Multi-UAV Path Planning Algorithm Based on BINN-HHO
<p>Three-dimensional digital map.</p> "> Figure 2
<p>Local space model.</p> "> Figure 3
<p>Cooperative obstacle avoidance model.</p> "> Figure 4
<p>Flowchart of multi-UAV path planning based on BINN-HHO.</p> "> Figure 5
<p>Single-UAV path planning based on BINN-HHO in a static environment: (<b>a</b>) 2D; (<b>b</b>) 3D.</p> "> Figure 6
<p>Evolution curves of cost function values in a static environment.</p> "> Figure 7
<p>Path length of the competitor algorithms (unit: km).</p> "> Figure 8
<p>Path planning results of BINN-HHO on a 2D simulation map. (<b>a</b>) Static case I. (<b>b</b>) Static case II.</p> "> Figure 9
<p>Path planning results of BINN-HHO on a 3D simulation map. (<b>a</b>) Static case I. (<b>b</b>) Static case II.</p> "> Figure 10
<p>Path planning results of BINN-HHO in a static environment (unit: km). (<b>a</b>) Static case I. (<b>b</b>) Static case II.</p> "> Figure 11
<p>Single-UAV path planning results of BINN-HHO on a 2D simulation map. (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> "> Figure 12
<p>Single-UAV path planning results of BINN-HHO on a 3D simulation map. (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> "> Figure 13
<p>Evolution curves of cost function values in a dynamic environment. (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> "> Figure 14
<p>Single-UAV path planning results of BINN-HHO in a dynamic environment (unit: km). (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> "> Figure 15
<p>Multi-UAV path planning results of BINN-HHO on a 2D simulation map. (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> "> Figure 16
<p>Multi-UAV path planning results of BINN-HHO on a 3D simulation map. (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> "> Figure 17
<p>Multi-UAV path planning results of BINN-HHO in a dynamic environment (unit: km). (<b>a</b>) Dynamic case I. (<b>b</b>) Dynamic case II.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Modeling and Constraints
3.1. Environmental Modeling
3.2. Cooperative Obstacle Avoidance Constraints
3.3. Path Cost Function
3.4. Path Constraints
- A.
- Constraint on the Maximum Path
- B.
- Constraint on the Minimum Ground Clearance
- C.
- Constraint on the Maximum Climb Angle
4. Overview of HHO
4.1. Global Exploration
4.2. Local Exploitation
- A.
- Soft siege
- B.
- Hard siege
- C.
- Soft siege with progressive rapid dives
- D.
- Hard siege with progressive rapid dives
5. Path Planning Algorithm Based on BINN-HHO
5.1. Global Path Planning Based on HHO with Energy Cycle Decline Mechanism
5.2. Local Path Replanning Based on Improved Bioinspired Neural Network
5.3. Main Frame of Path Planning Based on BINN-HHO
Algorithm 1 Multi-UAV Path Planning Based on BINN-HHO |
Inputs: The starting point, the ending point and threat environment information |
Outputs: Optimal path length and corresponding trajectory diagram |
Initialize the random population Xi (i = 1; 2; … N) |
While (t < T) Calculate the fitness value of Harris hawks; Set the parameter Xprey as the best position of the prey; for(each Harris hawk (Xi)) do Update the initial energy E0 and jump strength J using Equation (12) and Equation (17); Update E using Equation (23); If (|E| ≥ 1) then // Exploration stage Update the location vector using Equation (13); If (|E| < 1) then // Exploitation stage If (u ≥ 0.5 and |E| ≥ 0.5) then // Soft siege Update the location vector using Equation (15); If (u ≥ 0.5 and |E| < 0.5) then // Hard siege Update the location vector using Equation (18); If (u < 0.5 and |E| ≥ 0.5) then // Soft siege with progressive rapid dives Update the location vector using Equation (19); If (u < 0.5 and |E| < 0.5) then // Hard siege with progressive rapid dives Update the location vector using Equation (22); end end end end for i = 1: node if (obstacle_flag = 1) %If the radar detects an obstacle Initialize the neuron activity value; target = i + 1; %Set the next global node to be the target point of the local programming while Reach the target point do Use Equation (2) and Equation (3) to assign value to the state information of each neuron according to the environmental information Calculate the activity value of each alternative neuron by Equation (24) Select the neighboring neuron with the highest activity as the next step length by Equation (27) Update the location of neurons end end end |
- Step 1: Establish a 3D mountain model, set the threat zone, and initialize the parameters.
- Step 2: The global static optimal path is obtained according to the HHO algorithm using a periodic decrement mechanism.
- Step 3: During the UAV flight, the sensor detects whether there is a dynamic obstacle in front of it. If there is a dynamic obstacle, the algorithm initializes the neuron activity value, and the BINN is used for local dynamic obstacle avoidance. After the dynamic obstacle disappears, the UAV returns to the predetermined orbit and follows the predetermined trajectory to reach the destination.
- Step 4: Output the best path.
6. Experimental Results and Analysis
6.1. Parameter Settings
6.2. Static Environment Contrast Experiment
- A.
- Single-UAV Path Planning under a Static Environment
- B.
- Multi-UAV Path Planning under Static Environment
6.3. Dynamic Environment Experiment
- A.
- Single-UAV Path Planning under Dynamic Environment
- B.
- Multi-UAV Path Planning under Dynamic Environment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tu, T.; Zhou, H.; Qian, B.; Fu, A. A large-scale clustering and 3D trajectory optimization approach for UAV swarms. Sci. China-Inf. Sci. 2021, 64, 140306. [Google Scholar]
- Zhang, R.; Li, S.; Ding, Y.; Qin, X.; Xia, Q. UAV Path Planning Algorithm Based on Improved Harris Hawks Optimization. Sensors 2022, 22, 5232. [Google Scholar] [CrossRef] [PubMed]
- Thibbotuwawa, A.; Bocewicz, G.; Radzki, G.; Nielsen, P.; Banaszak, Z. UAV Mission Planning Resistant to Weather Uncertainty. Sensors 2020, 20, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, Z.; Zhang, S.; Chen, S.; Harper, Z.; Zheng, N. A Global-Local Coupling Two-Stage Path Planning Method for Mobile Robots. IEEE Robot. Autom. Lett. 2021, 6, 5349–5356. [Google Scholar] [CrossRef]
- Kobayashi, M.; Naoki, M. Local Path Planning: Dynamic Window Approach With Virtual Manipulators Considering Dynamic Obstacles. IEEE Access 2022, 10, 17018–17029. [Google Scholar] [CrossRef]
- Saeed, R.A.; Omri, M.; Abdel-Khalek, S.; Ali, E.S.; Alotaibi, M.F. Optimal path planning for drones based on swarm intelligence algorithm. Neural Comput. Appl. 2022, 34, 10133–10155. [Google Scholar] [CrossRef]
- Yasin, B.; Hulusi, K.; Du, Y. Red deer algorithm based selective harmonic elimination for renewable energy application with unequal DC sources. Energy Rep. 2022, 8, 588–596. [Google Scholar]
- Li, Z.; Deng, Y.; Liu, W. Identification of INS Sensor Errors from Navigation Data Based on Improved Pigeon-Inspired Optimization. Drones 2022, 6, 287. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Liu, H.; Tian, X.; Gao, M. An improved ant colony algorithm for robot path planning. Soft Comput. 2017, 21, 5829–5839. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, Y.; Xie, A.; Kong, L. A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV. Chin. J. Aeronaut. 2021, 34, 199–209. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, X.; Hao, J. A Novel UAV Path Planning Algorithm Based on Double-Dynamic Biogeography-Based Learning Particle Swarm Optimization. Mob. Inf. Syst. 2022, 2022, 8519708. [Google Scholar] [CrossRef]
- Huang, Z.; Jin, C. A Novel Particle Swarm Optimization Algorithm Based on Reinforcement Learning Mechanism for AUV Path Planning. Complexity 2021, 2021, 8993173. [Google Scholar] [CrossRef]
- Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A Modified Sparrow Search Algorithm with Application in 3d Route Planning for UAV. Sensors 2021, 21, 1224. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Zhang, D.; Niu, B. A hybrid approach to artificial bee colony algorithm. Neural Comput. Appl. 2016, 27, 387–409. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, J.; Zeng, J.; Tang, J. Three-dimensional path planning for autonomous underwater vehicles based on a whale optimization algorithm. Ocean Eng. 2022, 250, 111070. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, J.; Zeng, J.; Tang, J. Two-dimensional optimal path planning for autonomous underwater vehicle using a whale optimization algorithm. Concurr. Comput.-Pract. Exp. 2021, 33, e6140. [Google Scholar] [CrossRef]
- Wang, T.; Xue, Z.; Dong, X.; Xie, S. an improved ant colony algorithm with dynamic adaptive parameters was proposed to complete the path planning work. Robotica 2021, 39, 428–437. [Google Scholar] [CrossRef]
- Yan, F. Gauss interference ant colony algorithm-based optimization of UAV mission planning. J. Supercomput. 2020, 76, 1170–1179. [Google Scholar] [CrossRef]
- Yu, W.; Liu, J.; Zhou, J. A Novel Sparrow Particle Swarm Algorithm (SPSA) for Unmanned Aerial Vehicle Path Planning. Sci. Program. 2021, 2021, 5158304. [Google Scholar] [CrossRef]
- Qie, H.; Shi, D.; Shen, T.; Xu, X.; Li, Y.; Wang, L. Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 146264–146272. [Google Scholar] [CrossRef]
- Liu, X.; Du, X.; Zhang, X.; Zhu, Q.; Guizani, M. Evolution-algorithm-based unmanned aerial vehicles path planning in complex environment. Comput. Electr. Eng. 2019, 80, 106493. [Google Scholar] [CrossRef]
- Yao, M.; Zhao, M. Unmanned aerial vehicle dynamic path planning in an uncertain environment. Robotica 2015, 33, 611–621. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, J.; Zhang, G.; Xie, S.; Ding, Y.; Liu, Z. UAV Dynamic Path Planning Based on Obstacle Position Prediction in an Unknown Environment. IEEE Access 2021, 9, 154679–154691. [Google Scholar] [CrossRef]
- Wang, B.; Bao, J.; Zhang, L.; Sheng, Q. UAV autonomous path optimization simulation based on radar tracking prediction. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 239. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, L.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Qu, C.; He, W.; Peng, X. Harris Hawks optimization with information exchange. Appl. Math. Model. 2020, 84, 52–75. [Google Scholar] [CrossRef]
- Krishna, A.B.; Saxena, S.; Kamboj, V.K. A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Neural Comput. Appl. 2021, 33, 7031–7072. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Liu, T.; Tang, J. Improved Artificial Bee Colony Algorithm Based on Harris Hawks Optimization. J. Internet Technol. 2022, 23, 379–389. [Google Scholar] [CrossRef]
- Nandi, A.; Kamboj, V.K. A Canis lupus inspired upgraded Harris hawks optimizer for nonlinear, constrained, continuous, and discrete engineering design problem. Int. J. Numer. Methods Eng. 2021, 122, 1051–1088. [Google Scholar] [CrossRef]
- Liu, C. An improved Harris hawks optimizer for job-shop scheduling problem. J. Supercomput. 2021, 77, 14090–14129. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Li, M.; Zhang, Z.; Cao, N.; Shang, J. Multi-UAV Path Planning Based on Fusion of Sparrow Search Algorithm and Improved Bioinspired Neural Network. IEEE Access 2021, 9, 124670–124681. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, L.; Yu, D.; Tu, J. Improved harris hawks optimization coupling energy cycle decline mechanism and Newton local enhancement strategy. Control Decis. 2021, 36, 629–636. [Google Scholar]
- Alejandro, P.C.; Daniel, P.; Alejandro, P.; Enrique, F.B. A review of artifificial intelligence applied to path planning in UAV swarms. Neural Comput. Appl. 2022, 34, 153–170. [Google Scholar]
- Liu, Y.; Cao, B. A Novel Ant Colony Optimization Algorithm With Levy Flight. IEEE Access 2020, 8, 67205–67213. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bltn Mathcal Biol. 1990, 52, 25–71. [Google Scholar] [CrossRef]
- Stephen, G. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 1988, 1, 17–61. [Google Scholar]
Parameter | Meaning | Value |
---|---|---|
ω1 | Weight coefficient of path length | 0.5 |
ω2 | Weight coefficient of average flight height | 0.3 |
ω3 | Weight coefficient of comprehensive threat index | 0.2 |
T | Maximum iteration | 200 |
N | Population size | 30 |
D | Problem dimension | 30 |
Lmax | Maximum path | 200 |
hmin | Minimum ground clearance | 5 |
Maximum climb angle | 90 |
Case | Threat Area Coordinates | Radius |
---|---|---|
Static case I | (60, 75, 0) | 13 |
(70, 40, 0) | 13 | |
Static case II | (40, 60, 0) | 10 |
(60, 40, 0) | 10 | |
(60, 70, 0) | 10 | |
(80, 50, 0) | 10 |
Case | The Starting Point | Direction |
---|---|---|
Dynamic case I | (50, 55, 13) | y-direction |
(90, 30, 13) | x-direction | |
Dynamic case II | (60, 50, 13) | y-direction |
(80, 40, 13) | x-direction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, R.; Ding, Y.; Qin, X.; Han, Y.; Zhang, H. Multi-UAV Path Planning Algorithm Based on BINN-HHO. Sensors 2022, 22, 9786. https://doi.org/10.3390/s22249786
Li S, Zhang R, Ding Y, Qin X, Han Y, Zhang H. Multi-UAV Path Planning Algorithm Based on BINN-HHO. Sensors. 2022; 22(24):9786. https://doi.org/10.3390/s22249786
Chicago/Turabian StyleLi, Sen, Ran Zhang, Yuanming Ding, Xutong Qin, Yajun Han, and Huiting Zhang. 2022. "Multi-UAV Path Planning Algorithm Based on BINN-HHO" Sensors 22, no. 24: 9786. https://doi.org/10.3390/s22249786
APA StyleLi, S., Zhang, R., Ding, Y., Qin, X., Han, Y., & Zhang, H. (2022). Multi-UAV Path Planning Algorithm Based on BINN-HHO. Sensors, 22(24), 9786. https://doi.org/10.3390/s22249786