741.5 | −26,772.1 | −30,891.7 | −13,994.0 | −23,233.1 | −20,809.4 | −34,134.4 | −23,721.6 | −31,076.0 | −19,690.6 |
−14,404.2 | −24,954.1 | −26,038.9 | −26,855.5 | −21,974.7 | −12,414.0 | −20,747.2 | −25,837.1 | −19,283.4 | −17,337.4 |
−27,920.1 | −18,643.8 | −22,750.9 | −12,728.9 | −22,999.7 | −31,198.6 | −19,857.1 | −45,662.1 | −25,158.2 | −4653.2 |
−16,375.3 | −30,051.7 | −34,217.5 | −29,095.7 | −22,666.4 | −41,867.0 | −9572.0 | −42,742.6 | −1709.6 | −35,377.4 |
−25,025.4 | −18,572.8 | −20,947.7 | −22,759.5 | −23,114.4 | −27,407.7 | −15,143.9 | −19,513.1 | −16,843.3 | −40,213.0 |
−36,564.9 | −29,062.4 | 314.5 | −26,880.4 | −24,236.3 | −22,158.5 | −23,791.5 | −23,455.2 | −30,212.7 | −36,098.3 |
−21,071.4 | −25,047.0 | −26,762.9 | −16,121.7 | −27,389.2 | −19,344.9 | −3486.4 | −33,951.0 | −13,644.6 | −32,064.7 |
−14,536.9 | −23,574.9 | −25,454.7 | −28,064.5 | −14,956.5 | −23,536.6 | −24,270.6 | −31,759.8 | −23,367.0 | −10,088.8 |
−30,062.3 | −10,971.8 | −16,692.6 | −33,144.4 | −14,519.5 | −21,213.1 | −19,052.6 | −34,518.9 | −19,512.1 | −14,106.6 |
−26,450.8 | −35,453.0 | −27,854.4 | −29,675.7 | −36,844.8 | −26,071.8 | −42,862.3 | −19,559.0 | −47,778.2 | −35,928.8 |
−16,920.9 | −38,220.7 | −18,893.6 | −23,825.1 | −20,598.8 | −8665.3 | −42,336.3 | −17,085.8 | −37,537.2 | −29,202.3 |
−27,995.0 | −26,497.3 | −28,452.5 | −30,894.3 | −46,785.6 | −39,054.1 | −18,257.4 | −6070.2 | −19,752.7 | −27,516.7 |
−18,383.1 | −18,263.5 | −8509.4 | −27,409.5 | −26,751.5 | −19,609.9 | −10,016.0 | −4576.6 | −14,120.9 | −29,545.0 |
−38,311.9 | −32,583.4 | −22,902.0 | −29,128.6 | −17,356.3 | −50,699.8 | −22,028.4 | −32,414.2 | −31,735.2 | −19,276.2 |
−27,702.4 | −26,703.2 | −18,375.0 | −24,356.2 | −32,357.1 | −24,463.5 | −31,424.5 | −21,092.7 | −28,462.7 | −2848.4 |
−24,855.8 | −30,109.1 | −26,561.8 | −28,256.7 | −31,011.8 | −19,693.7 | −356.8 | −27,494.3 | −36,185.7 | −9919.8 |
−17,696.5 | −26,289.6 | −31,696.7 | −8446.7 | −25,313.1 | −30,729.5 | −30,267.8 | −21,843.3 | −21,908.3 | −18,675.1 |
−26,382.7 | −11,467.0 | −27,740.0 | −29,160.3 | −19,150.5 | −37,821.0 | −27,179.6 | −46,309.4 | −22,070.9 | −20,116.4 |
−42,357.1 | −38,478.7 | −27,482.4 | −20,790.4 | −22,748.7 | −30,800.2 | −20,232.1 | −39,166.7 | −21,679.1 | −21,634.2 |
−24,228.1 | −17,539.3 | −33,350.1 | −47,320.3 | −27,614.2 | −22,166.1 | −18,538.1 | −21,155.0 | −11,565.6 | −20,379.7 |
−26,010.0 | −29,688.0 | −34,966.3 | −21,440.9 | −26,858.8 | −21,441.7 | −8664.0 | −5385.7 | −10,985.4 | −5512.9 |
−24,303.9 | −12,442.1 | −7097.3 | −1519.9 | −29,038.4 | −28,027.4 | −12,142.8 | −25,899.2 | −14,446.1 | −40,010.2 |
−32,753.0 | −26,515.0 | −30,216.8 | −31,183.9 | −18,401.4 | −21,952.6 | −28,451.5 | −27,826.6 | −7335.8 | −31,790.8 |
−3302.1 | −15,383.8 | −29,327.6 | −51,260.9 | −29,124.7 | −36,096.9 | −18,543.8 | −40,983.4 | −8306.4 | −30,695.9 |
−31,098.2 | −31,479.8 | −16,120.1 | −25,362.1 | −16,983.6 | −26,573.0 | −26,454.3 | −37,930.5 | −7459.9 | −28,732.3 |
−28,045.8 | −25,370.3 | −24,241.6 | −569.6 | −42,419.8 | −21,805.8 | −23,504.9 | −26,246.1 | −7931.5 | −10,861.7 |
−14,136.9 | −20,589.8 | −16,602.8 | −20,411.0 | −27,160.1 | −19,604.4 | −49,422.1 | −21,606.9 | −8968.3 | −15,103.1 |
−24,708.9 | −24,253.7 | −28,946.7 | −21,676.5 | −22,617.6 | −6704.7 | −39,811.7 | −7455.7 | −8912.5 | −32,896.1 |
Appendix C
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
2 | x | 30.8 | 29.6 | 27.9 | 29.7 | 27.8 | 28.9 | 29.0 | 32.2 | 27.1 | 31.1 | 24.3 | 29.2 | 30.9 | 29.3 | 25.1 |
y | 756.5 | 755.8 | 755.9 | 757.4 | 755.9 | 756.6 | 756.5 | 757.1 | 755.6 | 756.7 | 755.5 | 756.0 | 755.7 | 756.3 | 755.9 | |
3 | x | 111.7 | 111.9 | 103.3 | 105.7 | 102.2 | 104.5 | 105.2 | 110.7 | 99.4 | 111.3 | 92.7 | 104.9 | 108.8 | 105.5 | 97.8 |
y | 427.8 | 427.3 | 425.2 | 426.7 | 425.4 | 425.1 | 426.6 | 426.7 | 424.1 | 427.6 | 423.5 | 425.6 | 424.8 | 424.9 | 424.5 | |
4 | x | 171.9 | 171.7 | 161.1 | 164.8 | 160.7 | 163.1 | 164.5 | 170.9 | 157.6 | 170.2 | 149.1 | 163.2 | 167.1 | 164.4 | 155.3 |
y | 345.6 | 345.7 | 341.6 | 343.1 | 342.7 | 343.4 | 343.6 | 344.3 | 340.8 | 345.7 | 339.1 | 342.7 | 342.1 | 343.2 | 340.3 | |
5 | x | 209.1 | 208.1 | 195.4 | 198.6 | 193.7 | 198.6 | 199.3 | 205.4 | 190.3 | 207.4 | 180.3 | 198.5 | 201.1 | 199.5 | 188.1 |
y | 232.9 | 233.2 | 228.6 | 231.0 | 229.0 | 230.4 | 230.0 | 231.6 | 227.4 | 232.4 | 225.5 | 229.3 | 229.1 | 228.6 | 227.5 | |
6 | x | 209.3 | 208.8 | 191.6 | 195.5 | 191.6 | 193.9 | 196.7 | 203.6 | 186.8 | 206.0 | 172.7 | 197.5 | 196.1 | 196.7 | 182.6 |
y | 70.5 | 69.5 | 66.5 | 68.0 | 66.5 | 66.8 | 66.9 | 67.9 | 63.9 | 70.1 | 61.7 | 67.9 | 65.3 | 66.3 | 64.5 | |
7 | x | 437.7 | 438.6 | 422.1 | 425.9 | 421.8 | 423.3 | 427.5 | 435.0 | 416.4 | 434.3 | 402.9 | 427.6 | 426.5 | 427.0 | 413.9 |
y | 89.2 | 89.7 | 79.4 | 84.3 | 80.3 | 80.6 | 81.7 | 84.9 | 75.8 | 88.0 | 70.2 | 82.6 | 79.3 | 83.7 | 75.8 | |
8 | x | 658.7 | 659.1 | 642.7 | 646.2 | 641.6 | 643.6 | 646.6 | 655.0 | 635.7 | 656.5 | 622.0 | 648.3 | 646.4 | 649.2 | 631.3 |
y | 61.4 | 60.9 | 47.2 | 52.1 | 47.8 | 47.1 | 50.3 | 53.7 | 39.0 | 60.8 | 32.4 | 53.3 | 45.5 | 55.1 | 38.4 | |
9 | x | 848.7 | 849.3 | 839.3 | 843.9 | 835.5 | 840.9 | 841.4 | 849.6 | 834.9 | 849.0 | 824.2 | 843.6 | 844.5 | 842.0 | 834.1 |
y | 326.1 | 326.7 | 306.6 | 312.6 | 310.5 | 308.1 | 311.6 | 315.6 | 298.6 | 323.4 | 289.7 | 313.9 | 305.6 | 317.3 | 294.9 | |
10 | x | 968.9 | 969.8 | 958.5 | 963.2 | 955.3 | 961.2 | 960.9 | 969.5 | 954.4 | 968.7 | 943.4 | 963.1 | 964.3 | 962.6 | 953.8 |
y | 311.8 | 310.7 | 289.5 | 294.5 | 293.1 | 289.6 | 292.8 | 298.2 | 279.5 | 308.8 | 269.1 | 297.5 | 287.0 | 299.3 | 273.5 | |
11 | x | 896.8 | 894.4 | 886.0 | 893.2 | 882.6 | 889.7 | 889.1 | 898.4 | 885.6 | 894.5 | 876.6 | 891.4 | 892.7 | 891.6 | 886.5 |
y | 454.1 | 452.9 | 433.5 | 438.5 | 437.0 | 432.8 | 437.6 | 441.8 | 422.9 | 450.9 | 415.0 | 441.2 | 429.4 | 443.9 | 418.9 | |
12 | x | 918.3 | 916.6 | 913.2 | 920.2 | 908.8 | 917.1 | 917.4 | 922.9 | 911.9 | 916.9 | 909.6 | 915.9 | 917.7 | 919.9 | 919.4 |
y | 695.5 | 695.8 | 674.0 | 679.3 | 678.6 | 674.1 | 678.9 | 683.5 | 663.5 | 692.6 | 655.7 | 683.1 | 671.4 | 685.7 | 657.9 | |
13 | x | 672.4 | 670.6 | 667.6 | 673.9 | 659.7 | 670.8 | 669.5 | 677.0 | 665.2 | 672.0 | 662.8 | 670.0 | 670.0 | 672.7 | 672.3 |
y | 656.8 | 653.8 | 643.1 | 646.7 | 644.9 | 641.7 | 642.1 | 648.6 | 632.0 | 651.5 | 626.8 | 648.5 | 635.9 | 651.6 | 627.5 | |
14 | x | 593.9 | 591.3 | 590.0 | 596.5 | 581.7 | 594.3 | 592.5 | 598.2 | 586.9 | 591.5 | 585.6 | 592.1 | 592.4 | 595.0 | 594.4 |
y | 738.5 | 736.1 | 727.1 | 729.2 | 727.3 | 724.0 | 725.6 | 730.0 | 715.0 | 733.0 | 709.8 | 730.5 | 716.4 | 734.3 | 710.8 | |
15 | x | 503.2 | 500.5 | 498.8 | 504.8 | 491.2 | 502.5 | 501.4 | 505.7 | 496.2 | 501.1 | 494.0 | 500.7 | 499.4 | 503.6 | 502.3 |
y | 763.2 | 759.4 | 753.6 | 753.4 | 752.8 | 750.6 | 748.3 | 754.6 | 741.3 | 756.7 | 736.6 | 756.4 | 740.2 | 758.2 | 736.1 | |
16 | x | 408.0 | 402.1 | 406.3 | 414.1 | 400.0 | 411.3 | 404.4 | 411.6 | 408.8 | 403.9 | 408.7 | 410.1 | 406.2 | 408.6 | 414.4 |
y | 992.6 | 987.6 | 983.3 | 984.7 | 983.9 | 981.7 | 978.1 | 984.1 | 973.5 | 986.9 | 969.0 | 988.0 | 971.4 | 988.8 | 967.9 | |
17 | x | 337.1 | 333.5 | 336.6 | 344.0 | 330.1 | 342.7 | 336.2 | 342.4 | 337.2 | 335.0 | 336.4 | 341.2 | 337.2 | 339.5 | 345.7 |
y | 917.9 | 912.1 | 909.4 | 912.7 | 909.7 | 908.9 | 901.7 | 910.9 | 903.0 | 911.2 | 898.9 | 913.2 | 896.9 | 913.0 | 896.1 | |
18 | x | 339.0 | 337.9 | 337.7 | 343.1 | 327.6 | 340.5 | 338.2 | 346.1 | 334.1 | 336.7 | 329.8 | 338.1 | 339.3 | 342.0 | 342.6 |
y | 704.5 | 699.8 | 694.6 | 698.4 | 695.7 | 694.6 | 688.8 | 696.9 | 688.4 | 695.9 | 685.1 | 699.0 | 683.3 | 700.1 | 681.2 | |
19 | x | 302.9 | 301.6 | 300.6 | 305.1 | 289.6 | 302.9 | 301.4 | 309.0 | 295.5 | 300.9 | 289.8 | 299.8 | 303.9 | 304.2 | 305.7 |
y | 649.0 | 642.5 | 639.1 | 643.0 | 639.1 | 638.8 | 632.1 | 639.7 | 633.8 | 640.2 | 630.1 | 644.2 | 626.7 | 643.2 | 625.0 | |
20 | x | 283.4 | 285.9 | 281.7 | 285.0 | 270.2 | 282.6 | 284.3 | 292.4 | 273.5 | 281.1 | 267.7 | 279.0 | 286.4 | 287.1 | 284.8 |
y | 527.9 | 522.6 | 518.4 | 522.4 | 520.2 | 519.8 | 512.3 | 519.6 | 513.6 | 519.1 | 511.1 | 523.9 | 506.4 | 522.8 | 506.3 | |
21 | x | 382.2 | 382.5 | 380.1 | 384.7 | 369.3 | 381.8 | 382.9 | 391.7 | 374.1 | 379.3 | 367.6 | 377.7 | 384.2 | 384.6 | 384.9 |
y | 570.0 | 564.3 | 560.1 | 563.1 | 558.0 | 561.9 | 554.4 | 562.3 | 552.4 | 560.5 | 549.5 | 562.8 | 549.6 | 564.3 | 544.7 | |
22 | x | 938.2 | 947.0 | 926.5 | 924.2 | 906.6 | 929.1 | 935.9 | 950.7 | 914.1 | 926.9 | 901.8 | 913.0 | 945.1 | 938.5 | 924.8 |
y | −19.8 | −19.0 | −39.2 | −44.6 | −49.3 | −37.2 | −38.7 | −25.9 | −52.4 | −37.0 | −61.6 | −46.6 | −36.2 | −28.0 | −59.7 |
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
2 | x | 23.9 | 20.2 | 24.0 | 29.6 | 29.3 | 29.5 | 26.6 | 25.9 | 30.4 | 24.5 | 30.4 | 27.8 | 24.9 | 24.2 | 26.2 |
y | 757.5 | 755.0 | 755.8 | 756.4 | 756.6 | 756.4 | 755.2 | 757.8 | 755.3 | 756.2 | 755.8 | 756.8 | 756.0 | 756.8 | 756.0 | |
3 | x | 96.3 | 86.8 | 94.6 | 108.3 | 111.1 | 109.5 | 100.2 | 101.6 | 109.5 | 96.1 | 108.4 | 106.1 | 96.8 | 96.1 | 98.0 |
y | 425.6 | 423.5 | 423.9 | 425.9 | 427.7 | 427.3 | 424.5 | 428.5 | 427.8 | 425.9 | 426.6 | 426.6 | 424.6 | 426.0 | 426.2 | |
4 | x | 153.0 | 143.0 | 152.8 | 167.7 | 170.9 | 168.1 | 158.1 | 159.5 | 167.1 | 153.4 | 166.7 | 164.5 | 154.2 | 153.0 | 155.8 |
y | 342.2 | 338.1 | 338.4 | 343.7 | 346.5 | 345.0 | 340.8 | 344.9 | 345.7 | 341.8 | 343.7 | 345.5 | 341.1 | 342.0 | 342.6 | |
5 | x | 409.2 | 397.0 | 406.0 | 428.8 | 435.2 | 434.0 | 415.5 | 416.2 | 429.3 | 409.9 | 426.9 | 427.7 | 410.0 | 405.1 | 409.0 |
y | 82.0 | 74.9 | 74.3 | 85.6 | 93.8 | 94.2 | 82.8 | 87.1 | 91.6 | 82.5 | 85.9 | 89.9 | 80.8 | 78.1 | 79.0 | |
6 | x | 629.2 | 617.6 | 627.6 | 649.7 | 657.9 | 657.9 | 638.0 | 636.7 | 651.7 | 631.8 | 648.6 | 648.4 | 630.1 | 624.8 | 629.2 |
y | 45.7 | 40.3 | 40.2 | 57.9 | 67.9 | 72.7 | 51.3 | 56.8 | 64.3 | 51.6 | 59.0 | 62.3 | 45.0 | 40.4 | 42.5 | |
7 | x | 830.0 | 814.7 | 820.8 | 840.7 | 847.4 | 839.8 | 830.7 | 829.0 | 840.8 | 824.5 | 836.7 | 839.3 | 828.7 | 824.3 | 826.8 |
y | 304.2 | 301.0 | 305.5 | 324.1 | 336.7 | 343.4 | 313.1 | 320.2 | 328.3 | 311.9 | 323.0 | 326.4 | 304.0 | 299.0 | 301.5 | |
8 | x | 879.1 | 863.8 | 865.5 | 883.5 | 891.8 | 882.5 | 877.6 | 876.1 | 886.3 | 873.8 | 883.1 | 885.7 | 878.3 | 874.9 | 878.3 |
y | 425.3 | 424.3 | 431.3 | 448.6 | 461.8 | 470.7 | 439.6 | 444.2 | 452.8 | 435.8 | 449.4 | 449.8 | 426.1 | 420.3 | 424.8 | |
9 | x | 909.5 | 890.0 | 886.1 | 903.9 | 909.5 | 890.7 | 898.0 | 899.1 | 905.7 | 897.2 | 901.0 | 907.7 | 908.3 | 904.6 | 907.5 |
y | 669.1 | 668.4 | 674.6 | 693.4 | 705.5 | 715.5 | 682.1 | 686.8 | 696.3 | 679.1 | 690.9 | 694.6 | 669.6 | 663.0 | 667.3 | |
10 | x | 404.9 | 379.9 | 367.4 | 382.1 | 385.9 | 357.3 | 383.1 | 384.3 | 389.4 | 382.8 | 380.8 | 396.2 | 406.8 | 400.3 | 400.6 |
y | 981.9 | 973.7 | 965.2 | 980.6 | 988.3 | 978.3 | 978.5 | 981.5 | 991.0 | 973.2 | 976.8 | 997.0 | 987.5 | 975.3 | 979.2 | |
11 | x | 334.4 | 311.0 | 301.3 | 316.1 | 320.6 | 295.4 | 317.2 | 316.9 | 323.7 | 314.9 | 317.9 | 327.7 | 336.4 | 329.4 | 332.9 |
y | 908.6 | 900.1 | 889.0 | 903.4 | 910.9 | 900.0 | 901.9 | 905.6 | 914.7 | 896.9 | 898.8 | 922.1 | 915.2 | 902.1 | 906.5 | |
12 | x | 373.3 | 352.4 | 360.2 | 372.2 | 382.1 | 361.3 | 366.7 | 363.9 | 372.0 | 361.6 | 374.6 | 368.2 | 370.8 | 368.8 | 367.8 |
y | 564.0 | 551.9 | 543.1 | 558.1 | 564.9 | 556.1 | 554.7 | 558.7 | 570.0 | 549.9 | 554.5 | 576.3 | 569.5 | 554.7 | 557.8 | |
13 | x | 163.9 | 147.6 | 178.9 | 182.3 | 200.8 | 192.2 | 172.5 | 162.5 | 172.7 | 162.8 | 189.3 | 157.5 | 156.3 | 152.9 | 148.1 |
y | 95.5 | 79.7 | 63.3 | 79.1 | 83.8 | 72.1 | 78.4 | 87.7 | 95.0 | 76.4 | 75.2 | 107.8 | 101.4 | 90.0 | 94.8 | |
14 | x | 181.4 | 166.0 | 187.3 | 193.4 | 209.5 | 193.8 | 185.5 | 177.4 | 186.1 | 176.4 | 199.8 | 176.2 | 177.1 | 174.4 | 171.1 |
y | 256.4 | 241.9 | 226.1 | 241.6 | 247.2 | 234.2 | 242.9 | 249.5 | 257.3 | 238.7 | 239.7 | 269.5 | 263.3 | 250.3 | 255.3 | |
15 | x | 283.7 | 264.1 | 273.5 | 285.1 | 295.5 | 273.8 | 283.9 | 273.6 | 282.0 | 273.1 | 286.9 | 281.8 | 284.3 | 283.4 | 279.6 |
y | 519.4 | 507.0 | 496.4 | 510.1 | 516.3 | 505.3 | 507.8 | 515.3 | 522.3 | 502.9 | 506.5 | 530.2 | 525.4 | 509.9 | 516.0 | |
16 | x | 307.3 | 284.6 | 288.0 | 303.0 | 312.7 | 286.9 | 302.9 | 295.3 | 303.4 | 292.8 | 302.9 | 305.8 | 309.5 | 310.5 | 304.8 |
y | 638.5 | 626.4 | 616.0 | 628.5 | 637.3 | 626.6 | 628.1 | 635.3 | 641.3 | 623.2 | 625.6 | 647.1 | 643.2 | 628.8 | 634.9 | |
17 | x | 348.3 | 324.4 | 323.3 | 338.6 | 347.7 | 320.1 | 340.3 | 332.8 | 340.8 | 329.7 | 337.7 | 346.3 | 351.5 | 352.0 | 345.0 |
y | 691.7 | 682.1 | 672.7 | 684.6 | 693.3 | 683.9 | 684.5 | 689.0 | 697.8 | 679.7 | 682.6 | 701.5 | 696.8 | 681.2 | 688.7 | |
18 | x | 509.5 | 484.2 | 482.0 | 499.8 | 504.9 | 475.7 | 499.8 | 491.3 | 502.2 | 489.3 | 497.1 | 507.3 | 512.6 | 513.9 | 507.3 |
y | 736.7 | 729.0 | 727.8 | 736.7 | 751.3 | 743.5 | 734.5 | 737.0 | 747.5 | 730.2 | 738.8 | 744.3 | 740.0 | 721.2 | 728.1 | |
19 | x | 597.5 | 574.5 | 572.9 | 588.2 | 595.5 | 568.2 | 590.2 | 581.6 | 591.2 | 578.5 | 586.0 | 595.6 | 600.7 | 602.0 | 595.1 |
y | 705.2 | 700.7 | 703.6 | 708.6 | 726.6 | 720.7 | 708.0 | 708.5 | 718.9 | 702.0 | 712.7 | 712.4 | 708.1 | 688.4 | 694.8 | |
20 | x | 669.6 | 646.9 | 651.9 | 664.5 | 674.8 | 646.2 | 662.0 | 654.6 | 664.2 | 651.1 | 660.3 | 665.6 | 669.3 | 670.3 | 665.0 |
y | 615.5 | 612.9 | 619.3 | 620.8 | 642.4 | 638.6 | 619.9 | 621.2 | 630.5 | 615.6 | 627.4 | 621.7 | 617.8 | 595.9 | 602.8 | |
21 | x | 919.9 | 905.6 | 931.2 | 935.6 | 954.8 | 934.6 | 928.6 | 917.1 | 921.1 | 917.0 | 932.3 | 911.1 | 915.4 | 912.0 | 906.3 |
y | 237.5 | 238.7 | 260.9 | 256.0 | 284.7 | 287.9 | 250.8 | 252.5 | 256.1 | 248.1 | 263.0 | 240.1 | 234.3 | 212.1 | 219.1 | |
22 | x | 880.3 | 869.6 | 913.5 | 912.0 | 943.3 | 927.4 | 899.0 | 889.6 | 883.5 | 888.1 | 907.4 | 866.0 | 868.0 | 861.1 | 858.9 |
y | −68.1 | −71.4 | −49.8 | −52.8 | −25.5 | −24.0 | −60.1 | −57.4 | −50.8 | −60.9 | −45.1 | −67.5 | −72.2 | −93.7 | −87.4 |
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
2 | x | 26.7 | 25.5 | 23.3 | 28.7 | 24.0 | 29.5 | 23.2 | 24.1 | 27.3 | 32.5 | 24.6 | 27.2 | 27.9 | 24.9 | 24.9 |
y | 755.9 | 755.9 | 755.9 | 755.8 | 755.5 | 756.3 | 755.4 | 756.5 | 757.1 | 756.4 | 756.1 | 756.1 | 756.7 | 755.2 | 756.1 | |
3 | x | 297.3 | 299.5 | 295.5 | 299.8 | 294.9 | 299.2 | 296.6 | 297.2 | 299.3 | 300.9 | 297.7 | 297.4 | 299.6 | 296.6 | 295.3 |
y | 895.8 | 897.8 | 897.1 | 898.8 | 896.4 | 899.3 | 891.1 | 890.9 | 899.0 | 903.2 | 895.4 | 900.1 | 898.4 | 898.5 | 899.3 | |
4 | x | 360.2 | 362.0 | 358.3 | 361.1 | 357.8 | 361.0 | 360.1 | 361.0 | 360.7 | 360.7 | 360.6 | 358.5 | 360.7 | 358.8 | 358.3 |
y | 975.9 | 974.4 | 974.0 | 978.1 | 974.2 | 978.0 | 967.9 | 967.4 | 976.2 | 981.9 | 971.7 | 978.4 | 976.0 | 975.8 | 977.9 | |
5 | x | 464.1 | 466.8 | 456.4 | 470.1 | 462.2 | 468.5 | 461.3 | 462.4 | 463.6 | 474.1 | 461.5 | 462.1 | 468.4 | 458.5 | 464.0 |
y | 750.0 | 748.9 | 747.0 | 755.4 | 750.1 | 755.7 | 741.6 | 740.7 | 752.4 | 761.3 | 745.7 | 752.5 | 751.9 | 748.5 | 750.7 | |
6 | x | 556.8 | 560.4 | 549.1 | 561.4 | 556.5 | 562.1 | 553.4 | 555.1 | 557.8 | 567.8 | 554.0 | 556.1 | 562.8 | 551.3 | 558.2 |
y | 729.1 | 729.1 | 723.3 | 737.8 | 730.8 | 735.8 | 720.6 | 720.3 | 732.7 | 745.0 | 724.3 | 733.3 | 732.5 | 726.8 | 732.5 | |
7 | x | 636.8 | 642.9 | 628.4 | 642.6 | 639.1 | 644.1 | 634.2 | 634.5 | 640.5 | 651.7 | 635.9 | 637.5 | 643.8 | 634.6 | 637.6 |
y | 648.6 | 649.3 | 642.5 | 658.5 | 652.4 | 655.7 | 639.3 | 638.7 | 652.0 | 666.5 | 642.8 | 654.0 | 653.1 | 645.8 | 653.8 | |
8 | x | 882.5 | 888.3 | 874.1 | 888.0 | 882.5 | 889.1 | 879.4 | 880.9 | 884.9 | 895.4 | 880.9 | 882.9 | 889.3 | 878.1 | 884.0 |
y | 686.4 | 691.7 | 674.7 | 701.4 | 695.5 | 695.6 | 680.0 | 676.9 | 695.6 | 717.4 | 685.5 | 696.4 | 695.6 | 686.7 | 691.9 | |
9 | x | 853.9 | 863.5 | 842.2 | 869.5 | 863.1 | 863.7 | 854.6 | 854.7 | 864.3 | 879.5 | 860.4 | 864.0 | 865.8 | 854.4 | 857.6 |
y | 443.6 | 449.2 | 434.2 | 458.2 | 454.3 | 453.4 | 437.2 | 434.5 | 454.4 | 474.0 | 442.0 | 452.6 | 452.4 | 443.5 | 448.2 | |
10 | x | 924.1 | 934.9 | 911.7 | 941.3 | 939.8 | 934.2 | 928.0 | 926.2 | 940.7 | 956.2 | 934.3 | 940.1 | 938.7 | 928.7 | 929.7 |
y | 299.8 | 304.5 | 291.5 | 316.3 | 312.9 | 309.1 | 295.6 | 291.8 | 312.3 | 334.3 | 301.2 | 312.5 | 310.5 | 301.9 | 306.4 | |
11 | x | 804.3 | 814.3 | 792.3 | 821.4 | 819.7 | 813.8 | 807.5 | 805.6 | 819.9 | 835.0 | 813.5 | 817.0 | 817.5 | 806.5 | 808.0 |
y | 323.4 | 325.5 | 315.3 | 334.6 | 330.4 | 332.5 | 314.6 | 313.9 | 333.2 | 352.1 | 319.3 | 334.0 | 329.2 | 324.2 | 328.9 | |
12 | x | 365.3 | 361.7 | 354.8 | 369.0 | 363.4 | 373.6 | 357.7 | 358.1 | 366.4 | 381.0 | 356.9 | 367.6 | 364.9 | 354.4 | 362.5 |
y | 594.6 | 574.7 | 587.5 | 584.9 | 569.9 | 600.4 | 568.6 | 572.3 | 581.0 | 597.5 | 563.5 | 584.7 | 579.9 | 574.5 | 587.3 | |
13 | x | 328.5 | 321.0 | 318.0 | 327.4 | 319.1 | 337.0 | 317.7 | 320.5 | 324.3 | 338.1 | 314.0 | 326.3 | 326.3 | 314.0 | 323.6 |
y | 729.8 | 707.5 | 722.6 | 717.7 | 701.6 | 736.3 | 700.9 | 706.2 | 712.9 | 730.3 | 694.4 | 718.1 | 712.9 | 707.2 | 721.3 | |
14 | x | 286.7 | 282.1 | 275.7 | 288.1 | 280.7 | 294.1 | 278.3 | 282.4 | 285.8 | 299.5 | 276.6 | 288.3 | 285.7 | 275.3 | 284.9 |
y | 674.8 | 647.4 | 664.3 | 662.4 | 644.6 | 681.2 | 645.7 | 650.4 | 653.5 | 672.3 | 636.2 | 657.4 | 655.5 | 647.7 | 662.0 | |
15 | x | 261.9 | 264.0 | 252.3 | 267.5 | 265.0 | 270.0 | 257.6 | 258.7 | 269.2 | 282.3 | 258.7 | 269.3 | 265.8 | 256.4 | 262.8 |
y | 554.3 | 528.0 | 544.1 | 542.3 | 525.3 | 562.5 | 523.8 | 529.7 | 534.7 | 551.0 | 515.1 | 539.4 | 534.8 | 527.7 | 543.1 | |
16 | x | 88.1 | 90.1 | 77.8 | 95.5 | 95.4 | 95.2 | 84.0 | 86.1 | 97.6 | 110.8 | 86.9 | 96.5 | 93.2 | 82.9 | 91.2 |
y | 499.5 | 464.0 | 487.4 | 479.1 | 456.0 | 505.5 | 464.3 | 470.6 | 467.2 | 485.0 | 452.2 | 474.1 | 474.8 | 466.4 | 480.7 | |
17 | x | 132.6 | 142.0 | 126.9 | 145.4 | 146.4 | 142.2 | 132.9 | 134.3 | 147.3 | 164.3 | 136.4 | 148.3 | 144.2 | 132.5 | 141.6 |
y | 406.7 | 376.7 | 396.6 | 389.9 | 369.1 | 412.9 | 373.6 | 380.8 | 378.7 | 396.8 | 362.5 | 386.7 | 386.1 | 375.7 | 390.9 | |
18 | x | 151.3 | 165.8 | 147.7 | 168.4 | 173.0 | 162.6 | 155.3 | 155.3 | 171.4 | 191.5 | 161.2 | 174.3 | 168.2 | 155.1 | 164.4 |
y | 289.5 | 262.0 | 282.1 | 275.0 | 254.2 | 298.3 | 259.3 | 264.7 | 263.3 | 283.8 | 248.7 | 270.8 | 272.5 | 260.0 | 276.6 | |
19 | x | 125.7 | 151.2 | 128.2 | 152.8 | 160.5 | 139.5 | 137.5 | 135.8 | 157.1 | 177.3 | 146.0 | 157.7 | 149.8 | 135.7 | 144.7 |
y | 129.1 | 98.6 | 121.0 | 110.9 | 90.6 | 137.0 | 95.6 | 101.3 | 102.7 | 120.2 | 85.5 | 109.7 | 108.5 | 98.0 | 114.4 | |
20 | x | 357.0 | 381.9 | 359.4 | 384.1 | 390.4 | 369.9 | 366.7 | 366.7 | 386.9 | 408.8 | 375.9 | 390.3 | 380.5 | 367.6 | 376.5 |
y | 113.0 | 94.4 | 111.5 | 108.4 | 90.7 | 124.4 | 87.3 | 92.2 | 99.0 | 121.2 | 82.8 | 107.3 | 100.8 | 92.7 | 107.3 | |
21 | x | 569.2 | 599.3 | 573.4 | 599.7 | 608.7 | 584.5 | 582.2 | 581.0 | 604.9 | 626.1 | 592.9 | 606.7 | 596.3 | 583.6 | 590.5 |
y | 48.6 | 43.2 | 54.2 | 56.2 | 45.0 | 63.7 | 32.0 | 35.7 | 49.2 | 72.9 | 34.2 | 57.4 | 45.0 | 39.6 | 50.3 | |
22 | x | 875.1 | 910.8 | 882.3 | 911.2 | 922.1 | 891.5 | 892.7 | 890.3 | 916.0 | 939.9 | 905.8 | 918.7 | 907.3 | 895.7 | 901.1 |
y | −67.1 | −50.4 | −51.5 | −41.6 | −45.5 | −44.4 | −70.5 | −69.8 | −45.3 | −17.1 | −59.3 | −36.9 | −54.8 | −59.4 | −55.4 |
Appendix D
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
2 | x | 27.9 | 33.0 | 29.2 | 29.6 | 31.8 | 29.9 | 29.7 | 27.8 | 22.7 | 32.6 | 28.4 | 26.5 | 28.3 | 28.6 | 22.7 |
y | 750.6 | 751.8 | 750.0 | 750.9 | 751.6 | 750.5 | 750.5 | 750.9 | 750.1 | 750.8 | 750.2 | 750.5 | 750.1 | 750.6 | 749.4 | |
3 | x | 106.2 | 121.4 | 111.0 | 112.0 | 117.9 | 109.9 | 110.1 | 105.8 | 96.8 | 118.8 | 106.1 | 104.2 | 108.1 | 107.3 | 96.0 |
y | 413.6 | 415.8 | 414.7 | 415.6 | 415.2 | 414.3 | 415.7 | 412.1 | 411.0 | 415.2 | 412.0 | 413.3 | 413.1 | 413.4 | 412.2 | |
4 | x | 167.4 | 183.2 | 171.6 | 173.3 | 179.5 | 171.5 | 171.7 | 165.8 | 156.7 | 182.2 | 165.5 | 164.9 | 170.3 | 168.0 | 156.6 |
y | 330.6 | 332.2 | 331.4 | 332.8 | 331.4 | 330.3 | 331.2 | 326.7 | 326.6 | 332.2 | 327.2 | 328.7 | 329.7 | 329.8 | 328.0 | |
5 | x | 204.6 | 222.2 | 210.1 | 212.9 | 217.9 | 208.4 | 209.7 | 201.6 | 190.8 | 218.5 | 202.5 | 201.5 | 206.9 | 205.9 | 191.9 |
y | 215.3 | 220.1 | 217.5 | 218.0 | 218.1 | 215.8 | 217.6 | 212.1 | 211.6 | 218.4 | 213.0 | 214.0 | 216.0 | 215.9 | 213.5 | |
6 | x | 206.2 | 224.5 | 212.8 | 215.3 | 220.8 | 210.7 | 210.3 | 200.2 | 188.9 | 220.8 | 201.8 | 202.6 | 209.1 | 207.9 | 191.7 |
y | 48.8 | 53.4 | 51.7 | 51.8 | 50.8 | 49.1 | 50.3 | 45.6 | 45.1 | 50.7 | 46.7 | 47.3 | 48.4 | 49.4 | 45.9 | |
7 | x | 441.4 | 458.0 | 446.4 | 449.8 | 454.5 | 443.6 | 445.0 | 435.8 | 424.3 | 454.4 | 436.5 | 437.4 | 443.4 | 442.5 | 427.2 |
y | 74.0 | 78.5 | 77.1 | 77.3 | 78.8 | 74.5 | 75.1 | 66.8 | 64.8 | 75.8 | 65.7 | 71.4 | 70.5 | 72.0 | 67.1 | |
8 | x | 668.2 | 684.5 | 672.5 | 675.9 | 681.5 | 670.1 | 671.3 | 661.0 | 650.0 | 681.5 | 662.6 | 663.2 | 670.3 | 668.6 | 651.9 |
y | 51.8 | 57.5 | 53.9 | 56.3 | 58.5 | 53.1 | 52.1 | 40.3 | 37.2 | 57.1 | 37.2 | 47.9 | 47.7 | 46.4 | 40.5 | |
9 | x | 852.8 | 870.3 | 857.2 | 858.4 | 865.3 | 854.0 | 855.9 | 851.6 | 842.7 | 863.4 | 855.0 | 849.8 | 856.4 | 856.4 | 843.3 |
y | 329.2 | 335.6 | 331.7 | 333.8 | 336.6 | 331.4 | 329.9 | 315.1 | 308.9 | 337.3 | 310.4 | 324.0 | 325.9 | 324.0 | 312.3 | |
10 | x | 977.9 | 994.5 | 981.2 | 982.9 | 988.8 | 976.9 | 980.3 | 975.2 | 966.5 | 988.2 | 979.0 | 974.1 | 980.8 | 980.1 | 967.4 |
y | 318.0 | 324.8 | 323.0 | 324.4 | 325.8 | 322.2 | 319.6 | 300.6 | 295.7 | 328.2 | 297.0 | 314.5 | 312.8 | 312.7 | 299.6 | |
11 | x | 896.5 | 912.1 | 896.9 | 900.5 | 904.0 | 892.7 | 898.1 | 893.5 | 888.6 | 905.2 | 898.8 | 890.6 | 898.8 | 898.6 | 888.8 |
y | 460.4 | 465.9 | 463.6 | 464.8 | 467.3 | 463.5 | 460.5 | 442.6 | 439.9 | 468.2 | 439.6 | 456.1 | 455.5 | 454.9 | 442.0 | |
12 | x | 907.9 | 918.8 | 903.0 | 906.2 | 910.1 | 899.5 | 905.5 | 909.5 | 904.7 | 910.7 | 913.0 | 898.1 | 906.5 | 910.6 | 902.3 |
y | 708.6 | 714.5 | 711.7 | 712.9 | 717.1 | 711.0 | 708.2 | 693.1 | 687.7 | 716.1 | 687.7 | 703.2 | 703.8 | 703.1 | 689.2 | |
13 | x | 660.0 | 669.9 | 653.7 | 658.7 | 663.1 | 651.1 | 658.9 | 659.8 | 653.8 | 663.9 | 660.8 | 651.0 | 658.7 | 661.4 | 653.4 |
y | 655.6 | 660.0 | 653.5 | 657.5 | 658.4 | 654.3 | 651.5 | 644.9 | 638.8 | 657.6 | 637.2 | 646.0 | 648.1 | 650.2 | 639.6 | |
14 | x | 573.1 | 583.8 | 567.2 | 570.8 | 576.6 | 563.3 | 571.1 | 576.9 | 568.6 | 574.6 | 576.0 | 562.8 | 570.7 | 575.8 | 566.3 |
y | 733.4 | 737.7 | 729.8 | 733.7 | 735.2 | 729.6 | 728.5 | 724.1 | 717.0 | 733.1 | 715.5 | 721.1 | 725.1 | 727.6 | 717.6 | |
15 | x | 477.7 | 489.3 | 471.0 | 475.2 | 480.2 | 467.6 | 476.3 | 480.7 | 474.1 | 479.1 | 480.1 | 467.6 | 475.8 | 478.9 | 471.2 |
y | 750.1 | 755.5 | 747.0 | 749.5 | 750.1 | 747.1 | 744.8 | 742.1 | 738.5 | 749.4 | 733.1 | 736.6 | 740.2 | 744.9 | 736.3 | |
16 | x | 361.8 | 377.0 | 355.0 | 357.0 | 362.9 | 349.0 | 357.3 | 370.3 | 363.9 | 361.7 | 369.8 | 348.3 | 356.9 | 364.4 | 358.6 |
y | 974.2 | 981.8 | 972.9 | 974.3 | 975.5 | 972.4 | 969.5 | 969.7 | 966.7 | 972.2 | 961.3 | 960.0 | 963.4 | 971.1 | 963.1 | |
17 | x | 298.8 | 313.4 | 292.9 | 295.1 | 302.8 | 287.3 | 295.0 | 305.9 | 298.6 | 298.3 | 305.1 | 286.8 | 293.9 | 301.2 | 293.3 |
y | 890.8 | 901.4 | 889.8 | 891.0 | 893.9 | 889.2 | 886.1 | 890.6 | 886.4 | 888.9 | 882.1 | 875.1 | 880.8 | 889.2 | 881.5 | |
18 | x | 322.4 | 337.2 | 313.5 | 321.2 | 328.5 | 310.9 | 319.8 | 323.4 | 313.6 | 325.5 | 320.6 | 311.0 | 320.3 | 320.1 | 312.8 |
y | 674.8 | 682.2 | 671.3 | 674.2 | 674.9 | 672.1 | 668.8 | 671.2 | 669.4 | 672.0 | 662.5 | 659.4 | 663.4 | 670.7 | 664.5 | |
19 | x | 291.8 | 305.4 | 281.6 | 291.2 | 297.2 | 280.8 | 291.3 | 289.6 | 280.9 | 294.6 | 286.4 | 280.6 | 289.1 | 287.9 | 281.0 |
y | 613.1 | 621.1 | 611.1 | 611.9 | 613.0 | 610.8 | 606.1 | 611.7 | 608.7 | 609.1 | 603.5 | 597.2 | 601.0 | 610.0 | 604.0 | |
20 | x | 287.8 | 299.6 | 276.3 | 287.0 | 294.1 | 275.9 | 285.9 | 282.3 | 271.3 | 289.8 | 276.9 | 277.3 | 284.7 | 281.5 | 273.0 |
y | 489.8 | 497.1 | 486.5 | 488.2 | 488.4 | 486.9 | 481.8 | 486.8 | 486.2 | 486.1 | 479.5 | 474.0 | 477.2 | 485.7 | 480.2 | |
21 | x | 383.1 | 394.6 | 373.1 | 381.8 | 387.9 | 370.9 | 380.5 | 378.7 | 367.4 | 385.1 | 374.8 | 371.9 | 378.4 | 376.5 | 368.6 |
y | 543.1 | 550.7 | 538.5 | 543.5 | 544.6 | 540.5 | 536.4 | 536.3 | 534.9 | 540.1 | 528.7 | 528.2 | 531.3 | 538.1 | 532.4 | |
22 | x | 1026.6 | 1028.8 | 1003.5 | 1027.2 | 1029.2 | 1009.0 | 1024.2 | 997.1 | 984.5 | 1025.8 | 989.6 | 1015.6 | 1015.0 | 1003.0 | 995.5 |
y | 19.1 | 16.4 | −0.3 | 23.0 | 19.0 | 10.6 | 12.2 | −15.2 | −20.5 | 15.7 | −30.3 | 4.8 | 0.3 | −5.6 | −10.0 |
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
2 | x | 28.9 | 30.5 | 31.4 | 33.1 | 31.9 | 25.3 | 32.2 | 30.2 | 32.6 | 32.7 | 26.1 | 29.4 | 30.6 |
y | 751.2 | 752.1 | 751.7 | 752.2 | 752.5 | 751.2 | 751.2 | 752.2 | 752.2 | 751.3 | 751.6 | 751.2 | 752.3 | |
3 | x | 106.9 | 110.4 | 113.3 | 121.5 | 117.2 | 100.5 | 119.0 | 109.7 | 118.9 | 117.4 | 100.8 | 112.8 | 112.7 |
y | 414.7 | 417.2 | 416.8 | 419.2 | 418.9 | 415.6 | 416.7 | 418.2 | 417.6 | 417.1 | 415.7 | 415.9 | 417.0 | |
4 | x | 166.5 | 170.6 | 174.7 | 184.5 | 178.6 | 160.0 | 181.0 | 169.8 | 180.5 | 179.4 | 161.2 | 174.9 | 174.7 |
y | 330.9 | 333.9 | 335.3 | 337.6 | 335.3 | 331.6 | 335.8 | 335.0 | 335.8 | 333.7 | 330.4 | 334.4 | 333.3 | |
5 | x | 434.7 | 442.7 | 447.0 | 458.9 | 453.9 | 427.5 | 456.7 | 443.5 | 453.6 | 452.2 | 429.9 | 447.9 | 445.6 |
y | 72.4 | 78.9 | 79.5 | 86.7 | 84.2 | 72.8 | 84.9 | 81.0 | 83.0 | 80.4 | 71.3 | 81.9 | 78.5 | |
6 | x | 661.4 | 669.2 | 673.3 | 686.2 | 680.5 | 654.1 | 683.0 | 668.6 | 680.7 | 679.6 | 654.5 | 674.4 | 673.0 |
y | 49.0 | 56.8 | 59.0 | 68.0 | 64.7 | 47.2 | 67.6 | 59.4 | 63.8 | 58.8 | 45.1 | 61.2 | 56.2 | |
7 | x | 847.4 | 855.4 | 857.6 | 866.2 | 864.8 | 841.7 | 861.5 | 854.2 | 861.5 | 863.6 | 843.2 | 856.8 | 857.3 |
y | 324.5 | 332.9 | 336.3 | 348.4 | 343.1 | 322.1 | 348.7 | 335.7 | 343.3 | 336.3 | 320.7 | 338.9 | 333.5 | |
8 | x | 890.5 | 897.9 | 899.8 | 906.0 | 904.1 | 883.8 | 899.0 | 894.6 | 900.7 | 904.9 | 885.7 | 897.0 | 897.3 |
y | 452.6 | 461.2 | 465.2 | 477.9 | 472.1 | 450.2 | 478.0 | 465.3 | 474.4 | 464.0 | 448.4 | 468.2 | 461.7 | |
9 | x | 897.0 | 904.1 | 907.9 | 912.8 | 908.4 | 894.4 | 901.0 | 901.5 | 907.4 | 912.3 | 895.6 | 903.4 | 905.8 |
y | 701.4 | 710.6 | 715.8 | 727.4 | 721.0 | 700.5 | 727.6 | 713.8 | 722.9 | 713.5 | 697.5 | 717.7 | 710.6 | |
10 | x | 352.0 | 362.0 | 364.9 | 363.0 | 360.9 | 353.9 | 350.7 | 353.9 | 358.7 | 366.7 | 351.9 | 358.2 | 363.6 |
y | 963.5 | 976.9 | 983.1 | 981.9 | 975.5 | 970.4 | 977.5 | 972.8 | 979.9 | 971.8 | 965.6 | 978.6 | 975.9 | |
11 | x | 290.4 | 299.8 | 301.8 | 303.1 | 300.7 | 290.7 | 291.1 | 293.0 | 298.3 | 304.2 | 289.3 | 297.0 | 300.7 |
y | 881.5 | 895.2 | 901.6 | 896.6 | 891.1 | 889.6 | 892.9 | 889.4 | 897.7 | 888.1 | 884.5 | 895.5 | 893.6 | |
12 | x | 371.5 | 381.5 | 376.6 | 388.1 | 386.5 | 365.1 | 376.1 | 376.7 | 379.2 | 385.6 | 367.7 | 378.7 | 380.1 |
y | 537.2 | 551.0 | 554.3 | 551.3 | 546.8 | 542.0 | 548.4 | 544.2 | 551.9 | 541.8 | 538.0 | 550.3 | 547.5 | |
13 | x | 222.7 | 237.9 | 222.2 | 243.0 | 244.1 | 209.6 | 233.5 | 233.7 | 227.4 | 236.9 | 219.3 | 232.8 | 229.3 |
y | 35.2 | 46.1 | 52.4 | 49.0 | 42.6 | 41.7 | 44.2 | 39.8 | 50.5 | 39.3 | 35.7 | 47.5 | 46.1 | |
14 | x | 217.6 | 231.0 | 220.5 | 235.4 | 237.6 | 208.0 | 227.7 | 228.3 | 222.8 | 230.2 | 214.4 | 227.4 | 225.0 |
y | 201.7 | 212.5 | 219.1 | 216.1 | 208.1 | 209.2 | 212.5 | 206.9 | 216.5 | 205.6 | 200.2 | 214.3 | 212.4 | |
15 | x | 281.4 | 287.6 | 288.2 | 298.2 | 298.3 | 275.0 | 288.4 | 288.5 | 289.8 | 293.4 | 277.5 | 291.7 | 291.3 |
y | 481.1 | 493.1 | 498.5 | 497.6 | 488.9 | 488.5 | 493.6 | 488.1 | 496.0 | 486.4 | 480.8 | 493.5 | 491.8 | |
16 | x | 285.4 | 290.5 | 294.6 | 302.6 | 301.2 | 279.6 | 292.9 | 292.6 | 295.9 | 297.3 | 280.5 | 297.3 | 296.5 |
y | 604.5 | 616.5 | 621.0 | 619.9 | 612.1 | 611.5 | 616.4 | 611.4 | 619.0 | 610.1 | 603.0 | 616.1 | 615.1 | |
17 | x | 314.4 | 318.4 | 326.5 | 333.4 | 330.4 | 310.7 | 323.6 | 321.3 | 327.4 | 328.3 | 310.2 | 328.6 | 327.6 |
y | 665.2 | 679.1 | 681.5 | 680.4 | 674.2 | 673.9 | 677.3 | 672.6 | 679.8 | 671.2 | 665.3 | 677.9 | 675.2 | |
18 | x | 467.7 | 470.9 | 483.1 | 488.7 | 484.2 | 467.1 | 478.0 | 475.8 | 483.7 | 483.9 | 465.5 | 483.7 | 481.6 |
y | 737.8 | 756.6 | 753.1 | 754.1 | 749.7 | 744.3 | 751.5 | 747.0 | 750.5 | 743.0 | 739.4 | 749.5 | 748.4 | |
19 | x | 562.2 | 565.0 | 575.4 | 581.8 | 577.2 | 559.8 | 571.1 | 569.9 | 575.9 | 576.9 | 559.4 | 577.8 | 575.8 |
y | 723.4 | 744.2 | 737.1 | 739.5 | 736.3 | 728.3 | 736.8 | 731.9 | 732.1 | 727.1 | 724.4 | 734.3 | 733.6 | |
20 | x | 651.2 | 653.5 | 660.9 | 670.6 | 666.1 | 644.3 | 658.9 | 657.0 | 661.7 | 664.9 | 645.3 | 664.3 | 662.9 |
y | 646.6 | 670.5 | 658.7 | 664.3 | 661.1 | 650.4 | 661.2 | 655.3 | 654.3 | 650.9 | 647.2 | 657.5 | 656.6 | |
21 | x | 977.2 | 989.1 | 980.3 | 997.3 | 996.9 | 963.9 | 986.3 | 981.2 | 981.7 | 989.2 | 968.4 | 987.2 | 987.6 |
y | 318.3 | 350.2 | 323.4 | 336.3 | 339.4 | 314.0 | 333.3 | 325.3 | 319.1 | 321.1 | 314.7 | 325.3 | 325.8 | |
22 | x | 1000.4 | 1021.6 | 998.3 | 1023.9 | 1028.9 | 981.5 | 1011.1 | 1006.2 | 1002.8 | 1014.5 | 990.2 | 1009.2 | 1011.8 |
y | 2.1 | 35.2 | 7.2 | 19.8 | 23.1 | −1.0 | 18.5 | 9.2 | 2.9 | 5.0 | −1.4 | 9.3 | 9.6 |
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | x | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
y | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
2 | x | 32.3 | 30.4 | 31.4 | 29.9 | 25.1 | 24.0 | 27.2 | 27.8 | 27.8 | 26.3 | 29.5 | 30.3 | 27.0 | 25.7 | 29.7 |
y | 752.6 | 751.0 | 752.0 | 750.9 | 749.8 | 751.2 | 752.2 | 750.4 | 750.7 | 751.0 | 750.8 | 750.8 | 750.4 | 751.4 | 751.0 | |
3 | x | 304.6 | 303.5 | 304.6 | 303.0 | 301.6 | 301.8 | 304.2 | 303.7 | 303.2 | 301.1 | 304.0 | 302.7 | 304.4 | 301.1 | 303.9 |
y | 905.3 | 903.7 | 902.1 | 901.7 | 893.2 | 892.2 | 896.8 | 896.6 | 896.7 | 898.9 | 901.5 | 903.2 | 893.9 | 897.3 | 900.7 | |
4 | x | 364.0 | 364.4 | 365.2 | 364.3 | 365.3 | 365.5 | 366.5 | 364.8 | 365.7 | 363.9 | 364.8 | 362.5 | 368.1 | 364.1 | 365.3 |
y | 988.0 | 986.2 | 983.7 | 983.4 | 972.4 | 972.4 | 976.4 | 978.8 | 978.1 | 979.6 | 982.3 | 985.1 | 973.8 | 977.0 | 983.5 | |
5 | x | 482.4 | 479.2 | 479.2 | 482.5 | 473.0 | 471.8 | 474.2 | 479.4 | 477.7 | 476.8 | 479.2 | 479.7 | 474.1 | 474.3 | 475.9 |
y | 764.7 | 761.4 | 757.1 | 758.5 | 744.7 | 744.0 | 748.6 | 752.5 | 752.9 | 754.2 | 758.8 | 762.0 | 745.3 | 750.7 | 756.5 | |
6 | x | 579.3 | 574.9 | 574.7 | 579.9 | 568.3 | 566.8 | 569.0 | 575.8 | 573.9 | 573.3 | 575.7 | 576.2 | 568.9 | 570.3 | 571.3 |
y | 748.7 | 744.3 | 740.1 | 743.8 | 724.0 | 722.6 | 729.4 | 734.6 | 735.0 | 738.6 | 741.5 | 746.8 | 724.8 | 732.4 | 737.9 | |
7 | x | 668.3 | 662.2 | 659.2 | 668.5 | 653.7 | 653.0 | 654.4 | 663.6 | 661.7 | 660.0 | 662.9 | 664.8 | 656.8 | 656.3 | 657.7 |
y | 672.3 | 666.7 | 660.4 | 667.1 | 644.2 | 642.1 | 651.0 | 656.3 | 657.9 | 661.0 | 664.9 | 669.9 | 646.3 | 653.8 | 661.2 | |
8 | x | 916.4 | 911.3 | 908.9 | 915.8 | 903.8 | 902.7 | 905.1 | 910.3 | 910.6 | 910.3 | 912.2 | 913.0 | 905.7 | 906.2 | 907.9 |
y | 730.2 | 724.6 | 707.6 | 723.8 | 689.5 | 689.4 | 698.6 | 708.5 | 713.8 | 713.5 | 719.4 | 727.9 | 693.7 | 704.8 | 711.2 | |
9 | x | 912.9 | 904.5 | 890.6 | 908.6 | 888.0 | 886.3 | 889.4 | 899.1 | 897.4 | 897.5 | 903.6 | 906.2 | 889.4 | 893.7 | 896.5 |
y | 482.9 | 476.2 | 460.7 | 474.4 | 441.7 | 440.3 | 449.9 | 460.7 | 465.7 | 464.2 | 472.2 | 480.1 | 446.2 | 456.1 | 463.3 | |
10 | x | 1001.1 | 990.1 | 970.0 | 994.6 | 968.2 | 967.0 | 968.9 | 984.2 | 983.8 | 981.5 | 989.2 | 992.7 | 969.9 | 977.7 | 977.9 |
y | 345.2 | 337.1 | 316.6 | 335.9 | 299.5 | 298.2 | 306.6 | 320.4 | 324.8 | 324.4 | 332.9 | 342.0 | 301.9 | 316.0 | 322.5 | |
11 | x | 876.4 | 864.8 | 846.9 | 869.7 | 844.6 | 842.8 | 845.1 | 860.0 | 859.6 | 858.3 | 866.6 | 868.8 | 847.6 | 853.6 | 852.5 |
y | 352.7 | 349.1 | 330.3 | 344.8 | 315.1 | 315.3 | 324.7 | 334.0 | 336.6 | 337.9 | 343.5 | 351.7 | 318.9 | 329.5 | 336.1 | |
12 | x | 391.5 | 382.7 | 373.0 | 384.9 | 374.3 | 370.4 | 373.8 | 379.7 | 377.6 | 377.8 | 382.3 | 381.3 | 373.7 | 373.1 | 377.7 |
y | 561.0 | 562.9 | 566.1 | 553.0 | 552.4 | 552.3 | 564.1 | 555.3 | 554.4 | 556.9 | 554.0 | 557.5 | 553.5 | 548.9 | 566.3 | |
13 | x | 334.6 | 327.5 | 322.8 | 326.7 | 325.5 | 322.2 | 325.7 | 325.5 | 322.5 | 322.4 | 325.8 | 324.1 | 324.1 | 317.9 | 327.7 |
y | 689.8 | 692.5 | 698.4 | 681.1 | 684.0 | 684.7 | 698.0 | 685.7 | 683.8 | 686.2 | 683.9 | 686.3 | 687.0 | 679.1 | 700.1 | |
14 | x | 300.3 | 294.5 | 286.5 | 294.7 | 288.3 | 282.9 | 287.2 | 292.0 | 288.4 | 287.8 | 291.0 | 291.0 | 287.3 | 282.3 | 293.2 |
y | 627.9 | 630.3 | 637.8 | 617.2 | 626.4 | 625.1 | 636.9 | 623.4 | 623.2 | 624.3 | 621.7 | 622.4 | 626.9 | 616.8 | 639.4 | |
15 | x | 297.8 | 286.3 | 276.3 | 291.6 | 275.3 | 270.7 | 274.6 | 285.4 | 283.3 | 283.0 | 284.6 | 287.3 | 276.1 | 275.6 | 281.1 |
y | 503.1 | 506.4 | 515.3 | 492.7 | 501.2 | 501.4 | 514.4 | 500.5 | 499.1 | 500.6 | 498.2 | 500.6 | 503.9 | 492.9 | 515.4 | |
16 | x | 132.0 | 118.9 | 105.6 | 125.2 | 103.3 | 99.8 | 102.5 | 118.6 | 116.8 | 116.4 | 116.8 | 121.3 | 105.1 | 107.5 | 112.1 |
y | 414.8 | 423.2 | 435.9 | 405.9 | 427.9 | 422.8 | 438.0 | 415.8 | 412.6 | 413.7 | 411.7 | 411.5 | 425.6 | 408.7 | 435.3 | |
17 | x | 197.8 | 180.1 | 164.8 | 189.3 | 161.1 | 156.5 | 160.1 | 181.5 | 178.6 | 177.4 | 178.6 | 184.9 | 163.8 | 167.4 | 170.5 |
y | 334.1 | 337.8 | 348.6 | 322.7 | 341.5 | 335.7 | 352.2 | 330.6 | 329.1 | 329.5 | 329.3 | 328.9 | 339.8 | 323.2 | 349.4 | |
18 | x | 241.0 | 217.8 | 199.2 | 228.8 | 193.0 | 190.5 | 193.3 | 220.0 | 218.0 | 217.2 | 217.3 | 225.7 | 197.7 | 204.2 | 207.4 |
y | 222.7 | 224.3 | 234.9 | 210.8 | 226.9 | 221.0 | 235.7 | 216.7 | 215.7 | 215.7 | 215.5 | 215.9 | 225.0 | 209.3 | 235.5 | |
19 | x | 251.2 | 220.0 | 198.5 | 233.5 | 186.6 | 186.8 | 189.9 | 222.9 | 224.8 | 222.4 | 222.2 | 231.4 | 196.4 | 208.2 | 208.0 |
y | 54.8 | 56.9 | 67.7 | 44.2 | 61.6 | 54.5 | 68.8 | 50.5 | 50.2 | 50.0 | 49.7 | 48.5 | 58.6 | 43.0 | 68.4 | |
20 | x | 484.1 | 453.4 | 432.9 | 467.0 | 421.2 | 420.3 | 426.1 | 457.7 | 457.6 | 454.9 | 457.2 | 466.1 | 430.6 | 442.2 | 440.3 |
y | 91.2 | 81.2 | 88.5 | 72.0 | 73.5 | 71.6 | 85.1 | 80.0 | 80.6 | 77.0 | 78.3 | 80.7 | 77.8 | 69.8 | 90.6 | |
21 | x | 710.4 | 680.7 | 659.1 | 693.4 | 645.2 | 644.6 | 651.3 | 684.4 | 684.6 | 681.5 | 682.8 | 692.8 | 656.5 | 668.1 | 667.9 |
y | 78.4 | 57.6 | 60.0 | 52.5 | 39.0 | 41.9 | 55.0 | 59.8 | 64.6 | 59.9 | 58.6 | 64.5 | 49.8 | 48.1 | 64.7 | |
22 | x | 1042.3 | 1009.3 | 985.5 | 1022.4 | 971.3 | 973.1 | 978.4 | 1013.1 | 1014.7 | 1013.6 | 1013.3 | 1023.7 | 984.8 | 998.3 | 995.8 |
y | 40.7 | 3.8 | −2.0 | 6.1 | −32.6 | −21.9 | −7.2 | 11.5 | 24.9 | 16.6 | 8.4 | 22.5 | −8.5 | −1.7 | 6.6 |
References
- Pandiri, V.; Singh, A. A swarm intelligence approach for the colored traveling salesman problem. Appl. Intell. 2018, 48, 4412–4428. [Google Scholar] [CrossRef]
- Pham, T.; Leyman, P.; Causmaecker, P.D. The intermittent travelling salesman problem. Int. Trans. Oper. Res. 2018, 27, 525–548. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, M.; Shoval, S.; Simchon, E.; Yedidsion, L. The single line moving target traveling salesman problem with release times. Ann. Oper. Res. 2020, 289, 449–458. [Google Scholar] [CrossRef]
- Gelareh, S.; Gendron, B.; Hanafi, S.; Monemi, R.N.; Todosijevic, R. The selective traveling salesman problem with draft limits. J. Heuristics 2020, 26, 339–352. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Zhou, M. Delaunay-Triangulation-Based Variable Neighborhood Search to Solve Large-Scale General Colored Traveling Salesman Problems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1583–1593. [Google Scholar] [CrossRef]
- Zhao, K.; Xu, B.L.; Lu, M.L.; Shi, J.; Li, Z. An Efficient Scheduling and Navigation Approach for Warehouse Multi-Mobile Robots. In Proceedings of the 13th International Conference on Swarm Intelligence (ICSI), Xi’an, China, 15–19 July 2022. [Google Scholar] [CrossRef]
- Valero-Gomez, A.; Valero-Gomez, J.; Castro-Gonzalez, A.; Moreno, L. Use of genetic algorithms for target distribution and sequencing in multiple robot operations. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), Phuket, Thailand, 7–11 December 2011; pp. 2718–2724. [Google Scholar] [CrossRef]
- Nemoto, K.; Aiyama, Y. Planning Method of Near-Minimum-Time Task Tour for Industrial Point-to-Point Robot. In Proceedings of the 9th IEEE International Conference on Cybernetics and Intelligent Systems (CIS)/IEEE Conference on Robotics, Automation and Mechatronics (RAM), Bangkok, Thailand, 18–20 November 2019. [Google Scholar] [CrossRef]
- Seo, J.; Yim, M.; Kumar, V. Assembly sequence planning for constructing planar structures with rectangular modules. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016. [Google Scholar] [CrossRef]
- Yu, J.B.; Liu, G.D.; Xu, J.P.; Zhao, Z.Y.; Chen, Z.H.; Yang, M.; Wang, X.Y.; Bai, Y.T. A Hybrid Multi-Target Path Planning Algorithm for Unmanned Cruise Ship in an Unknown Obstacle Environment. Sensors 2022, 22, 2429. [Google Scholar] [CrossRef]
- Xie, X.Y.; Wang, Y.L.; Wu, Y.J.; You, M.; Zhang, S.Y. Random Patrol Path Planning for Unmanned Surface Vehicles in Shallow Waters. In Proceedings of the 19th IEEE International Conference on Mechatronics and Automation (IEEE ICMA), Guilin, China, 7–10 August 2022; pp. 1860–1865. [Google Scholar] [CrossRef]
- Faridi, A.Q.; Sharma, S.; Shukla, A.; Tiwari, R.; Dhar, J. Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intell. Serv. Robot. 2018, 11, 171–186. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Hu, M.Q.; Xu, H.; Li, K.P.; Hu, H. A New Path Evaluation Method for Path Planning with Localizability. IEEE Access 2019, 7, 162583–162597. [Google Scholar] [CrossRef]
- Zhang, X.H.; Guo, Y.; Yang, J.Q.; Li, D.L.; Wang, Y.; Zhao, R. Many-objective evolutionary algorithm based agricultural mobile robot route planning. Comput. Electron. Agric. 2022, 200, 107274. [Google Scholar] [CrossRef]
- Borenstein, J.; Feng, L. UMBmark: A benchmark test for measuring odometry errors in mobile robots. Proc. SPIE—Int. Soc. Opt. Eng. 1995, 2591, 113–124. [Google Scholar] [CrossRef]
- Lee, K.; Jung, C.; Chung, W. Accurate calibration of kinematic parameters for two wheel differential mobile robots. J. Mech. Sci. Technol. 2011, 25, 1603. [Google Scholar] [CrossRef]
- Doh, N.; Choset, H.; Chung, W.K. Accurate relative localization using odometry. IEEE Int. Conf. Robot. Autom. 2003, 2, 1606–1612. [Google Scholar] [CrossRef]
- Doh, N.L.; Choset, H.; Chung, W.K. Relative localization using path odometry information. Auton. Robot. 2006, 21, 143–154. [Google Scholar] [CrossRef]
- Carvalho Filho, J.G.N.D.; Carvalho, E.A.N.; Molina, L.; Freire, E.O. The Impact of Parametric Uncertainties on Mobile Robots Velocities and Pose Estimation. IEEE Access 2019, 7, 69070–69086. [Google Scholar] [CrossRef]
- Martin, J.; Ansuategi, A.; Maurtua, I.; Gutierrez, A.; Obregón, D.; Casquero, O.; Marcos, M. A Generic ROS-Based Control Architecture for Pest Inspection and Treatment in Greenhouses Using a Mobile Manipulator. IEEE Access 2021, 9, 94981–94995. [Google Scholar] [CrossRef]
- Fan, Q.; Gong, Z.; Zhang, S.; Tao, B.; Yin, Z.; Ding, H. A vision-based fast base frame calibration method for coordinated mobile manipulators. Robot. Comput. Integr. Manuf. 2021, 68, 102078. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Liang, J.; He, B.; Wang, Y. ST-FMT*: A Fast Optimal Global Motion Planning for Mobile Robot. IEEE Trans. Ind. Electron. 2022, 69, 3854–3864. [Google Scholar] [CrossRef]
- Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment. IEEE Trans. Ind. Electron. 2020, 68, 7244–7251. [Google Scholar] [CrossRef]
- Lo, K.; Yi, W.; Wong, P.; Leung, K.; Leung, Y.; Mak, S. A Genetic Algorithm with New Local Operators for Multiple Traveling Salesman Problems. Int. J. Comput. Intell. Syst. 2018, 11, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Jana, R.K.; Mitra, K.K.; Sharma, D.K. Software vendors travel management decisions using an elitist nonhomogeneous genetic algorithm. Int. J. Prod. Econ. 2018, 202, 123–131. [Google Scholar] [CrossRef]
- Chen, X.; Gao, P. Path planning and control of soccer robot based on genetic algorithm. J. Ambient Intell. Humaniz. Comput. 2020, 11, 6177–6186. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, G.; Zhan, X.; Han, T. A new hybrid algorithm for path planning of mobile robot. J. Supercomput. 2022, 78, 4158–4181. [Google Scholar] [CrossRef]
- Dubois, A.; Bresciani, J.P. Validation of an ambient system for the measurement of gait parameters. J. Biomech. 2018, 69, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Zhang, Q.; Chai, H.; Li, Y. Obtaining lower-body Euler angle time series in an accurate way using depth camera relying on Optimized Kinect CNN. Measurement 2022, 188, 110461. [Google Scholar] [CrossRef]
Error Parameters | Mean Value | Standard Deviation |
---|---|---|
0.975887 | 0.0029193 | |
1.00063 | 0.0081595 | |
0.14965 mm | 0.07293 mm |
Path with the Least Rotation | Path with Optimal Precision | Path with the Shortest Length | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Position Sequence | Simulated Error | Average Experimental Error | Position Sequence | Simulated Error | Average Experimental Error | Position Sequence | Simulated Error | Average Experimental Error | |||
1 | 0.00 | 0.00 | 0 | 1 | 0.00 | 0.00 | 0 | 1 | 0.00 | 0.00 | 0 |
2 | 5.11 | 6.50 | −1.39 | 2 | 5.11 | 5.61 | −0.5 | 2 | 5.11 | 6.40 | −1.29 |
3 | 13.04 | 15.44 | −2.4 | 3 | 13.04 | 12.84 | 0.2 | 3 | 5.47 | 5.28 | 0.19 |
4 | 15.27 | 17.36 | −2.09 | 4 | 15.27 | 14.28 | 0.99 | 4 | 6.51 | 6.31 | 0.2 |
5 | 24.87 | 29.63 | −4.76 | 5 | 18.80 | 17.43 | 1.37 | 5 | 13.34 | 15.14 | −1.8 |
6 | 28.89 | 33.97 | −5.08 | 6 | 24.71 | 24.81 | −0.1 | 6 | 16.31 | 16.90 | −0.59 |
7 | 24.35 | 29.18 | −4.83 | 7 | 24.07 | 20.98 | 3.09 | 7 | 20.93 | 22.31 | −1.38 |
8 | 23.43 | 28.01 | −4.58 | 8 | 28.71 | 26.15 | 2.56 | 8 | 28.64 | 29.75 | −1.11 |
9 | 24.56 | 26.45 | −1.89 | 9 | 25.25 | 23.14 | 2.11 | 9 | 36.70 | 39.27 | −2.57 |
10 | 32.95 | 25.20 | 7.75 | 10 | 32.61 | 32.23 | 0.38 | 10 | 46.17 | 49.53 | −3.36 |
11 | 30.76 | 21.10 | 9.66 | 11 | 24.86 | 22.69 | 2.17 | 11 | 41.35 | 43.77 | −2.42 |
12 | 18.12 | 14.13 | 3.99 | 12 | 28.67 | 30.82 | −2.15 | 12 | 27.88 | 33.75 | −5.87 |
13 | 71.13 | 55.97 | 15.16 | 13 | 10.81 | 17.29 | −6.48 | 13 | 25.42 | 33.21 | −7.79 |
14 | 54.49 | 40.28 | 14.21 | 14 | 15.60 | 21.90 | −6.3 | 14 | 30.21 | 36.54 | −6.33 |
15 | 25.95 | 16.84 | 9.11 | 15 | 19.55 | 23.55 | −4 | 15 | 37.29 | 43.12 | −5.83 |
16 | 25.79 | 17.80 | 7.99 | 16 | 43.59 | 44.53 | −0.94 | 16 | 54.98 | 63.50 | −8.52 |
17 | 26.47 | 19.87 | 6.6 | 17 | 40.29 | 37.92 | 2.37 | 17 | 55.99 | 62.16 | −6.17 |
18 | 27.65 | 26.84 | 0.81 | 18 | 25.27 | 21.66 | 3.61 | 18 | 62.90 | 70.22 | −7.32 |
19 | 29.91 | 31.02 | −1.11 | 19 | 27.23 | 21.20 | 6.03 | 19 | 78.52 | 88.09 | −9.57 |
20 | 32.29 | 36.18 | −3.89 | 20 | 30.14 | 20.56 | 9.58 | 20 | 67.95 | 72.71 | −4.76 |
21 | 89.88 | 90.25 | −0.37 | 21 | 18.07 | 11.98 | 6.09 | 21 | 72.45 | 78.00 | −5.55 |
22 | 126.41 | 124.06 | 2.35 | 22 | 98.74 | 82.36 | 16.38 | 22 | 97.97 | 109.08 | −11.11 |
Type of Path | Average Error of Simulated Positions | Average Error of Experimental Positions |
---|---|---|
Minimum rotation angle path | 37.12 mm | 32.09 mm |
Minimum theoretical error path | 27.42 mm | 24.27 mm |
Minimum forward moving distance path | 43.82 mm | 42.05 mm |
Position Sequence | Path with the Least Rotation | Path with Optimal Precision | Path with the Shortest Length |
---|---|---|---|
1 | 0.00 | 0.00 | 0.00 |
2 | 2.40 | 2.36 | 2.25 |
3 | 6.23 | 5.91 | 3.89 |
4 | 7.35 | 6.75 | 4.59 |
5 | 10.60 | 7.51 | 7.22 |
6 | 12.55 | 8.41 | 8.48 |
7 | 12.44 | 8.74 | 9.64 |
8 | 12.18 | 10.12 | 11.95 |
9 | 12.52 | 9.90 | 13.98 |
10 | 8.74 | 11.25 | 16.19 |
11 | 9.27 | 10.15 | 15.01 |
12 | 8.91 | 10.05 | 8.83 |
13 | 21.34 | 8.59 | 8.47 |
14 | 19.54 | 8.86 | 7.98 |
15 | 13.45 | 8.92 | 9.66 |
16 | 11.74 | 12.39 | 13.49 |
17 | 10.74 | 13.45 | 14.17 |
18 | 8.30 | 14.28 | 16.10 |
19 | 8.07 | 14.90 | 19.26 |
20 | 8.85 | 16.12 | 18.28 |
21 | 13.70 | 16.09 | 19.41 |
22 | 17.51 | 22.19 | 23.43 |
Type of Path | Average Error of Simulated Positions | Average Error of Experimental Positions |
---|---|---|
Minimum rotation angle path | 13.36 mm | 10.75 mm |
Minimum theoretical error path | 11.34 mm | 10.32 mm |
Minimum forward moving distance path | 15.64 mm | 11.47 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Zhao, J.-S.; Misyurin, S.Y.; Martins, D. Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model. Sensors 2023, 23, 517. https://doi.org/10.3390/s23010517
Ji J, Zhao J-S, Misyurin SY, Martins D. Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model. Sensors. 2023; 23(1):517. https://doi.org/10.3390/s23010517
Chicago/Turabian StyleJi, Junjie, Jing-Shan Zhao, Sergey Yurievich Misyurin, and Daniel Martins. 2023. "Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model" Sensors 23, no. 1: 517. https://doi.org/10.3390/s23010517
APA StyleJi, J., Zhao, J. -S., Misyurin, S. Y., & Martins, D. (2023). Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model. Sensors, 23(1), 517. https://doi.org/10.3390/s23010517