Testing Variational Bias Correction of Satellite Radiance Data in the ACCESS-C: Australian Convective-Scale NWP System
<p>The seven Australian convective-scale variable resolution domains of the Bureau NWP System with the inner and outer grid boundaries (black and red colour). The boundary of the study area (Sydney domain) is shown in different colours (blue and green).</p> "> Figure 2
<p>Density function of the observation-minus-background (O-B) differences for channels 18, 19, and 20 of MHS on MetOp-B (<b>a</b>–<b>c</b>) and AMSU-B on NOAA-19 (<b>d</b>–<b>f</b>) from Experiment 1. The differences are gathered separately for global ACCESS-G (red) and limited-area ACCESS-C (blue) when using the VarBC-global model set-up during Feb 2020. Dashed lines indicate the O-B of ACCESS-G and ACCESS-C without bias correction.</p> "> Figure 3
<p>Hinton diagrams illustrating the differences in FSS for 1 h precipitation accumulation on a neighbourhood size of 1 (<b>a</b>), 5 (<b>b</b>), 25 (<b>c</b>), and 51 (<b>d</b>) grid lengths for the control and test. Green indicates a positive impact, and purple indicates a negative impact. Statistically significant results are triangles outlined in black.</p> "> Figure 4
<p>Vertical profile of the RMSE from the forecast at 6 h (<b>a</b>), 12 h (<b>b</b>), 18 h (<b>c</b>), 24 h (<b>d</b>), 30 h (<b>e</b>), and 36 h (<b>f</b>) for a geopotential height.</p> "> Figure 5
<p>The temporal variations of the hourly mean precipitation rate between the control and test (<b>a</b>), and control, test and GPM (<b>b</b>).</p> "> Figure 6
<p>Density function of the O-B differences for the MHS (<b>a</b>–<b>c</b>) and AMSU-B (<b>d</b>–<b>f</b>) channels in ACCESS-C for the experiments VarBC-global (red) and VarBC-LAM (blue) during February 2020.</p> "> Figure 7
<p>Time series plot of O-B (top), and the number of observations for Aircraft-U components from the control and test.</p> "> Figure 8
<p>Time series plot of O-B (top), and the number of observations for the surface temperature from the control and test.</p> ">
Abstract
:1. Introduction
2. System Configuration and Methods
2.1. Data Assimilation System
2.2. The VarBC Configurations
2.3. Data and Experiment Design
3. Results and Discussion
4. Conclusions and Proposed Further Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawlins, F.; Ballard, S.P.; Bovis, K.J.; Clayton, A.M.; Li, D.; Inverarity, G.W.; Lorenc, A.C.; Payne, T.J. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 347–362. [Google Scholar] [CrossRef]
- Lorenc, A.C.; Jardak, M. A comparison of hybrid variational data assimilation methods for global NWP. Q. J. R. Meteorol. Soc. 2018, 144, 2748–2760. [Google Scholar] [CrossRef]
- Randriamampianina, R.; Szotak, R.; Gérard, É. On the use of bias correction method and full grid AMSU-B data in a limited area model. In Proceedings of the 14th International TOVS Study Conference, Beijing, China, 25–31 May 2005; pp. 25–31. [Google Scholar]
- Dee, D.P.; da Silva, A.M. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc. 1998, 124, 269–295. [Google Scholar] [CrossRef]
- Harris, B.A.; Kelly, G. A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Eyre, J.R. Observation bias correction schemes in data assimilation systems: A theoretical study of some of their properties. Q. J. R. Meteorol. Soc. 2016, 142, 2284–2291. [Google Scholar] [CrossRef]
- Zhu, Y.; Derber, J.; Collard, A.; Dee, D.; Treadon, R.; Gayno, G.; Jung, J.A. Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Q. J. R. Meteorol. Soc. 2014, 140, 1479–1492. [Google Scholar] [CrossRef]
- Dee, D.P. Variational bias correction of radiance data in the ECMWF system. In Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, 28 June–1 July 2004; ECMWF: Reading, UK, 2004; Volume 28, pp. 97–112. [Google Scholar]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Benáček, P.; Mile, M. Satellite bias correction in the regional model ALADIN/CZ: Comparison of different varBC approaches. Mon. Weather. Rev. 2019, 147, 3223–3239. [Google Scholar] [CrossRef]
- Rabier, F. Overview of global data assimilation developments in numerical weather-prediction centres. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 3215–3233. [Google Scholar] [CrossRef]
- Davidson, N.E.; Xiao, Y.; Ma, Y.; Weber, H.C.; Sun, X.; Rikus, L.J.; Kepert, J.D.; Steinle, P.X.; Dietachmayer, G.S.; Lok, C.C.F.; et al. ACCESS-TC: Vortex Specification, 4DVAR Initialization, Verification, and Structure Diagnostics. Mon. Weather Rev. 2014, 142, 1265–1289. [Google Scholar] [CrossRef]
- Le Marshall, J.; Seecamp, R.; Xiao, Y.; Steinle, P.; Sims, H.; Skinner, T.; Jung, J.; Le, T. The generation and assimilation of continuous AMVs with 4DVar. Aust. Meteor. Oceanogr. J. 2011, 61, 117–123. [Google Scholar] [CrossRef]
- Puri, K.; Dietachmayer, G.; Steinle, P.; Dix, M.; Rikus, L.; Logan, L.; Naughton, M.; Tingwell, C.; Xiao, Y.; Barras, V.; et al. Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteorol. Oceanogr. J. 2013, 63, 265–284. [Google Scholar] [CrossRef]
- Rennie, S.; Cooper, S.; Steinle, P.; Dietachmayer, G.; Krysta, M.; Franklin, C.; Bridge, C.; Marshall, M.; Xiao, Y.; Sgarbossa, D. ACCESS-C: Australian Convective-Scale NWP with Hourly 4D-Var Data Assimilation. Weather Forecast. 2022, 37, 1287–1303. [Google Scholar] [CrossRef]
- Le Marshall, J.; Norman, R.; Howard, D.; Rennie, S.; Moore, M.; Kaplon, J.; Xiao, Y.; Zhang, K.; Wang, C.; Cate, A.; et al. Using global navigation satellite system data for real-time moisture analysis and forecasting over the Australian region I. The system. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 161–171. [Google Scholar] [CrossRef]
- Cameron, J.; Bell, W. The testing and planned implementation of variational bias correction (VarBC) at the Met Office. In Proceedings of the 20th International TOVS Study Conference, Madison, WI, USA, 28 October–3 November 2016; Available online: https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/papers/11_01_cameron_paper.pdf (accessed on 27 July 2022).
- Cameron, J.; Bell, W. The Testing and Implementation of Variational Bias Correction (VarBC) in the Met Office Global NWP System; Weather Science Technical Report 631; Met Office: Exeter, UK, 2018. [Google Scholar]
- NOC Operations Bulletin Number 114. Available online: http://www.bom.gov.au/australia/charts/bulletins/BNOC_Operations_Bulletin_114.pdf (accessed on 30 October 2022).
- NOC Operations Bulletin Number 125. Available online: http://www.bom.gov.au/australia/charts/bulletins/opsbull_G3GE3_external_v3.pdf (accessed on 30 October 2022).
- BNOC Operations Bulletin Number 105. Available online: http://www.bom.gov.au/australia/charts/bulletins/APOB105.pdf (accessed on 30 October 2022).
- Pavelin, E.G.; English, S.J.; Eyre, J.R. The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2008, 134, 737–749. [Google Scholar] [CrossRef]
- Heng, B.C.P.; Tubbs, R.; Huang, X.-Y.; MacPherson, B.; Barker, D.; Boyd, D.F.A.; Kelly, G.; North, R.; Stewart, L.; Webster, S.; et al. SINGV-DA: A data assimilation system for convective-scale numerical weather prediction over Singapore. Q. J. R. Meteorol. Soc. 2020, 146, 1923–1938. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Atkinson, N.; Bell, W.; Doherty, A. An initial assessment of observations from the Suomi-NPP satellite: Data from the Cross-track Infrared Sounder (CrIS). Atmos. Sci. Lett. 2015, 16, 260–266. [Google Scholar] [CrossRef]
- Hilton, F.; Atkinson, N.C.; English, S.J.; Eyre, J.R. Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Q. J. R. Meteorol. Soc. 2009, 135, 495–505. [Google Scholar] [CrossRef]
- Doherty, A.; Atkinson, N.; Bell, W.; Smith, A. An Assessment of Data from the Advanced Technology Microwave Sounder at the Met Office. Adv. Meteorol. 2015, 2015, 956920. [Google Scholar] [CrossRef] [Green Version]
- Geer, A.; Brunel, P.; Vidot, J. 2014. RTTOV v11 Users Guide; NWP SAF: Lannion, France, 2014. [Google Scholar]
- Rennie, S. Direct Assimilation of Radar Reflectivity from Australian Dual-Polarisation Radars; Australian Bureau of Meteorology: Melbourne, Australia, 2020. [Google Scholar]
- Bush, M.; Allen, T.; Bain, C.; Boutle, I.; Edwards, J.; Finnenkoetter, A.; Franklin, C.; Hanley, K.; Lean, H.; Lock, A.; et al. The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1. Geosci. Model Dev. 2020, 13, 1999–2029. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. Impact of assimilating Mode-S EHS winds in the Met Office’s high-resolution NWP model. Meteorol. Appl. 2021, 28, e1989. [Google Scholar] [CrossRef]
- Lindskog, M.; Dahlbom, M.; Thorsteinsson, S.; Dahlgren, P.; Randriamampianina, R.; Bojarova, J. ATOVS processing and usage in the HARMONIE reference system. HIRLAM Newsl. 2012, 59, 33–43. [Google Scholar]
Item | Details |
---|---|
Experiment 1 | VarBC-global (bias coefficient adopted from global model) |
Experiment 2 | VarBC-LAM (independent bias correction in LAM condition) |
DA Method | 4D-VAR |
DA Cycle | Hourly (24) |
Observations | Conventional: AWS, METAR reports, ships, buoys, radiosondes, aircraft, and AMV Nonconventional: GNSS zenith total delay; Scatterometer; radar; and radiances (ATMS, ATOVS, CrIS, and IASI) |
ACCESS-C Model | Vertical Level: 80 Model top: 38.5 km Lowest model level: 2.5 m Grid Spacing: 1.5 km (inner, fixed) 4.0 km (outer, variable) No. of grid points: ~892 × 744 |
Trial period | 1st Feb–15th April 2020 |
Observations | Cycle (UTC) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
AIRS | ||||||||||||||||||||||||
IASI | ||||||||||||||||||||||||
CrIS | ||||||||||||||||||||||||
ATMS | ||||||||||||||||||||||||
AMSU-B/MHS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samrat, N.H.; Smith, F.; Lee, J.; Smith, A. Testing Variational Bias Correction of Satellite Radiance Data in the ACCESS-C: Australian Convective-Scale NWP System. Sensors 2022, 22, 9504. https://doi.org/10.3390/s22239504
Samrat NH, Smith F, Lee J, Smith A. Testing Variational Bias Correction of Satellite Radiance Data in the ACCESS-C: Australian Convective-Scale NWP System. Sensors. 2022; 22(23):9504. https://doi.org/10.3390/s22239504
Chicago/Turabian StyleSamrat, Nahidul Hoque, Fiona Smith, Jin Lee, and Andrew Smith. 2022. "Testing Variational Bias Correction of Satellite Radiance Data in the ACCESS-C: Australian Convective-Scale NWP System" Sensors 22, no. 23: 9504. https://doi.org/10.3390/s22239504
APA StyleSamrat, N. H., Smith, F., Lee, J., & Smith, A. (2022). Testing Variational Bias Correction of Satellite Radiance Data in the ACCESS-C: Australian Convective-Scale NWP System. Sensors, 22(23), 9504. https://doi.org/10.3390/s22239504