Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint
<p>Some Deep Learning Methods in WiFi fingerprint-based Indoor Positioning.</p> "> Figure 2
<p>TCN_DNNLoc framework.</p> "> Figure 3
<p>3D positioning errors of different preprocessing methods.</p> "> Figure 4
<p>Fingerprint slice construction process.</p> "> Figure 5
<p>Positioning Model Architecture.</p> "> Figure 6
<p>TCN residual block architecture.</p> "> Figure 7
<p>TCN Feature Extractor.</p> "> Figure 8
<p>An example of temporal fingerprint collection.</p> "> Figure 9
<p>Localization effect of different convolution kernel numbers.</p> "> Figure 10
<p>Localization effect of different DNN structures.</p> "> Figure 11
<p>3D positioning error of different series length.</p> "> Figure 12
<p>Cumulative distribution functions for different sequence lengths.</p> "> Figure 13
<p>3D positioning error of different models.</p> "> Figure 14
<p>Cumulative distribution functions for different models.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Algorithm Design
3.1. Preprocessing of the Temporal Fingerprint Map
3.1.1. Temporal Fingerprint Map
3.1.2. Temporal Fingerprint Map
3.2. Construction of Fingerprint Slice
3.3. Positioning Model Design
3.3.1. Input Module
3.3.2. TCN Feature Extractor Module
3.3.3. DNN Regressor Module
3.3.4. Output Module
4. Experiments and Analysis
4.1. Dataset
4.2. Evaluation Index
4.3. Parameter Setting
4.4. Performance Comparison of Different Algorithms
5. Conclusions
- (1)
- The positioning accuracy was affected by the connection weight and bias of the model. Future research should consider using a heuristic algorithm to optimize the parameters. Examples include the genetic algorithm (GA) [47], particle swarm optimization (PSO) [48], simulated annealing [49], and quantum annealing algorithms [50]. The optimization algorithms can be used to optimize the connection weight matrix and bias of the positioning model to avoid falling into the local optimal solution. Moreover, the convergence speed of the model can be improved.
- (2)
- This study considered only WiFi technology for positioning; however, each positioning technology has its own characteristics and limitations. With the development of microelectric systems, the accuracy of sensors has improved continuously, whilst the built-in sensors of mobile phones, such as air-pressure sensors and accelerometers, can be used for auxiliary positioning. Future research must consider the integration of WiFi technology with other technologies to provide more accurate positioning information. Multi-technology fusion and mutual learning can compensate for the limitations of single-positioning technology and improve positioning accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajasekar, S.S.; Palanisamy, C.; Saranya, K. Privacy-preserving location-based services for mobile users using directional service fetching algorithm in wireless networks. J. Ambient Intell. Humaniz. Comput. 2021, 12, 7007–7017. [Google Scholar] [CrossRef]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, R. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Chen, L. Indoor Positioning with Smartphones: The State-of-the-art and the Challenges. Acta Geod. Cartogr. Sin. 2017, 46, 1316–1326. [Google Scholar]
- Laoudias, C.; Moreira, A.; Kim, S.; Lee, S.; Wirola, L.; Fischione, C. A survey of enabling technologies for network localization, tracking, and navigation. IEEE Commun. Surv. Tutor. 2018, 20, 3607–3644. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.; Wang, L. Overview of WiFi fingerprinting-based indoor positioning. IEEE Commun. 2022, 20, 3607–3644. [Google Scholar] [CrossRef]
- Carotenuto, R.; Merenda, M.; Iero, D.; Della Corte, F.G. An indoor ultrasonic system for autonomous 3-D positioning. IEEE Trans. Instrum. Meas. 2019, 68, 2507–2518. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, K.; Wang, W.; Li, X. A self-adaptive AP selection algorithm based on multiobjective optimization for indoor WiFi positioning. IEEE Int. Things J. 2021, 8, 1406–1416. [Google Scholar] [CrossRef]
- Magnago, V.; Palopoli, L.; Buffi, A.; Tellini, B.; Motroni, A.; Nepa, P.; Macci, D.; Fontanelli, D. Ranging-free UHF-RFID robot positioning through phase measurements of passive tags. IEEE Trans. Instrum. Meas. 2020, 69, 2408–2418. [Google Scholar] [CrossRef]
- Monica, S.; Bergenti, F. Hybrid indoor localization using WiFi and UWB technologies. Electronics 2019, 8, 334. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, F.; Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Tripicchio, P.; Unetti, M. Particle swarm optimization in SAR-based method enabling real-time 3D positioning of UHF-RFID tags. IEEE J. Radio Freq. Identif. 2020, 4, 300–313. [Google Scholar] [CrossRef]
- Xia, J.; Li, S.; Wang, Y.; Jiang, B. Research on UWB/BLE-Based Fusion Indoor Positioning Algorithm and System Application. In Proceedings of the 2021 International Symposium on Computer Technology and Information Science (ISCTIS), Guilin, China, 4–6 June 2021; pp. 50–54. [Google Scholar]
- Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A Novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Trans. Veh. Technol. 2019, 68, 686–699. [Google Scholar] [CrossRef]
- Molina, B.; Olivares, E.; Palau, C.E.; Esteve, M. A multimodal fingerprint-based indoor positioning system for airports. IEEE Access 2018, 6, 10092–10106. [Google Scholar] [CrossRef]
- Phutcharoen, K.; Chamchoy, M.; Supanakoon, P. Accuracy Study of Indoor Positioning with Bluetooth Low Energy Beacons. In Proceedings of the 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Electronics, Pattaya, Thailand, 11–14 March 2020; pp. 24–27. [Google Scholar]
- Harter, A.; Hopper, A.; Steggles, P.; Ward, A.; Webster, P. The anatomy of a context-aware application. Wireless Netw. 2002, 8, 187–197. [Google Scholar] [CrossRef]
- Yelkovan, Y.; Güneren, H.; Akgöz, A.; Eybek, F.; Türk, A.; Göl, İ.; Çetin, Ö. Infrared Beacon Based Sub-Meter Indoor Localization. In Proceedings of the 2014 22nd Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey, 23–25 April 2014; pp. 1427–1430. [Google Scholar]
- Li, l.; Ma, J.; Xu, P.; Zhi, T. Summary of study on RFID indoor localisation technology. Comp. Appl. Soft. 2015, 32, 1–3. [Google Scholar]
- Bianchi, V.; Ciampolini, P.; De Munari, I. RSSI-based indoor localization and identification for zigbee wireless sensor networks in smart homes. IEEE Trans. Instrum. Meas. 2019, 68, 566–575. [Google Scholar] [CrossRef]
- Kuhn, M.J.; Mahfouz, M.R.; Turnmire, J.; Wang, Y.; Fathy, A.E. A Multi-Tag Access Scheme for Indoor UWB Localization Systems Used in Medical Environments. In Proceedings of the 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Phoenix, AZ, USA, 16–19 January 2011; pp. 75–78. [Google Scholar]
- Sadowski, S.; Spachos, P. Rssi-based indoor localization with the internet of things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Khassanov, Y.; Nurpeiissov, M.; Sarkytbayev, A.; Kuzdeuov, A.; Varol, H.A. Finer-Level Sequential Wifi-Based Indoor Localization. In Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (SII), Fukushima, Japan, 11–14 January 2021; pp. 163–169. [Google Scholar]
- Yang, Z.; Wu, C.; Liu, Y. Locating in Fingerprint Space: Wireless Indoor Localization with Little Human Intervention. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 22–26 August 2021; pp. 269–280. [Google Scholar]
- Xiang, P.; Ji, P.; Zhang, D. Enhance RSS-based indoor localization accuracy by leveraging environmental physical features. Wirel. Commun. Mob. Comput. 2018, 2018, 8956757. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.A.; Pham, C. Fast and Accurate Indoor Localization Based on Spatially Hierarchical Classification. In Proceedings of the 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, Philadelphia, PA, USA, 28–30 October 2014; pp. 118–126. [Google Scholar]
- Wang, Y.; Xiu, C.; Zhang, X.; Yang, D. WiFi indoor localization with CSI fingerprinting-based random forest. Sensors 2018, 18, 2869. [Google Scholar] [CrossRef] [Green Version]
- Brunato, M.; Battiti, R. Statistical learning theory for location fingerprinting in wireless LANs. Comput. Netw. 2005, 47, 825–845. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Qiu, Z.; Liu, C. An improved weighted k-nearest neighbor algorithm for indoor positioning. Wirel. Pers. Commun. 2017, 96, 2239–2251. [Google Scholar] [CrossRef]
- Li, H.; Su, J.; Liu, W.; Zhang, Y.; Zhou, X. Indoor Positioning Model Based on Support Vector Regression Optimized by the Sparrow Search Algorithm. In Proceedings of the 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Krakow, Poland, 22–25 September 2021; pp. 610–615. [Google Scholar]
- Lee, S.; Moon, N. Location recognition system using random forest. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1191–1196. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, K.; Zhang, W.; Zhang, Y.; Gu, J. Deep neural networks for wireless localization in indoor and outdoor environments. Neurocomputing 2016, 194, 279–287. [Google Scholar] [CrossRef]
- Félix, G.; Siller, M.; Alvarez, E.N. A Fingerprinting Indoor Localization Algorithm Based Deep Learning. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 1006–1011. [Google Scholar]
- Torres-Sospedra, J.; Montoliu, R.; Martínez-Usó, A.; Avariento, J.P.; Arnau, T.J.; Benedito-Bordonau, M.; Huerta, J. UJIIndoorLoc: A New Multi-Building and Multi-Floor Database for WLAN Fingerprint-Based Indoor Localization Problems. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Republic of Korea, 27–30 October 2014; pp. 261–270. [Google Scholar]
- Nguyen, K.A. A performance guaranteed indoor positioning system using conformal prediction and the WiFi signal strength. J. Inf. Telecommun. 2017, 1, 41–65. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Yuan, L. Indoor 3D positioning algorithm based on K-means. Comput. Eng. Des. 2019, 40, 2530–2537. [Google Scholar]
- Cramariuc, A.; Huttunen, H.; Lohan, E.S. Clustering Benefits in Mobile-Centric WiFi Positioning in Multi-Floor Buildings. In Proceedings of the 2016 International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 28–30 June 2014; pp. 1–6. [Google Scholar]
- Kim, K.S.; Lee, S.; Huang, K. A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting. Big Data Anal. 2018, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Fan, X.; Xiang, C.; Ye, Q.; Liu, L.; Wang, Z.; He, X.; Yang, N.; Fang, G. A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access 2019, 7, 110698–110709. [Google Scholar] [CrossRef]
- Au, A.W.S.; Feng, C.; Valaee, S.; Reyes, S.; Sorour, S.; Markowitz, S.N.; Gold, D.; Gordon, K.; Eizenman, M. Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device. IEEE Trans. Mob. Comput. 2012, 12, 2050–2062. [Google Scholar] [CrossRef]
- Hoang, M.T.; Zhu, Y.; Yuen, B.; Reese, T.; Dong, X.; Lu, T.; Westendorp, R.; Xie, M. A soft range limited K-nearest neighbors algorithm for indoor localization enhancement. IEEE Sens. J. 2018, 18, 10208–10216. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Yan, M.; Wan, Q.; He, L.; Wang, X.; Li, J. DL-RNN: An accurate indoor localization method via double RNNs. IEEE Sens. J. 2019, 20, 286–295. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Yating, G.; Wu, W.; Qiongbin, L.; Fenghuang, C.; Qinqin, C. Fault diagnosis for power converters based on optimized temporal convolutional network. IEEE Trans. Instrum. Meas. 2020, 70, 3501910. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Chen, X.; Zeng, X.; Kong, Y.; Sun, S.; Guo, Y.; Liu, Y. Short-term load forecasting for industrial customers based on TCN-LightGBM. IEEE Trans. Power Syst. 2020, 36, 1984–1997. [Google Scholar] [CrossRef]
- Nurpeiissov, M.; Kuzdeuov, A.; Assylkhanov, A.; Khassanov, Y.; Varol, H.A. End-to-End Sequential Indoor Localization Using Smartphone Inertial Sensors and WiFi. In Proceedings of the 2022 IEEE/SICE International Symposium on System Integration (SII), Narvik, Norwey, 9–12 January 2022; pp. 566–571. [Google Scholar]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Dordrecht, The Netherlands, 1987; pp. 7–15. [Google Scholar]
- Finnila, A.B.; Gomez, M.A.; Sebenik, C.; Stenson, C.; Doll, J.D. Quantum annealing: A new method for minimizing multidimensional functions. Chem. Phys. Lett. 1994, 219, 343–348. [Google Scholar] [CrossRef]
Positioning Technique | Advantage | Disadvantage | Positioning Accuracy | Popular System |
---|---|---|---|---|
Ultrasonic [6] | High positioning accuracy | Multipath effect, thermal drift effect, high cost, severe decay | Centimeter scale | Bat [7] |
RFID [8] | Low cost, high speed | Short distance, low communication capacity | Centimeter scale | LANDMARC [9] |
UWB [10] | Strong resistance to interference, strong penetration, high positioning accuracy | High cost | Sub-meter scale | Dart UWB [11] |
Bluetooth [12] | Low power consumption, easily deployable | Short distance | Meter scale | BIPS [13] |
Infrared [14] | Low-cost, mature technology | Poor resistance to interference | Meter scale | Active Badge [15] |
Zigbee [16] | Low-cost, low power consumption | Poor stability | Meter scale | [17] |
WiFi [18] | No additional hardware required for deployment, low cost, wide application range | Tedious fingerprint collection, degeneration of WiFi signal | Meter scale | RADAR [19] |
Fingerprint ID | AP1 | AP2 | ... | APn | x | y | z | Timestamp |
---|---|---|---|---|---|---|---|---|
1 | RSSI11 | RSSI12 | ... | RSSI1n | x1 | y1 | z1 | t1 |
2 | RSSI21 | RSSI22 | ... | RSSI2n | x2 | y2 | z2 | t2 |
3 | RSSI31 | RSSI32 | ... | RSSI3n | x3 | y3 | z3 | t3 |
4 | RSSI41 | RSSI42 | ... | RSSI4n | x4 | y4 | z4 | t4 |
5 | RSSI51 | RSSI52 | ... | RSSI5n | x5 | y5 | z5 | t5 |
6 | RSSI61 | RSSI62 | ... | RSSI6n | x6 | y6 | z6 | t6 |
.... | ... | ... | ... | ... | ... | ... | ... | ... |
Fingerprint Slice | Position Coordinate |
---|---|
[FP1, FP2, FP3, FP4] | x4, y4, z4 |
[FP2, FP3, FP4, FP5] | x5, y5, z5 |
[FP3, FP4, FP5, FP6] | x6, y6, z6 |
… | … |
[FPM, FPM+1, FPM+2, FPM+3] | xM+3, yM+3, zM+3 |
Attribute | Meaning |
---|---|
AP001-AP220 | RSSI from the corresponding AP (dbm) |
x | Value on the X-coordinate (m) |
y | Value on the Y-coordinate (m) |
z | Value on the Z-coordinate (m) |
Timestamp | Timestamp of the sample (s) |
<1 m | <2 m | <4 m | <6 m | |
---|---|---|---|---|
W = 3 | 41% | 79% | 98% | 100% |
W = 4 | 45% | 79% | 98% | 100% |
W = 8 | 49% | 82% | 99% | 100% |
W = 16 | 30% | 73% | 97% | 100% |
W = 20 | 28% | 69% | 97% | 100% |
Parameter | Value |
---|---|
Epochs | 1000 |
Doupout | 0.1 |
Residual blocks | 3 |
Convolution kernel size | 4 |
Number of convolution kernels | 128 |
activation function | ReLU |
Loss function | Mse |
Optimization algorithm | Adam |
<1 m | <2 m | <4 m | <6 m | Average Error (m) | ||
---|---|---|---|---|---|---|
Valid | Test | |||||
TCN_DNNLoc | 49% | 82% | 99% | 100% | 1.21 | 1.22 |
LSTM | 42% | 81% | 98% | 100% | 1.35 | 1.33 |
SRL_KNN | 40% | 70% | 93% | 96% | 1.62 | 1.66 |
FNN | 34% | 69% | 94% | 97% | 1.75 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Shang, S.; Wu, Z. Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint. Sensors 2023, 23, 153. https://doi.org/10.3390/s23010153
Wang L, Shang S, Wu Z. Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint. Sensors. 2023; 23(1):153. https://doi.org/10.3390/s23010153
Chicago/Turabian StyleWang, Lixing, Shuang Shang, and Zhenning Wu. 2023. "Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint" Sensors 23, no. 1: 153. https://doi.org/10.3390/s23010153
APA StyleWang, L., Shang, S., & Wu, Z. (2023). Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint. Sensors, 23(1), 153. https://doi.org/10.3390/s23010153