A Comparative Study on a Novel Quality Assessment Protocol Based on Image Analysis Methods for Color Doppler Ultrasound Diagnostic Systems
<p>Flow chart of the image analysis-based method for blind angle parameter estimation.</p> "> Figure 2
<p>Flow axis placed on the <span class="html-italic">i</span>-th average image for (<b>a</b>) system one, (<b>b</b>) system two and (<b>c</b>) system three equipped with convex array probes in configuration B at medium flow rate regime <span class="html-italic">Q<sub>M</sub></span>. Blue color indicates flow away from transducer, while red color indicates flow toward the transducer.</p> "> Figure 3
<p>Flow chart of the image analysis-based method for registration error parameter estimation.</p> "> Figure 4
<p>Straight lines approximating the upper and lower vessel boundaries used to subdivide the color box of the <span class="html-italic">i</span>-th average image for (<b>a</b>) system one, (<b>b</b>) system two and (<b>c</b>) system three equipped with convex array probes in configuration B at medium flow rate regime <span class="html-italic">Q<sub>M</sub></span>.</p> "> Figure 5
<p>Flow chart of the image analysis-based method for AMVS parameter estimation.</p> "> Figure 6
<p>Ninety-degree rotated segments automatically drawn on the <span class="html-italic">i</span>-th average image for (<b>a</b>) system one, (<b>b</b>) system two and (<b>c</b>) system three equipped with convex array probes in configuration B at 7.0 mL·s<sup>−1</sup>.</p> "> Figure 7
<p>Example of reconstructed velocity profile associated with a single segment drawn on the <span class="html-italic">i</span>-th average image for (<b>a</b>) system one, (<b>b</b>) system two and (<b>c</b>) system three equipped with convex array probes in configuration B at 7.0 mL·s<sup>−1</sup>.</p> "> Figure 8
<p>Flow chart of the image analysis-based method for VeMeA parameter estimation.</p> "> Figure 9
<p>Flow chart of the image analysis-based method for temporal resolution parameter estimation.</p> "> Figure 10
<p>Kiviat diagrams for systems 1 (<b>a</b>,<b>b</b>), 2 (<b>c</b>,<b>d</b>) and 3 (<b>e</b>,<b>f</b>) equipped with phased array probes in configurations A (<b>a</b>,<b>c</b>,<b>e</b>) and B (<b>b</b>,<b>d</b>,<b>f</b>), for high flow rate regime <span class="html-italic">Q<sub>H</sub></span>. Each polygon area was normalized with respect to the gold standard one.</p> "> Figure 10 Cont.
<p>Kiviat diagrams for systems 1 (<b>a</b>,<b>b</b>), 2 (<b>c</b>,<b>d</b>) and 3 (<b>e</b>,<b>f</b>) equipped with phased array probes in configurations A (<b>a</b>,<b>c</b>,<b>e</b>) and B (<b>b</b>,<b>d</b>,<b>f</b>), for high flow rate regime <span class="html-italic">Q<sub>H</sub></span>. Each polygon area was normalized with respect to the gold standard one.</p> "> Figure 11
<p>Kiviat diagrams for systems 1 (<b>a</b>,<b>b</b>), 2 (<b>c</b>,<b>d</b>) and 3 (<b>e</b>,<b>f</b>) equipped with convex array probes in configurations A (<b>a</b>,<b>c</b>,<b>e</b>) and B (<b>b</b>,<b>d</b>,<b>f</b>), for medium flow rate regime <span class="html-italic">Q<sub>M</sub></span>. Each polygon area was normalized with respect to the gold standard one.</p> "> Figure 11 Cont.
<p>Kiviat diagrams for systems 1 (<b>a</b>,<b>b</b>), 2 (<b>c</b>,<b>d</b>) and 3 (<b>e</b>,<b>f</b>) equipped with convex array probes in configurations A (<b>a</b>,<b>c</b>,<b>e</b>) and B (<b>b</b>,<b>d</b>,<b>f</b>), for medium flow rate regime <span class="html-italic">Q<sub>M</sub></span>. Each polygon area was normalized with respect to the gold standard one.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Test Parameters for QA Protocol
2.2.1. Blind Angle
2.2.2. Registration Error
2.2.3. Average Maximum Velocity Sensitivity
2.2.4. Velocity Measurements Accuracy
2.2.5. Temporal Resolution
2.3. Data Normalization
3. Monte Carlo Simulation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoskins, P.R.; Martin, K.; Thrush, A. Diagnostic Ultrasound. Physics and Equipment, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wang, Y.; Chai, H.; Ye, R.; Li, J.; Liu, J.B.; Lin, C.; Peng, C. Point-of-care ultrasound: New concepts and future trends. Adv. Ultrasound Diagn. Ther. 2021, 5, 268–276. [Google Scholar] [CrossRef]
- Araneo, R.; Bini, F.; Rinaldi, A.; Notargiacomo, A.; Pea, M.; Celozzi, S. Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 2015, 26, 265402. [Google Scholar] [CrossRef] [PubMed]
- Bini, F.; Trimboli, P.; Marinozzi, F.; Giovanella, L. Treatment of benign thyroid nodules by high intensity focused ultrasound (HIFU) at different acoustic powers: A study on in-silico phantom. Endocrine 2018, 59, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Bini, F.; Pica, A.; Marrale, M.; Gagliardo, C.; Marinozzi, F. A 2D-FEM model of nonlinear ultrasound propagation in trans-cranial MRgFUS technique. In Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II. CMBBE 2021; Lecture Notes in Computational Vision and Biomechanics; Tavares, J.M.R.S., Bourauel, C., Geris, L., Vander Slote, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 38, pp. 74–89. [Google Scholar] [CrossRef]
- Anavekar, N.S.; Oh, J.K. Doppler echocardiography: A contemporary review. J. Cardiol. 2009, 54, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakata, M.; Sakuma, J.; Takano, M.; Nagasaki, S. Assessment of fetal cardiac function with echocardiography. J. Obstet. Gynaecol. Res. 2020, 46, 31–38. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, A.; Conte, M.; Scarafile, R.; Riegler, L.; Cocchia, R.; Pezzullo, E.; Cavallaro, M.; Carbone, A.; Natale, F.; Russo, M.G.; et al. Transcranial Doppler ultrasound: Physical principles and principal applications in neurocritical care Unit. J. Cardiovasc. Echogr. 2016, 26, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Demi, L.; Mento, F.; Di Sabatino, A.; Fiengo, A.; Sabatini, U.; Macioce, V.N.; Robol, M.; Tursi, F.; Sofia, C.; Di Cienzo, C.; et al. Lung ultrasound in COVID-19 and post-COVID-19 patients, an evidence-based approach. J. Ultrasound Med. 2022, 41, 2203–2215. [Google Scholar] [CrossRef]
- Kim, D.-M.; Park, S.-K.; Park, S.-G. A Study on the performance evaluation criteria and methods of abdominal ultrasound devices based on international standards. Safety 2021, 7, 31. [Google Scholar] [CrossRef]
- Evans, D.H.; Jensen, J.A.; Nielsen, M.B. Ultrasonic colour Doppler imaging. Interface Focus 2011, 1, 490–502. [Google Scholar] [CrossRef]
- Pozniak, A.; Allan, P.L. Clinical Doppler Ultrasound, 3rd ed.; Churchill Livingstone: London, UK, 2013. [Google Scholar]
- Meola, M.; Ibeas, J.; Lasalle, G.; Petrucci, I. Basics for performing a high-quality color Doppler sonography of the vascular access. J. Vasc. Access. 2021, 22, 18–31. [Google Scholar] [CrossRef]
- Hoskins, P. Accuracy of maximum velocity estimates made using Doppler ultrasound systems. Br. J. Radiol. 1996, 69, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.F. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound. Ultrasound Med. Biol. 2001, 27, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.E. A review of Doppler ultrasound quality assurance protocols and test devices. Phys. Med. 2014, 30, 742–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinozzi, F.; Branca, F.P.; Bini, F.; Scorza, A. Calibration procedure for performance evaluation of clinical pulsed Doppler systems. Measurement 2012, 45, 1334–1342. [Google Scholar] [CrossRef]
- Dudley, N.; Russell, S.; Ward, B.; Hoskins, P.; BMUS QA Working Party. BMUS guidelines for the regular quality assurance testing of ultrasound scanners by sonographers. Ultrasound 2014, 22, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.M.; Alvarenga, A.V.; Petrella, L.I.; Costa-Felix, R.P.B. Metrological assessment of image quality in ultrasonic medical diagnostic equipment. Res. Biomed. Eng. 2020, 36, 379–397. [Google Scholar] [CrossRef]
- Thijssen, J.M.; Weijers, G.; de Korte, C.L. Objective performance testing and quality assurance of medical ultrasound equipment. Ultrasound Med. Biol. 2007, 33, 460–471. [Google Scholar] [CrossRef]
- Kollmann, C.; deKorte, C.; Dudley, N.J.; Gritzmann, N.; Martin, K.; Evans, D.H.; EFSUMB Technical Quality Assurance Group--US-TQA/B. Guideline for Technical Quality Assurance (TQA) of ultrasound devices (B-Mode)—Version 1.0 (July 2012): EFSUMB Technical Quality Assurance Group—US-TQA/B. Ultraschall Med. 2012, 33, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Scorza, A.; Lupi, G.; Sciuto, S.A.; Bini, F.; Marinozzi, F. A novel approach to a phantom based method for maximum depth of penetration measurement in diagnostic ultrasound: A preliminary study. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Turin, Italy, 7–9 May 2015. [Google Scholar] [CrossRef]
- Sassaroli, E.; Crake, C.; Scorza, A.; Kim, D.S.; Park, M.A. Image quality evaluation of ultrasound imaging systems: Advanced B-modes. J. Appl. Clin. Med. Phys. 2019, 20, 115–124. [Google Scholar] [CrossRef]
- Browne, J.E.; Watson, A.J.; Hoskins, P.R.; Elliott, A.T. Validation of a sensitivity performance index test protocol and evaluation of colour Doppler sensitivity for a range of ultrasound scanners. Ultrasound Med. Biol. 2004, 30, 1475–1483. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.F.; Hangiandreou, N.J.; Carson, P. Clinical ultrasonography physics: State of practice. In Clinical Imaging Physics: Current and Emerging Practice, 1st ed.; Samei, E., Pfeiffer, D.E., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2020; pp. 261–286. [Google Scholar]
- Balbis, S.; Meloni, T.; Tofani, S.; Zenone, F.; Nucera, D.; Guiot, C. Criteria and scheduling of quality control of B-mode and Doppler ultrasonography equipment. J. Clin. Ultrasound 2012, 40, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, J.M.; van Wijk, M.C.; Cuypers, M.H.M. Performance testing of medical echo/Doppler equipment. Eur. J. Ultrasound 2002, 15, 151–164. [Google Scholar] [CrossRef] [PubMed]
- ACR–AAPM. Technical Standard for Diagnostic Medical Physics Performance Monitoring of Real Time Ultrasound Equipment; Revised 2021; ACR Guidelines and Standards Committee: Alexandria, VA, USA, 2021; Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/US-Equip.pdf (accessed on 25 November 2022).
- Saary, M.J. Radar plots: A useful way for presenting multivariate health care data. J. Clin. Epidemiol. 2008, 61, 311–317. [Google Scholar] [CrossRef]
- Wang, R.C.; Edgar, T.F.; Baldea, M.; Nixon, M.; Wojsznis, W.; Dunia, R. Process fault detection using time-explicit Kiviat diagrams. AlChE J. 2015, 61, 4277–4293. [Google Scholar] [CrossRef]
- Morales-Silva, D.M.; McPherson, C.S.; Pineda-Villavicencio, G.; Atchison, R. Using radar plots for performance benchmarking at patient and hospital levels using an Australian orthopaedics dataset. Health Inform. J. 2020, 26, 2119–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sistani, S.S.; Parooie, F. Diagnostic performance of ultrasonography in patients with pneumonia: An updated comparative systematic review and meta-analysis. J. Diagn. Med. Sonogr. 2021, 37, 371–381. [Google Scholar] [CrossRef]
- Vachutka, J.; Dolezal, L.; Kollmann, C.; Klein, J. The effect of dead elements on the accuracy of Doppler ultrasound measurements. Ultrason. Imaging 2014, 36, 18–34. [Google Scholar] [CrossRef]
- Weigang, B.; Moore, G.W.; Gessert, J.; Phillips, W.H.; Schafer, M. The methods and effects of transducer degradation on image quality and the clinical efficacy of diagnostic sonography. J. Diagn. Med. Sonog. 2003, 19, 3–13. [Google Scholar] [CrossRef]
- Fiori, G.; Scorza, A.; Schmid, M.; Galo, J.; Conforto, S.; Sciuto, S.A. A preliminary study on the blind angle estimation for quality assessment of color Doppler ultrasound diagnostic systems. In Proceedings of the 25th IMEKO TC4 International Symposium & 23rd International Workshop on ADC and DAC Modelling and Testing, Brescia, Italy, 12–14 September 2022; Available online: https://www.imeko.org/publications/tc4-2022/IMEKO-TC4-2022-60.pdf (accessed on 24 November 2022).
- Fiori, G.; Scorza, A.; Schmid, M.; Galo, J.; Conforto, S.; Sciuto, S.A. A first approach to the registration error assessment in quality controls of color Doppler ultrasound diagnostic systems. In Proceedings of the 25th IMEKO TC4 International Symposium & 23rd International Workshop on ADC and DAC Modelling and Testing, Brescia, Italy, 12–14 September 2022; Available online: https://www.imeko.org/publications/tc4-2022/IMEKO-TC4-2022-29.pdf (accessed on 24 November 2022).
- Fiori, G.; Scorza, A.; Schmid, M.; Galo, J.; Conforto, S.; Sciuto, S.A. A preliminary study on the average maximum velocity sensitivity index from flow velocity variation in quality control for color Doppler. Meas. Sens. 2021, 18, 100245. [Google Scholar] [CrossRef]
- AIUM American Institute of Ultrasound in Medicine. Performance Criteria and Measurements for Doppler Ultrasound Devices, 2nd ed.; American Institute of Ultrasound in Medicine: Laurel, MD, USA, 2002. [Google Scholar]
- IPEM Institute of Physics and Engineering in Medicine. Report 102: Quality Assurance of Ultrasound Imaging Systems, 1st ed.; IPEM Institute of Physics and Engineering in Medicine: York, UK, 2010. [Google Scholar]
- Sun Nuclear Corporation. Doppler 403™ & Mini-Doppler 1430™ Flow Phantoms. Available online: https://www.sunnuclear.com/uploads/documents/datasheets/Diagnostic/DopplerFlow_Phantoms_113020.pdf (accessed on 25 November 2022).
- Fiori, G.; Fuiano, F.; Scorza, A.; Schmid, M.; Galo, J.; Conforto, S.; Sciuto, S.A. A novel sensitivity index from the flow velocity variation in quality control for PW Doppler: A preliminary study. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Neuchâtel, Switzerland, 23–25 June 2021. [Google Scholar] [CrossRef]
- Fiori, G.; Fuiano, F.; Scorza, A.; Schmid, M.; Conforto, S.; Sciuto, S.A. Doppler flow phantom failure detection by combining empirical mode decomposition and independent component analysis with short time Fourier transform. Acta IMEKO 2021, 10, 185–193. [Google Scholar] [CrossRef]
- Fiori, G.; Fuiano, F.; Scorza, A.; Galo, J.; Conforto, S.; Sciuto, S.A. A preliminary study on the adaptive SNR threshold method for depth of penetration measurements in diagnostic ultrasounds. Appl. Sci. 2020, 10, 6533. [Google Scholar] [CrossRef]
- Scorza, A.; Pietrobon, D.; Orsini, F.; Sciuto, S.A. A preliminary study on a novel phantom based method for performance evaluation of clinical colour Doppler systems. In Proceedings of the 22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing, Iasi, Romania, 14–15 September 2017; Available online: https://www.imeko.org/publications/tc4-2017/IMEKO-TC4-2017-033.pdf (accessed on 24 November 2022).
- Bocchetta, G.; Fiori, G.; Scorza, A.; Sciuto, S.A. Image quality comparison of two different experimental setups for MEMS actuators functional evaluation: A preliminary study. In Proceedings of the 25th IMEKO TC4 International Symposium & 23rd International Workshop on ADC and DAC Modelling and Testing, Brescia, Italy, 12–14 September 2022; Available online: https://www.imeko.org/publications/tc4-2022/IMEKO-TC4-2022-59.pdf (accessed on 24 November 2022).
- Smith, A.R. Color gamut transform pairs. In Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), New York, NY, USA, 23–25 August 1978. [Google Scholar] [CrossRef]
- Evaluation of Measurement Data—Supplement 1 to the Guide to the Expression of Uncertainty in Measurement—Propagation of Distributions Using a Monte Carlo Method. 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf/325dcaad-c15a-407c-1105-8b7f322d651c (accessed on 25 November 2022).
- Fiori, G.; Fuiano, F.; Scorza, A.; Galo, J.; Conforto, S.; Sciuto, S.A. A preliminary study on an image analysis based method for lowest detectable signal measurements in pulsed wave Doppler ultrasounds. Acta IMEKO 2021, 10, 126–132. [Google Scholar] [CrossRef]
- Vurchio, F.; Fiori, G.; Scorza, A.; Sciuto, S.A. Comparative evaluation of three image analysis methods for angular displacement measurement in a MEMS microgripper prototype: A preliminary study. Acta IMEKO 2021, 10, 119–125. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Phantom model | Doppler 403TM flow phantom |
Scanning surface | patented composite film |
Attenuation coefficient | 0.70 ± 0.05 dB·cm−1·MHz−1 |
TMM (1) | patented high equivalence (HE) gelTM |
TMM sound speed | 1540 ± 10 m·s−1 |
BMF (2) sound speed | 1550 ± 10 m·s−1 |
Flow rates | customizable, constant and pulsatile |
Flow measurement range | (1.7–12.5) ± 0.4 mL·s−1 |
Horizontal vessel | 5.0 ± 0.2 mm inner diameter at 2 cm depth |
Diagonal vessel | 5.0 ± 0.2 mm inner diameter at 40° from 2 to 16 cm deep |
B-Mode Setting | Configuration A | Configuration B | |||||
---|---|---|---|---|---|---|---|
System One | System Two | System Three | System One | System Two | System Three | ||
B-mode frequency | resolution | resolution | resolution | resolution | resolution | resolution | |
Spatial compound imaging | ON | ON | ON | OFF | OFF | OFF | |
Field of view (cm) | FOV1 | 12 | 12 | 12 | 12 | 12 | 12 |
FOV2 | 5 | P: 4, C: 5 | P: 4, C: 6 | 5 | P: 4, C: 5 | P: 4, C: 6 | |
Video duration (s) | 3 | 3 | 3 | 3 | 3 | 3 | |
Frames resolution (px × px) | 576 × 1024 | 920 × 1260 | 480 × 640 | 576 × 1024 | 920 × 1260 | 480 × 640 | |
Color Doppler setting | |||||||
Nominal frequency (MHz) | P | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
C | 2.3 | 2.0 | 2.3 | 2.3 | 2.0 | 2.3 | |
Wall filter | P | medium | medium | medium | minimum | minimum | minimum |
C | medium | medium | maximum | minimum | minimum | minimum | |
Smoothing | P | medium | medium | minimum | minimum | minimum | minimum |
C | medium | maximum | medium | minimum | minimum | minimum | |
Color write priority | maximum | maximum | maximum | maximum | maximum | maximum | |
Line density | medium | medium | medium | low | low | low |
QA Test Parameter | Flow Mode | Flow Rate (mL·s−1) | ||
---|---|---|---|---|
Low QL | Medium QM | High QH | ||
Blind angle | constant | 2.0 | 6.0 | 10.0 |
Registration error | constant | 2.0 | 6.0 | 10.0 |
Average maximum velocity Sensitivity | constant | 2.5; 4.0 | 7.0; 8.5 | 10.0; 11.5 |
Velocity measurements accuracy | constant | 2.5 | 7.0 | 11.5 |
Temporal resolution | constant | – | 6.0 | – |
Variable | Symbol | Setting |
---|---|---|
Saturation filter threshold | thsat | 0.35 |
Number of average images | N | 6 |
Number of averaged frames (1) | M | P: 5, C: 4 |
Median filter kernel | k-by-k | 4-by-4 px |
Number of parallel flow axis | F | 3 |
Flow axis distance | d | 1 mm |
Blind threshold (2) | thblind | 10 |
Variable | Symbol | Setting |
---|---|---|
Brightness filter threshold | thb | μb(1) |
Saturation filter threshold | thsat | 0.35 |
Number of average images | N | 6 |
Number of averaged frames (2) | M | P: 5, C: 4 |
Blind threshold (3) | thblind | 10 |
Variable | Symbol | Setting |
---|---|---|
Saturation filter threshold | thsat | 0.35 |
Number of average images | N | 6 |
Number of averaged frames (1) | M | P: 5, C: 4 |
Number of rotated segments | K | 16 |
Covered central axis portion | D | 20 mm |
QA Test Parameter | Acronym | Optimal Value |
---|---|---|
Blind angle | BA | 0° |
Percentage registration error | RE% | 0% |
Average maximum velocity sensitivity | AMVS | 1 |
Velocity measurements accuracy | VeMeA | 0 |
Temporal resolution | TR | 0.5 |
Blind Angle Assessment | Symbol | Distribution | Mean ± SD |
---|---|---|---|
Saturation filter threshold | thsat ± σsat | uniform | 0.35 ± 0.01 |
Median filter kernel | k ± σk | uniform | 4 ± 1 px |
Flow axis distance | d ± σd | uniform | 1.0 ± 0.3 mm |
Blind threshold | thblind ± σblind | uniform | 10 ± 1 |
Registration error assessment | |||
Brightness filter threshold | thb ± σb | uniform | μb ± 0.06μb |
Saturation filter threshold | thsat ± σsat | uniform | 0.35 ± 0.01 |
Blind threshold | thblind ± σblind | uniform | 10 ± 1 |
AMVS and VeMeA assessment | |||
Saturation filter threshold | thsat ± σsat | uniform | 0.35 ± 0.01 |
Covered central axis portion | D ± σD | uniform | 20 ± 1 mm |
First segment position on the axis | x ± σx | uniform | x0 ± 1 mm (1) |
Temporal resolution assessment | |||
Duplex imaging frame rate | FRduplex ± σduplex | uniform | FRduplex ± 1 |
B-mode imaging frame rate | FRBmode ± σBmode | uniform | FRBmode ± 1 |
Color box area | Acolor ± σcolor | uniform | Acolor ± 0.03Acolor |
Total diagnostic area | Atot ± σtot | uniform | Atot ± 0.03Atot |
Probe Model | Flow Rate Regime | Configuration A | Configuration B | ||||
---|---|---|---|---|---|---|---|
System One | System Two | System Three | System One | System Two | System Three | ||
Phased array | QL | 15.7° ± 2.1° | 17.9° ± 1.6° | 6.9° ± 2.1° | 15.4° ± 2.3° | 19.2° ± 2.0° | 11.1° ± 2.6° |
QM | 9.8° ± 2.5° | 21.6° ± 1.6° | 12.8° ± 2.4° | 12.0° ± 2.5° | 18.1° ± 2.1° | 13.3° ± 2.5° | |
QH | 2.0° ± 1.1° | 2.0° ± 1.2° | 5.6° ± 1.2° | 0.5° ± 0.4° | 7.7° ± 2.4° | 7.4° ± 2.6° | |
Convex array | QL | 36° ± 3° | 30° ± 5° | 30° ± 6° | 20° ± 3° | 11° ± 3° | 10° ± 4° |
QM | 16.1° ± 2.7° | 36.8° ± 2.6° | 25° ± 6° | 13.1° ± 2.1° | 6.2° ± 2.6° | 17° ± 5° | |
QH | 5.6° ± 1.2° | 9.6° ± 2.8° | 27° ± 5° | 4.1° ± 1.3° | 2.0° ± 1.3° | 28° ± 5° |
Probe Model | Flow Rate Regime | Configuration A | Configuration B | ||||
---|---|---|---|---|---|---|---|
System One | System Two | System Three | System One | System Two | System Three | ||
Phased array | QL | (3.2 ± 1.9)% | (3.3 ± 1.2)% | (12 ± 8)% | (6.2 ± 2.1)% | (12.0 ± 2.8)% | (7.9 ± 2.3)% |
QM | (9.4 ± 2.9)% | (25 ± 14)% | (13 ± 6)% | (15 ± 3)% | (33 ± 12)% | (28 ± 7)% | |
QH | (20 ± 5)% | (34 ± 6)% | (27 ± 3)% | (18 ± 5)% | (55.1 ± 3.2)% | (48 ± 4)% | |
Convex array | QL | (25.2 ± 2.2)% | (15.3 ± 0.4)% | (4.8 ± 1.4)% | (22.3 ± 1.4)% | (12.6 ± 0.9)% | (15.0 ± 2.8)% |
QM | (36 ± 5)% | (32 ± 6)% | (3.2 ± 1.4)% | (20 ± 3)% | (32 ± 7)% | (25 ± 7)% | |
QH | (34.3 ± 1.7)% | (20 ± 3)% | (23 ± 3)% | (36.4 ± 1.8)% | (16 ± 3)% | (30 ± 7)% |
Probe Model | Flow Rate Regime | Configuration A | Configuration B | ||||
---|---|---|---|---|---|---|---|
System One | System Two | System Three | System One | System Two | System Three | ||
Phased array | QL | 0.44 ± 0.12 | 0.55 ± 0.15 | 0.44 ± 0.12 | 0.41 ± 0.11 | 0.55 ± 0.15 | 0.58 ± 0.15 |
QM | 0.51 ± 0.21 | 0.59 ± 0.42 | 0.29 ± 0.16 | 0.53 ± 0.21 | 0.43 ± 0.36 | 0.39 ± 0.18 | |
QH | 0.50 ± 0.26 | 0.07 ± 0.20 | 0.39 ± 0.25 | 0.48 ± 0.25 | 0.03 ± 0.14 | 0.68 ± 0.40 | |
Convex array | QL | 0.54 ± 0.14 | 0.62 ± 0.16 | 0.48 ± 0.12 | 0.45 ± 0.12 | 0.60 ± 0.15 | 0.46 ± 0.12 |
QM | 0.36 ± 0.18 | 0.39 ± 0.17 | 0.45 ± 0.17 | 0.30 ± 0.17 | 0.48 ± 0.19 | 0.48 ± 0.18 | |
QH | 0.33 ± 0.22 | 0.57 ± 0.27 | 0.55 ± 0.27 | 0.33 ± 0.25 | 0.43 ± 0.31 | 0.54 ± 0.45 |
Probe Model | Flow Rate Regime | Configuration A | Configuration B | ||||
---|---|---|---|---|---|---|---|
System One | System Two | System Three | System One | System Two | System Three | ||
Phased array | QL | 0.38 ± 0.07 | 0.18 ± 0.12 | 0.38 ± 0.08 | 0.44 ± 0.06 | 0.20 ± 0.12 | 0.17 ± 0.09 |
QM | 0.50 ± 0.04 | 0.12 ± 0.07 | 0.34 ± 0.04 | 0.49 ± 0.04 | 0.25 ± 0.07 | 0.33 ± 0.04 | |
QH | 0.42 ± 0.03 | 0.14 ± 0.05 | 0.43 ± 0.04 | 0.47 ± 0.03 | 0.32 ± 0.07 | 0.49 ± 0.04 | |
Convex array | QL | 0.24 ± 0.08 | 0.05 ± 0.11 | 0.20 ± 0.08 | 0.17 ± 0.08 | 0.09 ± 0.11 | 0.20 ± 0.08 |
QM | 0.30 ± 0.04 | 0.19 ± 0.05 | 0.25 ± 0.04 | 0.30 ± 0.04 | 0.17 ± 0.06 | 0.29 ± 0.04 | |
QH | 0.39 ± 0.03 | 0.42 ± 0.04 | 0.51 ± 0.05 | 0.33 ± 0.04 | 0.40 ± 0.04 | 0.64 ± 0.03 |
Probe Model | CD Line Density | Configuration A | Configuration B | ||||
---|---|---|---|---|---|---|---|
System One | System Two | System Three | System One | System Two | System Three | ||
Phased array | LDL | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.07 ± 0.01 | 0.17 ± 0.01 | 0.12 ± 0.01 | 0.08 ± 0.01 |
LDM | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.06 ± 0.01 | 0.14 ± 0.01 | 0.10 ± 0.01 | 0.06 ± 0.01 | |
LDH | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.05 ± 0.01 | 0.11 ± 0.01 | 0.09 ± 0.01 | 0.06 ± 0.01 | |
Convex array | LDL | 0.10 ± 0.01 | 0.18 ± 0.02 | 0.17 ± 0.01 | 0.14 ± 0.02 | 0.21 ± 0.02 | 0.19 ± 0.01 |
LDM | 0.09 ± 0.01 | 0.14 ± 0.02 | 0.13 ± 0.01 | 0.12 ± 0.02 | 0.16 ± 0.02 | 0.15 ± 0.01 | |
LDH | 0.07 ± 0.01 | 0.12 ± 0.02 | 0.11 ± 0.01 | 0.10 ± 0.02 | 0.14 ± 0.02 | 0.12 ± 0.01 |
US System | Configuration | BA* | RE* | AMVS* | VeMeA* | TR* | S* ± σS* |
---|---|---|---|---|---|---|---|
1 | A | 0.96 ± 0.02 | 0.80 ± 0.05 | 0.50 ± 0.26 | 0.58 ± 0.03 | 0.40 ± 0.02 | 0.41 ± 0.07 |
B | 0.99 ± 0.01 | 0.82 ± 0.05 | 0.48 ± 0.25 | 0.53 ± 0.03 | 0.53 ± 0.02 | 0.45 ± 0.07 | |
2 | A | 0.95 ± 0.03 | 0.66 ± 0.06 | 0.07 ± 0.20 | 0.86 ± 0.05 | 0.42 ± 0.02 | 0.33 ± 0.04 |
B | 0.83 ± 0.05 | 0.45 ± 0.03 | 0.03 ± 0.14 | 0.68 ± 0.07 | 0.45 ± 0.02 | 0.23 ± 0.03 | |
3 | A | 0.86 ± 0.03 | 0.73 ± 0.03 | 0.39 ± 0.25 | 0.57 ± 0.04 | 0.35 ± 0.03 | 0.33 ± 0.06 |
B | 0.84 ± 0.06 | 0.52 ± 0.04 | 0.68 ± 0.40 | 0.51 ± 0.04 | 0.35 ± 0.03 | 0.32 ± 0.08 |
US System | Configuration | BA* | RE* | AMVS* | VeMeA* | TR* | S* ± σS* |
---|---|---|---|---|---|---|---|
1 | A | 0.64 ± 0.06 | 0.64 ± 0.05 | 0.36 ± 0.18 | 0.70 ± 0.04 | 0.42 ± 0.02 | 0.29 ± 0.05 |
B | 0.71 ± 0.05 | 0.80 ± 0.03 | 0.30 ± 0.17 | 0.70 ± 0.04 | 0.49 ± 0.04 | 0.34 ± 0.05 | |
2 | A | 0.18 ± 0.06 | 0.68 ± 0.06 | 0.39 ± 0.17 | 0.81 ± 0.05 | 0.53 ± 0.04 | 0.25 ± 0.05 |
B | 0.86 ± 0.06 | 0.68 ± 0.07 | 0.48 ± 0.19 | 0.83 ± 0.06 | 0.56 ± 0.04 | 0.45 ± 0.06 | |
3 | A | 0.44 ± 0.14 | 0.97 ± 0.01 | 0.45 ± 0.17 | 0.75 ± 0.04 | 0.51 ± 0.02 | 0.36 ± 0.07 |
B | 0.62 ± 0.11 | 0.75 ± 0.07 | 0.48 ± 0.18 | 0.71 ± 0.04 | 0.55 ± 0.02 | 0.38 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiori, G.; Pica, A.; Sciuto, S.A.; Marinozzi, F.; Bini, F.; Scorza, A. A Comparative Study on a Novel Quality Assessment Protocol Based on Image Analysis Methods for Color Doppler Ultrasound Diagnostic Systems. Sensors 2022, 22, 9868. https://doi.org/10.3390/s22249868
Fiori G, Pica A, Sciuto SA, Marinozzi F, Bini F, Scorza A. A Comparative Study on a Novel Quality Assessment Protocol Based on Image Analysis Methods for Color Doppler Ultrasound Diagnostic Systems. Sensors. 2022; 22(24):9868. https://doi.org/10.3390/s22249868
Chicago/Turabian StyleFiori, Giorgia, Andrada Pica, Salvatore Andrea Sciuto, Franco Marinozzi, Fabiano Bini, and Andrea Scorza. 2022. "A Comparative Study on a Novel Quality Assessment Protocol Based on Image Analysis Methods for Color Doppler Ultrasound Diagnostic Systems" Sensors 22, no. 24: 9868. https://doi.org/10.3390/s22249868
APA StyleFiori, G., Pica, A., Sciuto, S. A., Marinozzi, F., Bini, F., & Scorza, A. (2022). A Comparative Study on a Novel Quality Assessment Protocol Based on Image Analysis Methods for Color Doppler Ultrasound Diagnostic Systems. Sensors, 22(24), 9868. https://doi.org/10.3390/s22249868