Resistive-Based Micro-Kelvin Temperature Resolution for Ultra-Stable Space Experiments
<p>(<b>Center</b>): Vacuum chamber (dark gray) and thermal shields (light gray) drawing. The aluminium block where the sensors are placed is the central element, colored in brown. In blue, the water-cooled breadboard and heat pies used to extract the heat of the Peltier elements can be seen. (<b>Left</b>): Picture of the aluminium block hosting the sensors. (<b>Right</b>): Top view of the inside of the vacuum chamber.</p> "> Figure 2
<p>(<b>Top</b>): Modulation circuit with Wheatstone bridge. (<b>Bottom</b>): Acquisition chain of the output of the Wheatstone bridge.</p> "> Figure 3
<p>Read-out block diagram.</p> "> Figure 4
<p>Noise of the electronics without modulation. The values of the fit are <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>w</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 21 <math display="inline"><semantics> <mrow> <mi>nV</mi> <mo>/</mo> <msqrt> <mi>Hz</mi> </msqrt> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 2 Hz. The peaks seen at around 100 Hz are interference.</p> "> Figure 5
<p>Theoretical noise in the full sensing range; the black solid line is the voltage noise, and the dashed blue line is the same noise converted to temperature by means of the expected sensitivity.</p> "> Figure 6
<p>Evaluation of the thermal transfer function of the test bench. (<b>Top</b>): Experimental estimation of the thermal transfer function; the dots mark the frequencies where temperature injections were applied and the dotted line shows the fit (labeled as Model) to these frequencies. (<b>Bottom</b>): Detail of the time series during the evaluation of the test bench thermal transfer function; the temperature measured in one sensor of the Al core appears strongly suppressed when compared to the measurement in the outer shield.</p> "> Figure 7
<p>Performance of the temperature measurement system. A sensor attached to the external wall of the vacumm chamber describes the temperature fluctuations in the lab (`Lab’). The brown curve (`Outer shield’) shows the mean of the ten sensors attached to the external layer of the three layers composing the thermal shield inside the vacuum chamber. The green curve (`Sensor performance’) is the mean of three NTC sensors inside attached to the aluminium core, and the grey curve (`Lab temperature projection’) shows the noise projection of the outer shield fluctuations inside the aluminium core. The purple area (`FEE temperature coupling’) shows the estimate corresponding to the coupling of lab temperature fluctuations through the read-out electronics temperature coefficient. Whenever several sensors were used to build the curve, we show the standard deviation of the measurements as a shaded area marking the upper limit.</p> ">
Abstract
:1. Introduction
2. Setup Description
2.1. Low-Frequency Test Bench Design
2.2. Sensor Readout Electronics Design
- The sensitivity increases with the voltage applied on the sensor; the obvious downside is that the power dissipation on the sensor itself does as well, leading to perturbations at the sensed location.
- The sensitivity does not change with the thermistor resistance.
- A higher parameter increases the sensitivity without any downside.
2.3. Read-Out Implementation
2.3.1. Measurement Principle
2.3.2. Noise Analysis
2.4. Temperature Coefficient
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stefansson, G.; Hearty, F.; Robertson, P.; Mahadevan, S.; Anderson, T.; Levi, E.; Bender, C.; Nelson, M.; Monson, A.; Blank, B.; et al. A versatile technique to enable sub-milli-kelvin instrument stability for precise radial velocity measurements: Tests with the habitable-zone planet finder. Astrophys. J. 2016, 833, 175. [Google Scholar] [CrossRef]
- Sheard, B.S.; Heinzel, G.; Danzmann, K.; Shaddock, D.A.; Klipstein, W.M.; Folkner, W.M. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod. 2012, 86, 1083–1095. [Google Scholar] [CrossRef]
- Aguilera, D.N.; Ahlers, H.; Battelier, B.; Bawamia, A.; Bertoldi, A.; Bondarescu, R.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; et al. STE-QUEST—test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 2014, 31, 115010. [Google Scholar] [CrossRef] [Green Version]
- Lämmerzahl, C.; Dittus, H.; Peters, A.; Schiller, S. OPTIS: A satellite-based test of special and general relativity. Class. Quantum Gravity 2001, 18, 2499–2508. [Google Scholar] [CrossRef]
- Sanjuan, J.; Abich, K.; Gohlke, M.; Resch, A.; Schuldt, T.; Wegehaupt, T.; Barwood, G.P.; Gill, P.; Braxmaier, C. Long-term stable optical cavity for special relativity tests in space. Opt. Express 2019, 27, 36206–36220. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar] [CrossRef]
- Carbone, L.; Cavalleri, A.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W.J. Thermal gradient-induced forces on geodesic reference masses for LISA. Phys. Rev. D 2007, 76, 102003. [Google Scholar] [CrossRef] [Green Version]
- Nofrarias, M.; Marin, A.F.G.; Lobo, A.; Heinzel, G.; Ramos-Castro, J.; Sanjuan, J.; Danzmann, K. Thermal diagnostic of the optical window on board LISA Pathfinder. Class. Quantum Gravity 2007, 24, 5103–5121. [Google Scholar] [CrossRef] [Green Version]
- Nofrarias, M.; Gibert, F.; Karnesis, N.; García, A.F.; Hewitson, M.; Heinzel, G.; Danzmann, K. Subtraction of temperature induced phase noise in the LISA frequency band. Phys. Rev. D 2013, 87, 102003. [Google Scholar] [CrossRef] [Green Version]
- Gibert, F.; Nofrarias, M.; Karnesis, N.; Gesa, L.; Martín, V.; Mateos, I.; Lobo, A.; Flatscher, R.; Gerardi, D.; Burkhardt, J.; et al. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft. Class. Quantum Gravity 2015, 32, 045014. [Google Scholar] [CrossRef]
- Weng, W.; Anstie, J.D.; Stace, T.M.; Campbell, G.; Baynes, F.N.; Luiten, A.N. Nano-Kelvin Thermometry and Temperature Control: Beyond the Thermal Noise Limit. Phys. Rev. Lett. 2014, 112, 160801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Wang, S.; Saraf, S.; Lipa, J.A. Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity. Opt. Express 2017, 25, 3578–3593. [Google Scholar] [CrossRef]
- Toda, M.; Inomata, N.; Ono, T.; Voiculescu, I. Cantilever beam temperature sensors for biological applications. IEEJ Trans. Electr. Electron. Eng. 2017, 12, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.F.; Benz, S.P.; Rogalla, H.; Tew, W.L.; White, D.R.; Zhou, K.L. Johnson noise thermometry. Meas. Sci. Technol. 2019, 30, 112001. [Google Scholar] [CrossRef]
- Heidarpour Roshan, M.; Zaliasl, S.; Joo, K.; Souri, K.; Palwai, R.; Chen, L.W.; Singh, A.; Pamarti, S.; Miller, N.J.; Doll, J.C.; et al. A MEMS-Assisted Temperature Sensor With 20- μK Resolution, Conversion Rate of 200 S/s, and FOM of 0.04 pJK2. IEEE J. Solid-State Circuits 2017, 52, 185–197. [Google Scholar] [CrossRef]
- Ferreiro-Vila, E.; Molina, J.; Weituschat, L.M.; Gil-Santos, E.; Postigo, P.A.; Ramos, D. Micro-Kelvin Resolution at Room Temperature Using Nanomechanical Thermometry. ACS Omega 2021, 6, 23052–23058. [Google Scholar] [CrossRef]
- Sanjuán, J.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.; Riu, P.J. Thermal diagnostics front-end electronics for LISA Pathfinder. Rev. Sci. Instruments 2007, 78, 104904. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A.M.; et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder. Mon. Not. R. Astron. Soc. 2019, 486, 3368–3379. [Google Scholar] [CrossRef]
- Lobo, A.; Nofrarias, M.; Ramos-Castro, J.; Sanjuán, J. On-ground tests of the LISA PathFinder thermal diagnostics system. Class. Quantum Gravity 2006, 23, 5177–5193. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.F.; Nevsky, A.; Cardace, M.; Schiller, S.; Legero, T.; Häfner, S.; Uhde, A.; Sterr, U. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of. Rev. Sci. Instruments 2014, 85, 113107. [Google Scholar] [CrossRef]
- Webster, S.A.; Oxborrow, M.; Pugla, S.; Millo, J.; Gill, P. Thermal-noise-limited optical cavity. Phys. Rev. A 2008, 77, 033847. [Google Scholar] [CrossRef]
- Sanjuan, J.; Gürlebeck, N.; Braxmaier, C. Mathematical model of thermal shields for long-term stability optical resonators. Opt. Express 2015, 23, 17892–17908. [Google Scholar] [CrossRef] [Green Version]
- Meade, M.L. Lock-in Amplifiers: Principles and Applications; IEE Electrical Measurement Series; Inst of Engineering & Technology: London, UK, 1983. [Google Scholar]
- Sanjuan, J.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.; Mateos, N.; Xirgu, X. Magnetic polarisation effects of temperature sensors and heaters in LISA Pathfinder. J. Phys. Conf. Ser. 2009, 154, 012001. [Google Scholar] [CrossRef]
- Faierstein, H. New high precision foil resistors for space projects, with zero temperature coefficient very low power coefficient and high reliability. In Proceedings of the European Space Components Conference, ESCCON 2002, Toulouse, France, 24–27 September 2002; Volume 507, p. 49. [Google Scholar]
Temperature Noise Density | Contribution on the Overall | |
---|---|---|
[] | [%] | |
Sensor Arm | 0.5 | 57 |
Reference Arm | 0.1 | 2 |
Difference Amplification | 0.3 | 18 |
Fully Differential Amplifier | 0.2 | 4 |
Analog-to-digital converter | 0.3 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roma-Dollase, D.; Gualani, V.; Gohlke, M.; Abich, K.; Morales, J.; Gonzalvez, A.; Martín, V.; Ramos-Castro, J.; Sanjuan, J.; Nofrarias, M. Resistive-Based Micro-Kelvin Temperature Resolution for Ultra-Stable Space Experiments. Sensors 2023, 23, 145. https://doi.org/10.3390/s23010145
Roma-Dollase D, Gualani V, Gohlke M, Abich K, Morales J, Gonzalvez A, Martín V, Ramos-Castro J, Sanjuan J, Nofrarias M. Resistive-Based Micro-Kelvin Temperature Resolution for Ultra-Stable Space Experiments. Sensors. 2023; 23(1):145. https://doi.org/10.3390/s23010145
Chicago/Turabian StyleRoma-Dollase, David, Vivek Gualani, Martin Gohlke, Klaus Abich, Jordan Morales, Alba Gonzalvez, Victor Martín, Juan Ramos-Castro, Josep Sanjuan, and Miquel Nofrarias. 2023. "Resistive-Based Micro-Kelvin Temperature Resolution for Ultra-Stable Space Experiments" Sensors 23, no. 1: 145. https://doi.org/10.3390/s23010145
APA StyleRoma-Dollase, D., Gualani, V., Gohlke, M., Abich, K., Morales, J., Gonzalvez, A., Martín, V., Ramos-Castro, J., Sanjuan, J., & Nofrarias, M. (2023). Resistive-Based Micro-Kelvin Temperature Resolution for Ultra-Stable Space Experiments. Sensors, 23(1), 145. https://doi.org/10.3390/s23010145