Automatic Gender and Age Classification from Offline Handwriting with Bilinear ResNet
<p>B-ResNet architecture. The input image patch contains Hebrew handwriting.</p> "> Figure 2
<p>Sample images from the QUWI dataset (top) with Arabic and English handwriting, the KHATT dataset (middle) with Arabic handwriting, and the HHD dataset (bottom) with Hebrew handwriting.</p> "> Figure 3
<p>The pipeline of the classification procedure. F and M stand for female and male, respectively. The input image contains Hebrew handwriting.</p> ">
Abstract
:1. Introduction
2. Background and Related Work
2.1. Gender Classification
2.2. Age Classification
2.3. Bilinear CNNs
3. Methodology
3.1. B-ResNet
3.2. Datasets
3.3. Experimental Settings
4. Results and Discussions
4.1. Gender Classification
4.1.1. The Results on the KHATT Dataset
4.1.2. The Results on the ICDAR 2013 Dataset
4.1.3. The Results on the HHD Dataset
4.2. Age Classification
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huber, R.A.; Headrick, A.M. Handwriting Identification: Facts and Fundamentals; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Hamid, S.; Loewenthal, K.M. Inferring gender from handwriting in Urdu and English. J. Soc. Psychol. 1996, 136, 778–782. [Google Scholar] [CrossRef]
- Upadhyay, S.; Singh, J.; Shukla, S. Determination of Sex Through Handwriting Characteristics. Int. J. Curr. Res. Rev. 2017, 9, 11. [Google Scholar] [CrossRef]
- Hardyck, C.; Goldman, R.; Petrinovich, L. Handedness and sex, race, and age. Hum. Biol. 1975, 47, 369–375. [Google Scholar]
- Vlachos, F.; Bonoti, F. Explaining age and sex differences in children’s handwriting: A neurobiological approach. Eur. J. Dev. Psychol. 2006, 3, 113–123. [Google Scholar] [CrossRef]
- Marzinotto, G.; Rosales, J.C.; El-Yacoubi, M.A.; Garcia-Salicetti, S.; Kahindo, C.; Kerhervé, H.; Cristancho-Lacroix, V.; Rigaud, A.S. Age-related evolution patterns in online handwriting. Comput. Math. Methods Med. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear convolutional neural networks for fine-grained visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1309–1322. [Google Scholar] [CrossRef]
- Rabaev, I.; Litvak, M.; Asulin, S.; Tabibi, O.H. Automatic Gender Classification from Handwritten Images: A Case Study. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Online, 28–29 September 2021; pp. 329–339. [Google Scholar] [CrossRef]
- Navya, B.; Shivakumara, P.; Shwetha, G.; Roy, S.; Guru, D.; Pal, U.; Lu, T. Adaptive multi-gradient kernels for handwritting based gender identification. In Proceedings of the International Conference on Frontiers in Handwriting Recognition, ICFHR, Niagara Falls, NY, USA, 5–8 August 2018; pp. 392–397. [Google Scholar] [CrossRef]
- Navya, B.; Swetha, G.C.; Shivakumara, P.; Roy, S.; Guru, D.S.; Pal, U.; Lu, T. Multi-Gradient Directional Features for Gender Identification. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 3657–3662. [Google Scholar] [CrossRef]
- Ahmed, M.; Rasool, A.G.; Afzal, H.; Siddiqi, I. Improving handwriting based gender classification using ensemble classifiers. Expert Syst. Appl. 2017, 85, 158–168. [Google Scholar] [CrossRef]
- Akbari, Y.; Nouri, K.; Sadri, J.; Djeddi, C.; Siddiqi, I. Wavelet-based gender detection on off-line handwritten documents using probabilistic finite state automata. Image Vis. Comput. 2017, 59, 17–30. [Google Scholar] [CrossRef]
- Alaei, F.; Alaei, A. Gender Detection Based on Spatial Pyramid Matching. In Proceedings of the International Conference on Document Analysis and Recognition, Lausanne, Switzerland, 5–10 September 2021; Volume 12824 LNCS, pp. 305–317. [Google Scholar] [CrossRef]
- Bi, N.; Suen, C.Y.; Nobile, N.; Tan, J. A multi-feature selection approach for gender identification of handwriting based on kernel mutual information. Pattern Recognit. Lett. 2019, 121, 123–132. [Google Scholar] [CrossRef]
- Bouadjenek, N.; Nemmour, H.; Chibani, Y. Age, gender and handedness prediction from handwriting using gradient features. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Nancy, France, 23–26 August 2015; pp. 1116–1120. [Google Scholar] [CrossRef]
- Bouadjenek, N.; Nemmour, H.; Chibani, Y. Robust soft-biometrics prediction from off-line handwriting analysis. Appl. Soft Comput. 2016, 46, 980–990. [Google Scholar] [CrossRef]
- Bouadjenek, N.; Nemmour, H.; Chibani, Y. Fuzzy integrals for combining multiple SVM and histogram features for writer’s gender prediction. IET Biom. 2017, 6, 429–437. [Google Scholar] [CrossRef]
- Gattal, A.; Djeddi, C.; Siddiqi, I.; Chibani, Y. Gender classification from offline multi-script handwriting images using oriented Basic Image Features (oBIFs). Expert Syst. Appl. 2018, 99, 155–167. [Google Scholar] [CrossRef]
- Likforman-Sulem, L.; Cordasco, G.; Esposito, A. Is On-Line Handwriting Gender-Sensitive? What Tells us a Combination of Statistical and Machine Learning Approaches. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, Paris, France, 1–3 June 2022; pp. 287–298. [Google Scholar] [CrossRef]
- Maken, P.; Gupta, A. A method for automatic classification of gender based on text-independent handwriting. Multimed. Tools Appl. 2021, 80, 4573–24602. [Google Scholar] [CrossRef]
- Moetesum, M.; Siddiqi, I.; Djeddi, C.; Hannad, Y.; Al-Maadeed, S. Data driven feature extraction for gender classification using multi-script handwritten texts. In Proceedings of the International Conference on Frontiers in Handwriting Recognition, ICFHR, Niagara Falls, NY, USA, 5–8 August 2018; pp. 564–569. [Google Scholar] [CrossRef]
- Siddiqi, I.; Djeddi, C.; Raza, A.; Souici-meslati, L. Automatic analysis of handwriting for gender classification. Pattern Anal. Appl. 2015, 18, 887–899. [Google Scholar] [CrossRef]
- Tan, J.; Bi, N.; Suen, C.Y.; Nobile, N. Multi-feature Selection of Handwriting for Gender Identification Using Mutual Information. In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016; pp. 578–583. [Google Scholar] [CrossRef]
- Topaloglu, M.; Ekmekci, S. Gender detection and identifying one’s handwriting with handwriting analysis. Expert Syst. Appl. 2017, 79, 236–243. [Google Scholar] [CrossRef]
- Mirza, A.; Moetesum, M.; Siddiqi, I.; Djeddi, C. Gender classification from offline handwriting images using textural features. In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016; pp. 395–398. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Hassaïne, A.; Al Maadeed, S.; Aljaam, J.; Jaoua, A. ICDAR 2013 competition on gender prediction from handwriting. In Proceedings of the International Conference on Document Analysis and Recognition, Washington, DC, USA, 25–28 August 2013; pp. 1417–1421. [Google Scholar] [CrossRef]
- Djeddi, C.; Al-Maadeed, S.; Gattal, A.; Siddiqi, I.; Souici-Meslati, L.; Abed, H.E. ICDAR2015 competition on Multi-script Writer Identification and Gender Classification using ‘QUWI’ Database. In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, Nancy, France, 23–26 August 2015; pp. 1191–1195. [Google Scholar] [CrossRef]
- Djeddi, C.; Al-Maadeed, S.; Gattal, A.; Siddiqi, I.; Ennaji, A.; El Abed, H. ICFHR2016 Competition on multi-script writer demographics classification using “QUWI” database. In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016; pp. 602–606. [Google Scholar] [CrossRef]
- Gornale, S.S.; Kumar, S.; Patil, A.; Hiremath, P.S. Behavioral biometric data analysis for gender classification using feature fusion and machine learning. Front. Robot. AI 2021, 8, 685966. [Google Scholar] [CrossRef]
- Dargan, S.; Kumar, M.; Tuteja, S. PCA-based gender classification system using hybridization of features and classification techniques. Soft Comput. 2021, 25, 15281–15295. [Google Scholar] [CrossRef]
- Illouz, E.; David, E.O.; Netanyahu, N.S. Handwriting-based gender classification using end-to-end deep neural networks. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; pp. 613–621. [Google Scholar] [CrossRef] [Green Version]
- Xue, G.; Liu, S.; Gong, D.; Ma, Y. ATP-DenseNet: A hybrid deep learning-based gender identification of handwriting. Neural Comput. Appl. 2021, 33, 4611–4622. [Google Scholar] [CrossRef]
- Rahmanian, M.; Shayegan, M.A. Handwriting-based gender and handedness classification using convolutional neural networks. Multimed. Tools Appl. 2021, 80, 35341–35364. [Google Scholar] [CrossRef]
- Bouadjenek, N.; Nemmour, H.; Chibani, Y. Fuzzy integral for combining SVM-based handwritten soft-biometrics prediction. In Proceedings of the 2016 12th IAPR Workshop on Document Analysis Systems (DAS), Santorini, Greece, 11–14 April 2016; pp. 311–316. [Google Scholar]
- Al Emran, M.; Naief, S.; Hossain, M. Handwritten Character Recognition and Prediction of Age, Gender and Handedness Using Machine Learning. Ph.D. Thesis, BRAC University, Dhaka, Bangladesh, 2018. [Google Scholar]
- Upadhyay, S.; Singh, J. Estimation of age through handwriting characteristics in female writers. Indian J. Sci. Technol. 2017, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zouaoui, F.; Bouadjenek, N.; Nemmour, H.; Chibani, Y. Co-training approach for improving age range prediction from handwritten text. In Proceedings of the 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–5. [Google Scholar]
- Basavaraja, V.; Shivakumara, P.; Guru, D.S.; Pal, U.; Lu, T.; Blumenstein, M. Age Estimation using Disconnectedness Features in Handwriting. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019; pp. 1131–1136. [Google Scholar] [CrossRef]
- Al-Showarah, S.A. Dynamic recognition for user age-group classification using hand-writing based finger on smartphones. In Proceedings of the 2019 10th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 11–13 June 2019; pp. 140–146. [Google Scholar]
- Shin, J.; Maniruzzaman, M.; Uchida, Y.; Hasan, M.; Mehedi, A.; Megumi, A.; Suzuki, A.; Yasumura, A. Important Features Selection and Classification of Adult and Child from Handwriting Using Machine Learning Methods. Appl. Sci. 2022, 12, 5256. [Google Scholar] [CrossRef]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN models for fine-grained visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Mahmoud, S.A.; Ahmad, I.; Alshayeb, M.; Al-Khatib, W.G.; Parvez, M.T.; Fink, G.A.; Märgner, V.; El Abed, H. KHATT: Arabic offline handwritten text database. In Proceedings of the 2012 International Conference on Frontiers in Handwriting Recognition, Bari, Italy, 18–20 September 2012; pp. 449–454. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Ahmad, I.; Al-Khatib, W.G.; Alshayeb, M.; Parvez, M.T.; Märgner, V.; Fink, G.A. KHATT: An open Arabic offline handwritten text database. Pattern Recognit. 2014, 47, 1096–1112. [Google Scholar] [CrossRef]
- Al Maadeed, S.; Ayouby, W.; Hassaine, A.; Aljaam, J.M. QUWI: An Arabic and English handwriting dataset for offline writer identification. In Proceedings of the 2012 International Conference on Frontiers in Handwriting Recognition, Bari, Italy, 18–20 September 2012; pp. 746–751. [Google Scholar] [CrossRef]
- Rabaev, I.; Kurar Barakat, B.; Churkin, A.; El-Sana, J. The HHD Dataset. In Proceedings of the International Conference on Frontiers in Handwriting Recognition, Dortmund, Germany, 8–10 September 2020; pp. 228–233. [Google Scholar]
- Morera, Á.; Sánchez, Á.; Vélez, J.F.; Moreno, A.B. Gender and Handedness Prediction from Offline Handwriting Using Convolutional Neural Networks. Complexity 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Eshratifar, A.E.; Eigen, D.; Gormish, M.; Pedram, M. Coarse2Fine: A two-stage training method for fine-grained visual classification. Mach. Vis. Appl. 2021, 32, 1–9. [Google Scholar] [CrossRef]
Dataset | Images | Male | Female | Majority Probability (%) | Train | Val | Test |
---|---|---|---|---|---|---|---|
KHATT | 2000 | 1354 | 666 | 67.7 | 1400 | 300 | 300 |
QUWI | 1900 | 884 | 1016 | 53.5 | 1128 | - | 772 |
HHD | 702 | 351 | 351 | 50 | 560 | 72 | 70 |
Method | Accuracy (%) | Study |
---|---|---|
B-ResNet | 76.17 | proposed |
ATP-DenseNet | 74.1 | Xue et al. [33] |
Method | En/En | Ar/Ar | En+Ar/En+Ar | Study |
---|---|---|---|---|
B-ResNet | 88.33 | 85.23 | 78.04 | proposed |
SVM | - | - | 63.6 | Tan et al. [23] |
SVM | 75.5 | 77.7 | 77.8 | Akbari et al. [12] |
ANN | 69 | 71.9 | 79.3 | Akbari et al. [12] |
SVM | 77.98 | 76.17 | 75 | Gattal et al. [18] |
SVM | - | - | 66.3 | Bi et al. [14] |
SVM, LR, kNN (ensemble) | - | - | 65.71 | Maken and Gupta [20] |
ATP-DenseNet | - | - | 71.8 | Xue et al. [33] |
CNN | 75 | 74 | 71 | Rabaev et al. [8] |
Top ICDAR results (different systems) | 79 | 74 | 76 | retrieved from [12] |
Method | Accuracy (%) | Study |
---|---|---|
B-ResNet | 84 | proposed |
Xception | 85 | Rabaev et al. [8] |
EfficientNet | 84 | Rabaev et al. [8] |
NashNet | 84 | Rabaev et al. [8] |
Age | Train | Test | Val |
---|---|---|---|
<15 | 172 | 42 | 38 |
16–25 | 894 | 196 | 198 |
26–50 | 310 | 56 | 60 |
>50 | 24 | 6 | 4 |
<15 | 16–25 | 26–50 | >50 | |
---|---|---|---|---|
<15 | 1 | 37 | 4 | 0 |
16–25 | 0 | 168 | 26 | 0 |
26–50 | 0 | 29 | 29 | 0 |
>50 | 0 | 3 | 3 | 0 |
Method | Acc (%) | Study | Settings |
---|---|---|---|
Two age classes | |||
Hu moments and k-means clustering | 64.44 | [39] | line images, 270 writers in total |
SVM & Fuzzy MIN-MAX rules combination | [16] | line images, 270 writers in total | |
B-ResNet | 78.17 | proposed | paragraph images, the full dataset |
Three age classes | |||
SVM | 55.55 | [15] | line images, 405 writers in total |
B-ResNet | proposed | paragraph images, the full dataset | |
Four age classes | |||
B-ResNet | proposed | paragraph images, the full dataset |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabaev, I.; Alkoran, I.; Wattad, O.; Litvak, M. Automatic Gender and Age Classification from Offline Handwriting with Bilinear ResNet. Sensors 2022, 22, 9650. https://doi.org/10.3390/s22249650
Rabaev I, Alkoran I, Wattad O, Litvak M. Automatic Gender and Age Classification from Offline Handwriting with Bilinear ResNet. Sensors. 2022; 22(24):9650. https://doi.org/10.3390/s22249650
Chicago/Turabian StyleRabaev, Irina, Izadeen Alkoran, Odai Wattad, and Marina Litvak. 2022. "Automatic Gender and Age Classification from Offline Handwriting with Bilinear ResNet" Sensors 22, no. 24: 9650. https://doi.org/10.3390/s22249650
APA StyleRabaev, I., Alkoran, I., Wattad, O., & Litvak, M. (2022). Automatic Gender and Age Classification from Offline Handwriting with Bilinear ResNet. Sensors, 22(24), 9650. https://doi.org/10.3390/s22249650