Compression for Bayer CFA Images: Review and Performance Comparison
<p>Four 2 × 2 Bayer CFA patterns. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>a</mi> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = [<math display="inline"><semantics> <msub> <mi>G</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>B</mi> <mn>3</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>G</mi> <mn>4</mn> </msub> </semantics></math>]. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>a</mi> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = [<math display="inline"><semantics> <msub> <mi>G</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>B</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>3</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>G</mi> <mn>4</mn> </msub> </semantics></math>]. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>a</mi> <msub> <mi>t</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = [<math display="inline"><semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>G</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>G</mi> <mn>3</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>B</mi> <mn>4</mn> </msub> </semantics></math>]. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>a</mi> <msub> <mi>t</mi> <mn>4</mn> </msub> </mrow> </semantics></math> = [<math display="inline"><semantics> <msub> <mi>B</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>G</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>G</mi> <mn>3</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>4</mn> </msub> </semantics></math>].</p> "> Figure 2
<p>The CF-based compression scheme for <math display="inline"><semantics> <msup> <mi>I</mi> <mrow> <mi>B</mi> <mi>a</mi> <mi>y</mi> <mi>e</mi> <mi>r</mi> </mrow> </msup> </semantics></math>. (<b>a</b>) The server side and the client side. (<b>b</b>) In terms of the decorrelated subimages, the graphical representation of the presented CF-based methods.</p> "> Figure 3
<p>The DF-based compression scheme for <math display="inline"><semantics> <msup> <mi>I</mi> <mrow> <mi>B</mi> <mi>a</mi> <mi>y</mi> <mi>e</mi> <mi>r</mi> </mrow> </msup> </semantics></math>. (<b>a</b>) The server side and the client side. (<b>b</b>) The graphical representation of chroma subsampling, particularly the Bayer CFA pattern-independent chroma subsampling approach and the Bayer CFA pattern-dependent chroma subsampling approach.</p> "> Figure 4
<p>The relation between the 2 × 2 Bayer CFA block and the four RCT-based formats. (<b>a</b>) The 2 × 2 Bayer CFA block. (<b>b</b>) The four RCT-based formats.</p> "> Figure 5
<p>The construction of the rectangular compact luma image. (<b>a</b>) The quincunx-located luma image. (<b>b</b>) The rectangular compact luma image.</p> "> Figure 6
<p>The depiction of 4:2:0(A), 4:2:0(L), 4:2:0(R), and 4:2:0(DIRECT).</p> "> Figure 7
<p>The relation between the subsampled chroma pair (<math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>b</mi> <mn>3</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> </semantics></math>) and the 2 × 2 Bayer CFA pattern [<a href="#B27-sensors-22-08362" class="html-bibr">27</a>].</p> "> Figure 8
<p>The notations used in the BI-based method for estimating <math display="inline"><semantics> <mrow> <mi>C</mi> <msubsup> <mi>b</mi> <mn>1</mn> <mrow> <mi>e</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math> at the server side.</p> "> Figure 9
<p>The visual effect comparison for the 13th ground-truth IMAX image, where for each method, the two demosaiced RGB full-color images on the left and on the right are under VTM-16.2 for QP = 44 and JPEG-2000 for CR = 35, respectively. (<b>a</b>) The 13th ground-truth IMAX image. (<b>b</b>) The amplified subimages. (<b>c</b>) CDM-OLM. (<b>d</b>) Modified 4:2:0(A)-OLM. (<b>e</b>) BIDM-OLM. (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <msub> <mi>D</mi> <mi>g</mi> </msub> <msub> <mi>C</mi> <mi>o</mi> </msub> <msub> <mi>C</mi> <mi>g</mi> </msub> </mrow> </semantics></math>. (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <mi>L</mi> <mi>M</mi> <mi>N</mi> </mrow> </semantics></math>. (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>C</mi> <mi>b</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>The visual effect comparison for the 13th ground-truth IMAX image, where for each method, the two demosaiced RGB full-color images on the left and on the right are under VTM-16.2 for QP = 24 and JPEG-2000 for CR = 20, respectively. (<b>a</b>) CDM-OLM. (<b>b</b>) Modified 4:2:0(A)-OLM. (<b>c</b>) BIDM-OLM. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <msub> <mi>D</mi> <mi>g</mi> </msub> <msub> <mi>C</mi> <mi>o</mi> </msub> <msub> <mi>C</mi> <mi>g</mi> </msub> </mrow> </semantics></math>. (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <mi>L</mi> <mi>M</mi> <mi>N</mi> </mrow> </semantics></math>. (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>Y</mi> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>C</mi> <mi>b</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
1.1. The Related CF-Based Compression Methods
1.2. The Related DF-Based Compression Methods
1.3. Motivation and Contribution
2. The Reversible Color Transform-Based (RCT-Based) Compression Works for Bayer CFA Images
2.1. The Method
2.2. The Method
2.3. The Method
2.4. The Method
3. The Demosaicing-First-Based (DF-Based) Compression Works for Bayer CFA Images
3.1. Demosaicing to and Then Converting to
3.1.1. Demosaicing to
3.1.2. Converting to
3.2. Chroma Subsampling
3.2.1. The Bayer CFA Pattern-Independent Chroma Subsampling Methods
3.2.2. The Bayer CFA Pattern-Dependent Chroma Subsampling Methods
The Direct Mapping (DM) Method [27]
The COPY-Based Distortion Minimization (CDM) Method and the Two Variants
The Bilinear Interpolation-Based Distortion Minimization (BIDM) Method
3.3. Luma Modification
4. Experimental Results
4.1. Quality Comparison and Discussion
4.1.1. Quality Comparison and Discussion
4.1.2. Execution Time Requirement Comparison and Discussion
4.2. Quality–Bitrate Tradeoff Comparison and Discussion
4.2.1. The Quality–Bitrate Tradeoff Comparison
4.2.2. The Visual Effect Comparison
5. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayer, B.E. Color Imaging Array. U.S. Patent 3,971,065, 20 July 1976. [Google Scholar]
- Lee, S.Y.; Ortega, A. A Novel Approach of Image Compression in Digital Cameras with a Bayer Color Filter Array. In Proceedings of the 2001 International Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki, Greece, 7–10 October 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 3, pp. 482–485. [Google Scholar] [CrossRef]
- Malvar, H.S.; Sullivan, G.J. Progressive-to-Lossless Compression of Color-Filter-Array Images Using Macropixel Spectral-Spatial Transformation. In Proceedings of the 2012 Data Compression Conference, Snowbird, UT, USA, 10–12 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3–12. [Google Scholar] [CrossRef]
- Mohammed, S.K.; Wahid, K.A. Lossless Compression in Bayer Color Filter Array for Capsule Endoscopy. IET Image Process. 2017, 5, 13823–13834. [Google Scholar] [CrossRef]
- Mohammed, S.K.; Wahid, K.A. Lossless and Reversible Colour Space Transformation for Bayer Colour Filter Array Images. IET Image Process. 2018, 12, 1485–1490. [Google Scholar] [CrossRef]
- Rahman, K.M.M.; Mohammed, S.K.; Vedaei, S.S.; Mohebbian, M.R.; Chafjiri, F.S.; Wahid, K.A. A Low Complexity Lossless Bayer CFA Image Compression. Signal Image Video Process. 2021, 15, 1767–1775. [Google Scholar] [CrossRef]
- Hernández-Cabronero, M.; Marcellin, M.W.; Blanes, I.; Serra-Sagristà, J. Lossless Compression of Color Filter Array Mosaic Images with Visualization via JPEG 2000. IEEE Trans. Image Process. 2018, 20, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Richter, T.; Fößel, S. Bayer Pattern Compression with JPEG XS. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3177–3181. [Google Scholar] [CrossRef]
- Richter, T.; Fößel, S.; Descampe, A.; Rouvroy, G. Bayer CFA Pattern Compression with JPEG XS. IEEE Trans. Image Process. 2021, 30, 6557–6569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wu, X. Lossless Compression of Color Mosaic Images. IEEE Trans. Image Process. 2006, 15, 1379–1388. [Google Scholar] [CrossRef]
- Lee, Y.; Hirakawa, K.; Nguyen, T.Q. Camera-Aware Multi-Resolution Analysis for Raw Image Sensor Data Compression. IEEE Trans. Image Process. 2018, 27, 2806–2817. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. Wavelet-Based Spectral–Spatial Transforms for CFA-Sampled Raw Camera Image Compression. IEEE Trans. Image Process. 2019, 29, 433–444. [Google Scholar] [CrossRef]
- Lee, Y.; Hirakawa, K. Shift-And-Decorrelate Lifting: CAMRA for Lossless Intra Frame CFA Video Compression. IEEE Signal Process. Lett. 2020, 27, 461–465. [Google Scholar] [CrossRef]
- Huang, L.; Suzuki, T. Weighted Wavelet-Based Spectral-Spatial Transforms for CFA-Sampled Raw Camera Image Compression Considering Image Features. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 22–27 May 2022. [Google Scholar] [CrossRef]
- Chung, K.H.; Xiaolin, W. A Lossless Compression Scheme for Bayer Color Filter Array Images. IEEE Trans. Image Process. 2008, 17, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Pennebaker, W.B.; Mitchell, J.L. JPEG: Still Image Data Compression Standard; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Dufaux, F.; Sullivan, G.J.; Ebrahimi, T. The JPEG XR Image Coding Standard [Standards in a Nutshell]. IEEE Signal Process. Mag. 2009, 26, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Skodras, A.; Christopoulos, C.; Ebrahimi, T. The Jpeg 2000 Still Image Compression Standard. IEEE Signal Process. Mag. 2001, 18, 36–58. [Google Scholar] [CrossRef]
- Rabbani, M. Book Review: JPEG2000: Image Compression Fundamentals, Standards and Practice; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Malvar, H.S. Adaptive Run-length/Golomb-Rice Rncoding of Quantized Generalized Gaussian Sources with Unknown Statistics. In Proceedings of the Data Compression Conference (DCC’06), Snowbird, UT, USA, 28–30 March 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 23–32. [Google Scholar]
- JPEG XS; Standard, ISO/IEC 21122. ISO: Geneva, Switzerland, 2019.
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Sullivan, G.; Sun, S. Spatial Scalability Filters. In Proceedings of the Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, 17th Meeting, Nice, FR, USA, 14–21 October 2005. [Google Scholar]
- Luthra, A.; Francois, E.; Husak, W. Call for Evidence (CfE) for HDR and WCG Video Coding; ISO/IEC JTC1/SC29/WG11 MPEG2014 N; ISO: Geneve, Switzerland, 2015; Volume 15083. [Google Scholar]
- Zhang, Y.; Zhao, D.; Zhang, J.; Xiong, R.; Gao, W. Interpolation-Dependent Image Downsampling. IEEE Trans. Image Process. 2011, 20, 3291–3296. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gu, K.; Ma, S.; Gao, W. Joint Chroma Downsampling and Upsampling for Screen Content Image. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 1595–1609. [Google Scholar] [CrossRef]
- Chen, H.; Sun, M.; Steinbach, E. Compression of Bayer-Pattern Video Sequences Using Adjusted Chroma Subsampling. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 1891–1896. [Google Scholar] [CrossRef]
- Lin, C.H.; Chung, K.L.; Yu, C.W. Novel Chroma Subsampling Strategy Based on Mathematical Optimization for Compressing Mosaic Videos with Arbitrary RGB Color Filter Arrays in H. 264/AVC and HEVC. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1722–1733. [Google Scholar] [CrossRef]
- Chung, K.L.; Lee, Y.L.; Chien, W.C. Effective Gradient Descent-Based Chroma Subsampling Method for Bayer CFA Images in HEVC. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3281–3290. [Google Scholar] [CrossRef]
- Lin, T.L.; Yu, Y.C.; Jiang, K.H.; Liang, C.F.; Liaw, P.S. Novel Chroma Sampling Methods for CFA Video Compression in AVC, HEVC and VVC. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 3167–3180. [Google Scholar] [CrossRef]
- Chung, K.L.; Chen, S.N. An Effective Bilinear Interpolation-Based Iterative Chroma Subsampling Method for Color Images. Multimed. Tools Appl. 2022, 81, 32191–32213. [Google Scholar] [CrossRef]
- Chung, K.L.; Leung, T.C.; Liu, T.Y.; Tseng, Y.C. A Cubic Convolution Interpolation-Based Chroma Subsampling Method for Bayer and RGBW CFA Raw Images. IEEE Access 2022, 10, 22687–22699. [Google Scholar] [CrossRef]
- Chung, K.L.; Hsu, T.C.; Huang, C.C. Joint Chroma Subsampling and Distortion-Minimization-Based Luma Modification for RGB Color Images with Application. IEEE Trans. Image Process. 2017, 26, 4626–4638. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Chung, K.L.; Lin, C.H. An Improved Universal Subsampling Strategy for Compressing Mosaic Videos with Arbitrary RGB Color Filter Srrays in H. 264/AVC. J. Vis. Commun. Image Represent. 2014, 25, 1791–1799. [Google Scholar] [CrossRef]
- VTM-16.2. 2022. Available online: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-16.2 (accessed on 19 May 2022).
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjontegaard, G. Calculation of Average PSNR Differences between RD-curves. In Proceedings of the 13th VCEG Meeting, Austin, TX, USA, 2–4 April 2001. [Google Scholar]
- Stasinski, R.; Konrad, J. A New Class of Fast Shape-adaptive Orthogonal Transforms and Their Application to Region-based Image Compression. IEEE Trans. Image Process. 1999, 9, 16–34. [Google Scholar] [CrossRef] [Green Version]
- Malvar, H.S.; Sullivan, G.J. YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range; ITU-T/ISO/IEC JVT Document JVT-I014; ISO: Geneve, Switzerland, 2003. [Google Scholar]
- Adams, M.D.; Kossentini, F.; Ward, R.K. Generalized S Transform. IEEE Trans. Signal Process. 2002, 50, 2831–2842. [Google Scholar] [CrossRef]
- Malvar, H.S.; Sullivan, G.J.; Srinivasan, S. Lifting-based Reversible Color Transformations for Image Compression. SPIE 2008, 7073, 707307. [Google Scholar] [CrossRef]
- Khan, T.H.; Wahid, K.A. Low-complexity Colour-space for Capsule Endoscopy Image Compression. Electron. Lett. 2011, 47, 1217–1218. [Google Scholar] [CrossRef]
- Gunturk, B.K.; Glotzbach, J.; Altunbasak, Y.; Schafer, R.W.; Mersereau, R.M. Demosaicking: Color Filter Array Interpolation. IEEE Signal Process. Mag. 2005, 22, 44–54. [Google Scholar] [CrossRef]
- Li, X.; Gunturk, B.; Zhang, L. Image Demosaicing: A Systematic Survey. In Proceedings of the Visual Communications and Image Processing 2008, San Jose, CA, USA, 29–31 January 2008; SPIE: Bellingham, WA, USA, 2008; Volume 6822, pp. 489–503. [Google Scholar] [CrossRef]
- Mihoubi, S.; Lapray, P.J.; Bigué, L. Survey of Demosaicking Methods for Polarization Filter Array Images. Sensors 2018, 18, 3688. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cao, R.; Guan, Y.; Liu, T.; Yu, Z. A Deep Survey in the Applications of Demosaicking. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 10–12 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 596–602. [Google Scholar] [CrossRef]
- Sakamoto, T.; Nakanishi, C.; Hase, T. Software Pixel Interpolation for Digital Still Cameras Suitable for a 32-bit MCU. IEEE Trans. Consum. Electron. 1998, 44, 1342–1352. [Google Scholar] [CrossRef]
- Kimmel, R. Demosaicing: Image Reconstruction from Color CCD Samples. IEEE Trans. Image Process. 1999, 8, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunturk, B.K.; Altunbasak, Y.; Mersereau, R.M. Color Plane Interpolation Using Alternating Projections. IEEE Trans. Image Process. 2002, 11, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.C.; Tam, I.K. Effective Color Interpolation in CCD Color Filter Arrays Using Signal Correlation. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 503–513. [Google Scholar] [CrossRef]
- Lu, W.; Tan, Y.P. Color Filter Array Demosaicking: New Method and Performance Measures. IEEE Trans. Image Process. 2003, 12, 1194–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Zhang, N. Primary-Consistent Soft-Decision Color Demosaicking for Digital Cameras (Patent Pending). IEEE Trans. Image Process. 2004, 13, 1263–1274. [Google Scholar] [CrossRef]
- Lukac, R.; Plataniotis, K.N. Normalized Color-Ratio Modeling for CFA Interpolation. IEEE Trans. Consum. Electron. 2004, 50, 737–745. [Google Scholar] [CrossRef]
- Hirakawa, K.; Parks, T.W. Adaptive Homogeneity-Directed Demosaicing Algorithm. IEEE Trans. Image Process. 2005, 14, 360–369. [Google Scholar] [CrossRef]
- Chung, K.L.; Yang, W.J.; Yan, W.M.; Wang, C.C. Demosaicing of Color Filter Array Captured Images Using Gradient Edge Detection Masks and Adaptive Heterogeneity-Projection. IEEE Trans. Image Process. 2008, 17, 2356–2367. [Google Scholar] [CrossRef]
- Condat, L. A Generic Variational Approach for Demosaicking from an Arbitrary Color Filter Array. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1625–1628. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.J.; Chung, K.L.; Yang, W.N.; Lin, L.C. Universal Chroma Subsampling Strategy for Compressing Mosaic Video Sequences With Arbitrary RGB Color Filter Arrays in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 591–606. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Buades, A.; Li, X. Color Demosaicking by Local Directional Interpolation and Nonlocal Adaptive Thresholding. J. Electron. Imaging 2011, 20, 023016. [Google Scholar] [CrossRef] [Green Version]
- Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Residual Interpolation for Color Image Demosaicking. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2304–2308. [Google Scholar] [CrossRef]
- Ye, W.; Ma, K.K. Color Image Demosaicing Using Iterative Residual Interpolation. IEEE Trans. Image Process. 2015, 24, 5879–5891. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.S.; Chen, W.Y.; Hua, K.L. DeepDemosaicking: Adaptive Image Demosaicking via Multiple Deep Fully Convolutional Networks. IEEE Trans. Image Process. 2018, 27, 2408–2419. [Google Scholar] [CrossRef] [PubMed]
- Syu, N.S.; Chen, Y.S.; Chuang, Y.Y. Learning Deep Convolutional Networks for Demosaicing. arXiv 2018, arXiv:1802.03769. [Google Scholar] [CrossRef]
- Ni, Z.; Ma, K.K.; Zeng, H.; Zhong, B. Color Image Demosaicing Using Progressive Collaborative representation. IEEE Trans. Image Process. 2020, 29, 4952–4964. [Google Scholar] [CrossRef]
- ITU-R BT.601-5; Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios. International Telecommunication Union (ITU): Geneva, Switzerland, 2011; p. 624.
- Winkler, S.; Kunt, M.; Branden Lambrecht, C.J. Vision and Video: Models and Applications. In Vision Models and Applications to Image and Video Processing; Springer: Berlin/Heidelberg, Germany, 2001; pp. 201–229. [Google Scholar] [CrossRef]
- Li, X.; Orchard, M.T. New Edge-Directed Interpolation. IEEE Trans. Image Process. 2001, 10, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Li, S.; Shen, H. Virtualized Screen: A Third Element for Cloud-Mobile Convergence. IEEE Multimed. 2011, 18, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008; Available online: https://books.google.com.tw/books?hl=zh-TW&lr=&id=seAgiOfu2EIC&oi=fnd&pg=PR3&dq=opencv+library&ots=hUL28niGSa&sig=2f-MT4LGYlFPnyfkVd6xLIo27VM&redir_esc=y#v=snippet&q=bilinear&f=false (accessed on 25 September 2022).
- Magnus, J.R.; Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Yu, Y.C.; Jhang, J.W.; Wei, X.; Tseng, H.W.; Wen, Y.; Liu, Z.; Lin, T.L.; Chen, S.L.; Chiou, Y.S.; Lee, H.Y. Chroma Upsampling for YCbCr 420 Videos. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Taipei, Taiwan, 12–14 June 2017; pp. 163–164. [Google Scholar] [CrossRef]
- Yamagami, T.; Sasaki, T.; Suga, A. Image Signal Processing Apparatus Having a Color Filter with Offset Luminance Filter Elements. U.S. Patent 5,323,233, 21 June 1994. [Google Scholar]
- Tachi, M. Image Processing Device, Image Processing Method, and Program Pertaining to Image Correction. U.S. Patent 8,314,863, 20 November 2012. [Google Scholar]
- Compton, J.T.; Hamilton, J.F. Image Sensor with Improved Light Sensitivity. U.S. Patent 8 139 130 B2, 20 March 2012. [Google Scholar]
- ho Lee, S.; Oh, P.; Kang, M.G. Three Dimensional Colorization Based Image/Video Reconstruction from White-dominant RGBW Pattern Images. Digit. Signal Process. 2019, 93, 87–101. [Google Scholar] [CrossRef]
- Su, P.H.; Chen, P.C.; Chen, H.H. Compensation of Spectral Mismatch to Enhance WRGB Demosaicking. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27 September–1 October 2015; pp. 68–72. [Google Scholar] [CrossRef]
- Chung, K.L.; Chan, T.H.; Chen, S.N. Effective Three-Stage Demosaicking Method for RGBW CFA Images Using the Iterative Error-Compensation Based Approach. Sensors 2020, 20, 3908. [Google Scholar] [CrossRef]
- Bakurov, I.; Buzzelli, M.; Schettini, R.; Castelli, M.; Vanneschi, L. Structural Similarity Index (SSIM) Revisited: A Data-Driven Approach. Expert Syst. Appl. 2022, 189, 116087. [Google Scholar] [CrossRef]
- Venkataramanan, A.K.; Wu, C.; Bovik, A.C.; Katsavounidis, I.; Shahid, Z. A Hitchhiker’s Guide to Structural Similarity. IEEE Access 2021, 9, 28872–28896. [Google Scholar] [CrossRef]
Method | Platform | PSNR | SSIM | FSIM |
---|---|---|---|---|
CDM-OLM | VTM-16.2 | 55.5654 | 0.99968 | 0.99988 |
modified 4:2:0(A)-OLM | VTM-16.2 | 55.2914 | 0.99966 | 0.99987 |
BIDM-OLM | VTM-16.2 | 56.8909 | 0.99977 | 0.99991 |
VTM-16.2 | 58.0274 | 0.99972 | 0.99970 | |
VTM-16.2 | 50.7565 | 0.99928 | 0.99964 | |
VTM-16.2 | 53.3100 | 0.99941 | 0.99966 | |
CDM-OLM | JPEG-2000 | 55.5956 | 0.99968 | 0.99988 |
modified 4:2:0(A)-OLM | JPEG-2000 | 55.4404 | 0.99967 | 0.99987 |
BIDM-OLM | JPEG-2000 | 56.9200 | 0.99976 | 0.99991 |
JPEG-2000 | 58.0296 | 0.99972 | 0.99990 | |
JPEG-2000 | 50.7568 | 0.99928 | 0.99964 | |
JPEG-2000 | 53.3106 | 0.99941 | 0.99966 |
Method | Platform | CPSNR | CSSIM | CFSIM |
---|---|---|---|---|
CDM-OLM | VTM-16.2 | 53.5576 | 0.99866 | 0.99983 |
modified 4:2:0(A)-OLM | VTM-16.2 | 53.3690 | 0.99862 | 0.99983 |
BIDM-OLM | VTM-16.2 | 54.4657 | 0.99892 | 0.99987 |
VTM-16.2 | 55.2310 | 0.99888 | 0.99984 | |
VTM-16.2 | 49.4787 | 0.99746 | 0.99959 | |
VTM-16.2 | 51.6591 | 0.99786 | 0.99959 | |
CDM-OLM | JPEG-2000 | 53.5863 | 0.99866 | 0.99983 |
modified 4:2:0(A)-OLM | JPEG-2000 | 53.5154 | 0.99865 | 0.99983 |
BIDM-OLM | JPEG-2000 | 54.4885 | 0.99892 | 0.99987 |
JPEG-2000 | 55.2337 | 0.99888 | 0.99984 | |
JPEG-2000 | 49.4793 | 0.99746 | 0.99959 | |
JPEG-2000 | 51.6602 | 0.99786 | 0.99959 |
KODAK | IMAX | SCI | Videos | CI | AVG | |
---|---|---|---|---|---|---|
CDM-OLM | 0.4371 | 0.0179 | 0.0307 | 0.0074 | 0.0209 | 0.1028 |
modified 4:2:0(A)-OLM | 2.1914 | 0.0937 | 0.1396 | 0.0381 | 0.1016 | 0.5129 |
BIDM-OLM | 0.8362 | 0.0420 | 0.0711 | 0.0151 | 0.0429 | 0.2015 |
0.0378 | 0.0017 | 0.0028 | 0.0006 | 0.0018 | 0.0089 | |
0.0364 | 0.016 | 0.0028 | 0.0007 | 0.0016 | 0.0086 | |
0.0547 | 0.0022 | 0.0038 | 0.0010 | 0.0028 | 0.0129 |
Method | Platform | QP [4, 20] | QP [12, 28] | QP [20, 36] | QP [28, 44] | QP [36, 51] |
---|---|---|---|---|---|---|
CDM-OLM | VTM-16.2 | −3.4486 | −0.2175 | 2.1060 | 3.4628 | 3.5398 |
modified 4:2:0(A)-OLM | VTM-16.2 | −3.5834 | −0.2550 | 2.1785 | 3.5687 | 3.6122 |
BIDM-OLM | VTM-16.2 | −3.0984 | 0.1299 | 2.4742 | 3.6255 | 3.6063 |
VTM-16.2 | 0.8212 | 1.4656 | 2.1304 | 2.8782 | 2.7864 | |
VTM-16.2 | −1.9614 | 0.3535 | 1.5443 | 2.6012 | 2.6668 | |
VTM-16.2 | −0.3723 | 1.2455 | 2.1641 | 3.0196 | 2.8695 | |
CR [5, 20] | CR [15, 30] | CR [20, 35] | CR [25, 40] | CR [30, 45] | ||
CDM-OLM | JPEG-2000 | 1.5667 | 3.3552 | 3.7033 | 3.9106 | 4.0223 |
modified 4:2:0(A)-OLM | JPEG-2000 | 1.5707 | 3.3740 | 3.7248 | 3.9297 | 4.0396 |
BIDM-OLM | JPEG-2000 | 1.6314 | 3.3979 | 3.7335 | 3.9336 | 4.0401 |
JPEG-2000 | 1.3451 | 2.7924 | 3.1319 | 3.3665 | 3.5208 | |
JPEG-2000 | 1.1450 | 2.7286 | 3.1177 | 3.3823 | 3.5621 | |
JPEG-2000 | 1.3662 | 2.9438 | 3.3218 | 3.5802 | 3.7508 |
Method | Platform | QP [4, 20] | QP [12, 28] | QP [20, 36] | QP [28, 44] | QP [36, 51] |
---|---|---|---|---|---|---|
CDM-OLM | VTM-16.2 | −2.7093 | 0.0106 | 2.2170 | 3.6186 | 3.8182 |
modified 4:2:0(A)-OLM | VTM-16.2 | −2.8379 | −0.1073 | 2.1726 | 3.6543 | 3.8561 |
BIDM-OLM | VTM-16.2 | −2.4553 | 0.2697 | 2.4895 | 3.7681 | 3.8773 |
VTM-16.2 | 0.4310 | 1.0292 | 1.8324 | 2.8669 | 3.0045 | |
VTM-16.2 | −1.8610 | 0.0021 | 1.2083 | 2.5099 | 2.8323 | |
VTM-16.2 | −0.4328 | 0.8685 | 1.8585 | 2.9811 | 3.0826 | |
CR [5, 20] | CR [15, 30] | CR [20, 35] | CR [25, 40] | CR [30, 45] | ||
CDM-OLM | JPEG-2000 | 2.0816 | 3.8981 | 4.2366 | 4.4344 | 4.5438 |
modified 4:2:0(A)-OLM | JPEG-2000 | 2.0211 | 3.8834 | 4.2443 | 4.4536 | 4.5677 |
BIDM-OLM | JPEG-2000 | 2.1005 | 3.9354 | 4.2773 | 4.4794 | 4.5889 |
JPEG-2000 | 1.8285 | 3.4338 | 3.7969 | 4.0440 | 4.2071 | |
JPEG-2000 | 1.5357 | 3.2973 | 3.7119 | 3.9886 | 4.1804 | |
JPEG-2000 | 1.8189 | 3.5772 | 3.9777 | 4.2471 | 4.4271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.-L.; Chen, H.-Y.; Hsieh, T.-L.; Chen, Y.-B. Compression for Bayer CFA Images: Review and Performance Comparison. Sensors 2022, 22, 8362. https://doi.org/10.3390/s22218362
Chung K-L, Chen H-Y, Hsieh T-L, Chen Y-B. Compression for Bayer CFA Images: Review and Performance Comparison. Sensors. 2022; 22(21):8362. https://doi.org/10.3390/s22218362
Chicago/Turabian StyleChung, Kuo-Liang, Hsuan-Ying Chen, Tsung-Lun Hsieh, and Yen-Bo Chen. 2022. "Compression for Bayer CFA Images: Review and Performance Comparison" Sensors 22, no. 21: 8362. https://doi.org/10.3390/s22218362
APA StyleChung, K.-L., Chen, H.-Y., Hsieh, T.-L., & Chen, Y.-B. (2022). Compression for Bayer CFA Images: Review and Performance Comparison. Sensors, 22(21), 8362. https://doi.org/10.3390/s22218362