Optical Temperature Sensor Based on Polysilicon Waveguides
<p>Microscopic image of the dual-MRR temperature sensor.</p> "> Figure 2
<p>(<b>a</b>) The spectrum of the dual-MRR sensor. (<b>b</b>) The transmission of overlapping resonant peaks.</p> "> Figure 3
<p>(<b>a</b>) Spectra of the dual-MRR sensor at different temperatures (ranging from 0 K to 20 K). (<b>b</b>) Overlapping resonant peak wavelength at different temperatures.</p> "> Figure 4
<p>Microscopic image of the temperature sensor based on AMZI.</p> "> Figure 5
<p>(<b>a</b>) Schematic of 1 × 2 MMI. (<b>b</b>) Microscopic image of the cascade MMI. (<b>c</b>) Measured trans-mission spectra of the cascaded 1 × 2 MMIs at the wavelength range of 1460–1580 nm. (<b>d</b>) Linear fitting of the normalized transmission at 1550 nm wavelength.</p> "> Figure 6
<p>The spectrum of our designed AMZI.</p> "> Figure 7
<p>(<b>a</b>) Spectra of the AMZI sensor at different ambient temperatures. (<b>b</b>) Resonant peak wave-length at different temperatures and linear fitting.</p> ">
Abstract
:1. Introduction
2. Design, Fabrication, and Characterization
2.1. The Structure of MRR
2.2. The Structure of AMZI
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, B.G.; Dupuis, N. Silicon Photonic Switch Fabrics: Technology and Architecture. J. Lightwave Technol. 2019, 37, 6–20. [Google Scholar] [CrossRef]
- Suzuki, K.; Konoike, R.; Suda, S.; Matsuura, H.; Namiki, S.; Kawashima, H.; Ikeda, K. Low-Loss, Low-Crosstalk, and Large-Scale Optical Switch Based on Silicon Photonics. J. Lightwave Technol. 2020, 38, 233–239. [Google Scholar] [CrossRef]
- Zand, I.; Bogaerts, W. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photonics Res. 2020, 8, 211–218. [Google Scholar] [CrossRef]
- Bogaerts, W.; Chen, X.; Deng, H.; Van Iseghem, L.; Wang, M.; Zand, I.; Zhang, Y.; Liu, Y.; Nagarjun, K.P.; Khan, U. Programmable Silicon Photonic Circuits. In Proceedings of the 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), Toyama, Japan, 3–6 July 2022; pp. 1–3. [Google Scholar]
- Yang, F.; Zhang, W.; Jiang, Y.; Tao, J.; He, Z. Highly Sensitive Integrated Photonic Sensor and Interrogator Using Cascaded Silicon Microring Resonators. J. Lightwave Technol. 2022, 40, 3055–3061. [Google Scholar] [CrossRef]
- Luo, M.; Yang, Q.; Dong, F.; Chen, N.; Liao, W. Miniature Micro-Ring Resonator Sensor With Electro-Optic Polymer Cladding for Wide-Band Electric Field Measurement. J. Lightwave Technol. 2022, 40, 2577–2584. [Google Scholar] [CrossRef]
- Adamopoulos, C.; Buchbinder, S.; Zarkos, P.; Bhargava, P.; Gharia, A.; Niknejad, A.; Anwar, M.; Stojanovic, V. Fully Integrated Electronic–Photonic Biosensor for Label-Free Real-Time Molecular Sensing in Advanced Zero-Change CMOS-SOI Process. IEEE Solid-State Circuits Lett. 2021, 4, 198–201. [Google Scholar] [CrossRef]
- Yu, H.; Sun, X.; Liu, G.; Fateh, U.; Ban, D.; Deng, N.; Qiu, F. Gas environment independent temperature sensor via double-metal surface plasmon resonance. Opt. Express 2021, 29, 15393–15402. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Yang, Y.; Sun, F.; Zhang, P.; Tang, B.; Li, B.; Liu, R.; Liu, D.; Li, Z. Wide-range, ultra-compact, and high-sensitivity ring resonator biochemical sensor with CMOS-compatible hybrid plasmonic waveguide. Opt. Express 2021, 29, 19058–19067. [Google Scholar] [CrossRef]
- Kohler, D.; Schindler, G.; Hahn, L.; Milvich, J.; Hofmann, A.; Lange, K.; Freude, W.; Koos, C. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl. 2021, 10, 64. [Google Scholar] [CrossRef]
- Tao, J.; Wang, X.; Sun, T.; Cai, H.; Wang, Y.; Lin, T.; Fu, D.; Ting, L.L.; Gu, Y.; Zhao, D. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity. Sci. Rep. 2017, 7, 41640. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Gavela, A.; Grajales Garcia, D.; Ramirez, J.C.; Lechuga, L.M. Last Advances in Silicon-Based Optical Biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Wang, W.; Guo, W.; Gong, Z.; Zhou, H.; Zhou, Q.; Jiang, X.; Yang, J. A 2 x 2 nonblocking Mach-Zehnder-based silicon switch matrix. Opt. Express 2012, 20, 12593–12598. [Google Scholar] [CrossRef]
- Juhari, N.; Menon, P.S.; Ehsan, A.A. 12-channel tapered SOI-based AWG for CWDM system. In Proceedings of the 2013 IEEE 4th International Conference on Photonics (ICP), Melaka, Malaysia, 28–30 October 2013; pp. 230–233. [Google Scholar]
- de Cea, M.; Fini, J.; Van Orden, D.; Wade, M.; Stojanovic, V.; Ram, R.J. 18 GHz 3 dB bandwidth SiGe resonant photodetector in 45 nm SOI CMOS. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar]
- Yang, Z.; Kwong, D.; Xiaochuan, X.; Hosseini, A.; Yang, S.Y.; Rogers, J.A.; Chen, R.T. Inter-layer grating coupler on double-layer silicon nanomembranes. In Proceedings of the 2013 Optical Interconnects Conference, Santa Fe, NM, USA, 5–8 May 2013; pp. 35–36. [Google Scholar]
- JoonHyun, K.; Atsumi, Y.; Hayashi, Y.; Suzuki, J.; Kuno, Y.; Amemiya, T.; Nishiyama, N.; Arai, S. Amorphous-Silicon Inter-Layer Grating Couplers With Metal Mirrors Toward 3-D Interconnection. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 317–322. [Google Scholar] [CrossRef]
- Lacava, C.; Ettabib, M.A.; Cristiani, I.; Fedeli, J.M.; Richardson, D.J.; Petropoulos, P. Ultra-Compact Amorphous Silicon Waveguide for Wavelength Conversion. IEEE Photonics Technol. Lett. 2016, 28, 410–413. [Google Scholar] [CrossRef] [Green Version]
- Shang, K.; Pathak, S.; Guan, B.; Liu, G.; Yoo, S.J. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits. Opt. Express 2015, 23, 21334–21342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Namiki, S.; Kawashima, H.; Ikeda, K.; Konoike, R.; Yokoyama, N.; Seki, M.; Ohtsuka, M.; Saitoh, S.; Suda, S.; et al. Nonduplicate Polarization-Diversity 32 × 32 Silicon Photonics Switch Based on a SiN/Si Double-Layer Platform. J. Lightwave Technol. 2020, 38, 226–232. [Google Scholar] [CrossRef]
- Konoike, R.; Suzuki, K.; Tanizawa, K.; Suda, S.; Matsuura, H.; Namiki, S.; Kawashima, H.; Ikeda, K. SiN/Si double-layer platform for ultralow-crosstalk multiport optical switches. Opt. Express 2019, 27, 21130–21141. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Chen, B.; Wang, Y.; Li, H.; Hou, Y.; Tao, M.; Li, Y.; Zhi, Z.; Liu, X.; et al. Two-dimensional multi-layered SiN-on-SOI optical phased array with wide-scanning and long-distance ranging. Opt. Express 2022, 30, 5008–5018. [Google Scholar] [CrossRef]
- Wang, P.; Luo, G.; Xu, Y.; Li, Y.; Su, Y.; Ma, J.; Wang, R.; Yang, Z.; Zhou, X.; Zhang, Y.; et al. Design and fabrication of a SiN-Si dual-layer optical phased array chip. Photonics Res. 2020, 8, 912–919. [Google Scholar] [CrossRef]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Lightwave Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Preston, K.; Schmidt, B.; Lipson, M. Polysilicon photonic resonators for large-scale 3D integration of optical networks. Opt. Express 2007, 15, 17283–17290. [Google Scholar] [CrossRef] [Green Version]
- Franz, Y.; Runge, A.F.J.; Oo, S.Z.; Jimenez-Martinez, G.; Healy, N.; Khokhar, A.; Tarazona, A.; Chong, H.M.H.; Mailis, S.; Peacock, A.C. Laser crystallized low-loss polycrystalline silicon waveguides. Opt. Express 2019, 27, 4462–4470. [Google Scholar] [CrossRef]
- Song, I.-H.; Han, M.-K. Low temperature poly-Si TFTs for display application. Curr. Appl. Phys. 2003, 3, 363–366. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Han, D.; Wang, Y.; Chan, M.; Zhang, S. A Hybrid a-Si and Poly-Si TFTs Technology for AMOLED Pixel Circuits. J. Disp. Technol. 2014, 10, 317–320. [Google Scholar] [CrossRef]
- Shen-De, W.; Wei-Hsiang, L.; Tzu-Yun, C.; Tan-Fu, L. A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs. IEEE Electron Device Lett. 2005, 26, 372–374. [Google Scholar] [CrossRef] [Green Version]
- Stojanovic, V.; Ram, R.J.; Popovic, M.; Lin, S.; Moazeni, S.; Wade, M.; Sun, C.; Alloatti, L.; Atabaki, A.; Pavanello, F.; et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]. Opt. Express 2018, 26, 13106–13121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, Y.J.; Tang, C.T.; Chen, T.H.; Yen, T.H.; Tsai, M.J.; Lee, S.L. Low-loss polysilicon subwavelength grating waveguides and narrowband Bragg reflectors in bulk CMOS. Opt. Express 2020, 28, 7786–7798. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-T.; Yu, M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 2016, 24, 9501–9510. [Google Scholar] [CrossRef]
- Yen, T.-H.; Hung, Y., Jr. Fabrication-Tolerant CWDM (de)Multiplexer Based on Cascaded Mach–Zehnder Interferometers on Silicon-on-Insulator. J. Lightwave Technol. 2021, 39, 146–153. [Google Scholar] [CrossRef]
- Xu, H.; Shi, Y. Flat-Top CWDM (De)Multiplexer Based on MZI With Bent Directional Couplers. IEEE Photonics Technol. Lett. 2018, 30, 169–172. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Chu, T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 2017, 7, 42306. [Google Scholar] [CrossRef] [Green Version]
- Palmer, R.; Alloatti, L.; Korn, D.; Schindler, P.C.; Baier, M.; Bolten, J.; Wahlbrink, T.; Waldow, M.; Dinu, R.; Freude, W.; et al. Low Power Mach–Zehnder Modulator in Silicon-Organic Hybrid Technology. IEEE Photonics Technol. Lett. 2013, 25, 1226–1229. [Google Scholar] [CrossRef]
- Qin, K.; Hu, S.; Retterer, S.T.; Kravchenko, I.I.; Weiss, S.M. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity. Opt. Lett. 2016, 41, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.J.; Besselink, G.A.J.; Falke, F.; Everhardt, A.S.; Cornelissen, J.J.L.M.; Huskens, J. Highly Sensitive Protein Detection by Asymmetric Mach–Zehnder Interferometry for Biosensing Applications. ACS Appl. Bio. Mater. 2020, 3, 4566–4572. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Liu, P.; Chen, J.; Dai, D.; Shi, Y. On-chip simultaneous sensing of humidity and temperature with a dual-polarization silicon microring resonator. Opt. Express 2019, 27, 28649–28659. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, G.; Xiong, Y.; Xu, T.; Gu, L.; Gan, X.; Pan, Y.; Qu, J. Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance. Opt. Express 2020, 28, 12599–12608. [Google Scholar] [CrossRef]
- Guan, X.; Wang, X.; Frandsen, L.H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 2016, 24, 16349–16356. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Chandrahalim, H.; Chen, C.; Chen, Q.; Mei, T.; Oki, Y.; Nishimura, N.; Guo, L.J.; Fan, X. On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers. Appl. Phys. Lett. 2017, 111, 061109. [Google Scholar] [CrossRef]
- Noh, Y.-O.; Lee, C.-H.; Kim, J.-M.; Hwang, W.-Y.; Won, Y.-H.; Lee, H.-J.; Han, S.-G.; Oh, M.-C. Polymer waveguide variable optical attenuator and its reliability. Opt. Commun. 2004, 242, 533–540. [Google Scholar] [CrossRef]
- Lu, G.W.; Hong, J.; Qiu, F.; Spring, A.M.; Kashino, T.; Oshima, J.; Ozawa, M.A.; Nawata, H.; Yokoyama, S. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s(-1) for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 2020, 11, 4224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kang, G.-G.; Wang, J.; Wan, S.; Dong, C.-H.; Pan, Y.-J.; Qu, J.-F. Photonic thermometer by silicon nitride microring resonator with milli-kelvin self-heating effect. Measurement 2022, 188, 110494. [Google Scholar] [CrossRef]
- Tao, J.F.; Cai, H.; Gu, Y.D.; Wu, J.; Liu, A.Q. Demonstration of a Photonic-Based Linear Temperature Sensor. IEEE Photonics Technol. Lett. 2015, 27, 767–769. [Google Scholar] [CrossRef]
- Zeqin, L.; Murray, K.; Jayatilleka, H.; Chrostowski, L. Michelson Interferometer Thermo-Optic Switch on SOI With a 50-µW Power Consumption. IEEE Photonics Technol. Lett. 2015, 27, 2319–2322. [Google Scholar] [CrossRef]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [Green Version]
- Atabaki, A.H.; Moazeni, S.; Pavanello, F.; Gevorgyan, H.; Notaros, J.; Alloatti, L.; Wade, M.T.; Sun, C.; Kruger, S.A.; Meng, H.; et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018, 556, 349–354. [Google Scholar] [CrossRef]
Reference | Waveguide Materails | Structure | Sensitivity(pm/K) | Radius/Footprint |
---|---|---|---|---|
[40] | c-Si | MRR | 69.0 pm/K | 20 μm |
[41] | c-Si | MRR | 75.3 pm/K | 20 μm |
[42] | c-Si | AMZI | 172 pm/K | N.A. |
[43] | R6G-SU-8 | MRR | 228.6 pm/K | 110 μm |
[46] | SiN | MRR | 19.37 pm/K | 100 μm |
[47] | c-Si | MI | 113.7 pm/K | 120 μm × 80 μm |
This work | p-Si | MRR | 85.7 pm/K | 30 μm |
This work | p-Si | AMZI | 86.6 pm/K | 400 μm × 260 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Yin, Y.; Sun, C.; Li, L.; Lin, H.; Tang, B.; Zhang, P.; Chen, C.; Zhang, D. Optical Temperature Sensor Based on Polysilicon Waveguides. Sensors 2022, 22, 9357. https://doi.org/10.3390/s22239357
Xu X, Yin Y, Sun C, Li L, Lin H, Tang B, Zhang P, Chen C, Zhang D. Optical Temperature Sensor Based on Polysilicon Waveguides. Sensors. 2022; 22(23):9357. https://doi.org/10.3390/s22239357
Chicago/Turabian StyleXu, Xinru, Yuexin Yin, Chunlei Sun, Lan Li, Hongtao Lin, Bo Tang, Peng Zhang, Changming Chen, and Daming Zhang. 2022. "Optical Temperature Sensor Based on Polysilicon Waveguides" Sensors 22, no. 23: 9357. https://doi.org/10.3390/s22239357
APA StyleXu, X., Yin, Y., Sun, C., Li, L., Lin, H., Tang, B., Zhang, P., Chen, C., & Zhang, D. (2022). Optical Temperature Sensor Based on Polysilicon Waveguides. Sensors, 22(23), 9357. https://doi.org/10.3390/s22239357