Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue
<p>Fitting of the Modified Gompertz, Logistic, Huang and Baranyi models to the total bacterial count (<b>A1</b>–<b>A4</b>), the response values of S7 (<b>B1</b>–<b>B4</b>), sweetness (<b>C1</b>–<b>C4</b>) and the scores of PC1–PC4 extracted from E-nose and E-tongue readings (<b>D1</b>–<b>D4</b>) for freshly squeezed strawberry juice during cold storage.</p> "> Figure 2
<p>Radar chart (<b>A</b>) of response values and loadings analysis (<b>B</b>) of sensors in E-nose; radar chart of response values of taste sensors for freshly squeezed strawberry juice during cold storage (<b>C</b>).</p> "> Figure 3
<p>The gravel map of the principal components scores to the fusion of E-nose and E-tongue for freshly squeezed strawberry juice during cold storage.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Freshly Squeezed Strawberry Juice
2.3. Determination of Total Bacterial Count of Freshly Squeezed Strawberry Juice during Cold Storage by Plate Counting
2.4. Acquisition of E-Nose Information
2.5. Acquisition of E-Tongue Information
2.6. Data Analyzing Methods
2.7. Growth Curve Fitting
3. Results and Discussions
3.1. Growth Simulation of Total Bacterial Count by Traditional Plate-Counting Methods
3.2. E-Nose Testing Results
3.2.1. Gas Sensor Selection
3.2.2. Growth Simulation of Total Bacterial Count in Freshly Squeezed Strawberry Juice by an E-Nose Sensor S7
3.3. E-Tongue Testing Results
3.3.1. Taste Sensor Selection
3.3.2. Growth Simulation of Total Bacterial Count in Freshly Squeezed Strawberry Juice by Sweetness Sensor
3.4. Fusion Results of E-Nose and E-Tongue
3.4.1. Principal Component Scores of All Sensors in E-Nose and E-Tongue
3.4.2. Growth Simulation of Total Bacterial Count in Freshly Squeezed Strawberry Juice by Scores of the First Four Principal Components
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, J.; Ye, J.; Vanga, S.K.; Raghavan, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 2019, 96, 128–136. [Google Scholar] [CrossRef]
- Rabie, M.A.; Soliman, A.Z.; Diaconeasa, Z.S.; Constantin, B. Effect of Pasteurization and Shelf Life on the Physicochemical Properties of Physalis (Physalis peruviana L.) Juice. J. Food Process. Preserv. 2014, 39, 1051–1060. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Rahaman, M.M.; Yao, Y.; Ma, P.; Zhang, J.; Zhao, X.; Jiang, T.; Grzegorzek, M. A comprehensive review of image analysis methods for microorganism counting: From classical image processing to deep learning approaches. Artif. Intell. Rev. 2022, 55, 2875–2944. [Google Scholar] [CrossRef]
- Ye, K.; Wang, H.; Zhang, X.; Jiang, Y.; Xu, X.; Zhou, G. Development and validation of a molecular predictive model to describe the growth of Listeria monocytogenes in vacuum-packaged chilled pork. Food Control 2013, 32, 246–254. [Google Scholar] [CrossRef]
- Castell, A.; Arroyo-Manzanares, N.; Hernández, J.D.D.; Guillén, I.; Vizcaíno, P.; López-García, I.; Hernández-Córdoba, M.; Viñas, P. Ion mobility spectrometry as an emerging tool for characterization of the volatile profile and identification of microbial growth in pomegranate juice. Microchem. J. 2022, 174, 107099. [Google Scholar] [CrossRef]
- Zhou, B.; Fan, X.; Song, J.; Wu, J.; Pan, L.; Tu, K.; Peng, J.; Dong, Q.; Xu, J.; Wu, J. Growth simulation of Pseudomonas fluorescens in pork using hyperspectral imaging. Meat Sci. 2022, 188, 108767. [Google Scholar] [CrossRef]
- Sakarika, M.; Tzompa-Sosa, D.A.; Depoortere, M.; Rottiers, H.; Ganigué, R.; Dewettinck, K.; Rabaey, K. The type of microorganism and substrate determines the odor fingerprint of dried bacteria targeting microbial protein production. FEMS Microbiol. Lett. 2020, 367, fnaa138. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yang, J.; Ruan, J.; Sun, C. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. Trends Anal. Chem. 2016, 78, 1–16. [Google Scholar] [CrossRef]
- Ragaert, P.; Devlieghere, F.; Loos, S.; Dewulf, J.; Van Langenhove, H.; Debevere, J. Metabolite production of yeasts on a strawberry-agar during storage at 7 °C in air and low oxygen atmosphere. Food Microbiol. 2006, 23, 154–161. [Google Scholar] [CrossRef]
- Nieminen, T.; Neubauer, P.; Sivelä, S.; Vatamo, S.; Silfverberg, P.; Salkinoja-Salonen, M. Volatile compounds produced by fungi grown in strawberry jam. LWT Food Sci. Technol. 2008, 41, 2051–2056. [Google Scholar] [CrossRef]
- Rojas-Flores, C.; Ventura-Aguilar, R.I.; Bautista-Baños, S.; Revah, S.; Saucedo-Lucero, J.O. Estimating CO2 and VOCs production of Colletotrichum fragariae and Rhizopus stolonifer grown in cold stored strawberry fruit. Microbiol. Res. 2019, 228, 126327. [Google Scholar] [CrossRef]
- Szczawinski, J. Predictive microbiology: Practical applications. Med. Weter. 2012, 68, 540–543. [Google Scholar]
- Pérez-Rodríguez, F.; Valero, A. Predictive Microbiology in Foods; Springer: New York, NY, USA, 2013; pp. 1–10. [Google Scholar]
- Roberts, T.A. Combinations of antimicrobials and processing methods. Food Technol. 1989, 43, 156–163. [Google Scholar]
- Ferrer, J.; Prats, C.; López, D.; Vives-Rego, J. Mathematical modelling methodologies in predictive food microbiology: A SWOT analysis. Int. J. Food Microbiol. 2009, 134, 2–8. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, H.; Zheng, Y.; Li, S. Distributed model predictive control for efficient operation of islanded microgrid. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 6253–6258. [Google Scholar]
- Zhao, J.; Gao, J.; Chen, F.; Ren, F.; Dai, R.; Liu, Y.; Li, X. Modeling and predicting the effect of temperature on the growth of Proteus mirabilis in chicken. J. Microbiol. Methods 2014, 99, 38–43. [Google Scholar] [CrossRef]
- Tarlak, F.; Pérez-Rodríguez, F. Development and validation of a one-step modelling approach for the determination of chicken meat shelf-life based on the growth kinetics of Pseudomonas spp. Food Sci. Technol. Int. 2021. [Google Scholar] [CrossRef]
- Juneja, V.K.; Valenzuela Melendres, M.; Huang, L.; Gumudavelli, V.; Subbiah, J.; Thippareddi, H. Modeling the effect of temperature on growth of Salmonella in chicken. Food Microbiol. 2007, 24, 328–335. [Google Scholar] [CrossRef]
- Li, M.; Niu, H.; Zhao, G.; Tian, L.; Huang, X.; Zhang, J.; Tian, W.; Zhang, Q. Analysis of mathematical models of Pseudomonas spp. growth in pallet-package pork stored at different temperatures. Meat Sci. 2013, 93, 855–864. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, B.S.; Yoon, H.J.; Kim, K.-T.; Paik, H.-D.; Lee, J.-Y. Predictive model for the growth kinetics of Listeria monocytogenes in raw pork meat as a function of temperature. Food Control 2014, 44, 16–21. [Google Scholar] [CrossRef]
- Li, M.Y.; Sun, X.M.; Zhao, G.M.; Huang, X.Q.; Zhang, J.W.; Tian, W.; Zhang, Q.H. Comparison of mathematical models of lactic acid bacteria growth in vacuum-packaged raw beef stored at different temperatures. J. Food Sci. 2013, 78, M600–M604. [Google Scholar] [CrossRef]
- Juneja, V.K.; Melendres, M.V.; Huang, L.; Subbiah, J.; Thippareddi, H. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 °C. Int. J. Food Microbiol. 2009, 131, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, H.; Yano, K.; Morozumi, S. Model comparison for Escherichia coli growth in pouched food. Food Hyg. Saf. Sci. 2006, 47, 115–118. [Google Scholar] [CrossRef]
- Wang, J.; Rahman, S.M.E.; Zhao, X.H.; Forghani, F.; Park, M.S.; Oh, D.H. Predictive models for the growth kinetics of Listeria monocytogenes on white cabbage. J. Food Saf. 2013, 33, 50–58. [Google Scholar] [CrossRef]
- Juneja, V.K.; Mishra, A.; Pradhan, A.K. Dynamic predictive model for growth of Bacillus cereus from spores in cooked beans. J. Food Prot. 2018, 81, 308–315. [Google Scholar] [CrossRef]
- Hong, Y.K.; Yoon, W.B.; Huang, L.; Yuk, H.G. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures. J. Food Sci. 2014, 79, M1168–M1174. [Google Scholar] [CrossRef]
- Achata, E.M.; Oliveira, M.; Esquerre, C.A.; Tiwari, B.K.; O’Donnell, C.P. Visible and NIR hyperspectral imaging and chemometrics for prediction of microbial quality of beef Longissimus dorsi muscle under simulated normal and abuse storage conditions. LWT 2020, 128, 109463. [Google Scholar] [CrossRef]
- Tao, F.; Peng, Y. A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique. J. Food Eng. 2014, 126, 98–106. [Google Scholar] [CrossRef]
- Zheng, X.; Peng, Y.; Wang, W. A nondestructive Real-Time detection method of total viable count in pork by hyperspectral imaging technique. Appl. Sci. 2017, 7, 213. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Sun, Y.; Tu, K.; Dong, Q.; Pan, L. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors. Sci. Rep. 2016, 6, 38721. [Google Scholar] [CrossRef] [Green Version]
- Timsorn, K.; Thoopboochagorn, T.; Lertwattanasakul, N.; Wongchoosuk, C. Evaluation of bacterial population on chicken meats using a briefcase electronic nose. Biosyst. Eng. 2016, 151, 116–125. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Teye, E.; Gu, F.; Gu, H. Nondestructive detection of fish freshness during its preservation by combining electronic nose and electronic tongue techniques in conjunction with chemometric analysis. Anal. Methods 2014, 6, 529–536. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J.; Gao, L. Qualification and quantisation of processed strawberry juice based on electronic nose and tongue. LWT Food Sci. Technol. 2015, 60, 115–123. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J.; Gao, L. Discrimination and Characterization of Strawberry Juice Based on Electronic Nose and Tongue: Comparison of Different Juice Processing Approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, M.; Bhandari, B.; Adhikari, B. Application of electronic tongue for fresh foods quality evaluation: A review. Food Rev. Int. 2018, 34, 746–769. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, L.; Wang, J. Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice. J. Food Eng. 2015, 144, 77–85. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Ma, Z.; Li, M.; Wei, Z. Combination of an E-Nose and an E-Tongue for adulteration detection of minced mutton mixed with pork. J. Food Qual. 2019, 2019, 4342509. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Cheng, J.H.; Sun, D.W.; Liu, D. Mapping changes in sarcoplasmatic and myofibrillar proteins in boiled pork using hyperspectral imaging with spectral processing methods. LWT 2019, 110, 338–345. [Google Scholar] [CrossRef]
- Liu, D.; Qu, J.; Sun, D.W.; Pu, H.; Zeng, X.A. Non-destructive prediction of salt contents and water activity of porcine meat slices by hyperspectral imaging in a salting process. Innov. Food Sci. Emerg. Technol. 2013, 20, 316–323. [Google Scholar] [CrossRef]
- Mansour, F.; Nagy, K.; Taqi, A.; Askar, K. Factors affecting the fungal contamination of some fruit juices packaged in Tetra Pak. Afr. J. Biotechnol. 2011, 10, 12957–12962. [Google Scholar]
- Liu, Q.; Sun, K.; Zhao, N.; Yang, J.; Zhang, Y.; Ma, C.; Pan, L.; Tu, K. Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay. Postharvest Biol. Technol. 2019, 153, 152–160. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Zhou, T.; Zhang, D.; Zhang, D.; Zhang, L.; Wang, G.; Cao, F. Discrimination of Malus taxa with different scent intensities using electronic nose and gas chromatography–mass spectrometry. Sensors 2018, 18, 3429. [Google Scholar] [CrossRef]
Models | λ(h) | μmax (h−1) | R2 | RMSE | N0 (LogCFU/mL) | Nmax (LogCFU/mL) |
---|---|---|---|---|---|---|
Modified Gompertz | 45.000 | 0.013 | 0.953 | 0.132 | 3.878 | 6.117 |
Logistic | 108.400 | 0.062 | 0.971 | 0.103 | 3.992 | 5.341 |
Huang | 55.180 | 0.015 | 0.944 | 0.143 | 3.975 | 6.558 |
Baranyi | 97.850 | 0.064 | 0.971 | 0.104 | 3.996 | 5.337 |
Number | Sensors | Sensitivity |
---|---|---|
S1 | W1C | Sensitive to aromatics, benzene |
S2 | W5S | High sensitivity, especially nitrogen oxides |
S3 | W3C | Ammonia, aromatic components |
S4 | W6S | Mainly selective for hydrogen |
S5 | W5C | Sensitive to alkane aromatic components |
S6 | W1S | Sensitive to short-chain alkanes, methane |
S7 | W1W | Sensitive to inorganic sulfides |
S8 | W2S | Sensitive to alcohol, ether, aldehydes and ketones |
S9 | W2W | Aromatic components, organic sulfides |
S10 | W3S | Sensitive to long-chain alkanes |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
0 h | 0.754 ± 0.020 g | 16.176 ± 2.912 a | 0.881 ± 0.011 h | 1.065 ± 0.007 a | 0.915 ± 0.005 j | 1.776 ± 0.093 a | 10.719 ± 0.942 a | 1.358 ± 0.039 ab | 6.022 ± 0.433 a | 1.113 ± 0.005 cd |
12 h | 0.772 ± 0.014 f | 13.414 ± 1.918 b | 0.891 ± 0.007 g | 1.051 ± 0.006 b | 0.924 ± 0.005 hi | 1.670 ± 0.071 b | 9.445 ± 0.995 b | 1.337 ± 0.035 ab | 5.334 ± 0.491 b | 1.116 ± 0.005 bc |
24 h | 0.769 ± 0.013 f | 12.626 ± 2.205 b | 0.888 ± 0.008 g | 1.047 ± 0.004 c | 0.922 ± 0.005 i | 1.633 ± 0.035 bc | 9.115 ± 0.865 bc | 1.335 ± 0.019 ab | 5.124 ± 0.375 b | 1.113 ± 0.004 cd |
36 h | 0.783 ± 0.017 e | 10.269 ± 3.127 d | 0.898 ± 0.007 f | 1.051 ± 0.009 b | 0.929 ± 0.005 g | 1.651 ± 0.065 bc | 8.733 ± 1.298 c | 1.345 ± 0.034 a | 4.816 ± 0.561 c | 1.130 ± 0.008 a |
48 h | 0.787 ± 0.008 e | 11.444 ± 1.352 c | 0.896 ± 0.004 f | 1.048 ± 0.008 bc | 0.926 ± 0.003 h | 1.623 ± 0.033 c | 7.937 ± 1.016 d | 1.317 ± 0.020 c | 4.557 ± 0.401 d | 1.127 ± 0.012 a |
60 h | 0.789 ± 0.014 e | 9.672 ± 1.278 de | 0.899 ± 0.007 f | 1.047 ± 0.005 c | 0.930 ± 0.005 g | 1.639 ± 0.064 bc | 7.676 ± 0.992 def | 1.328 ± 0.033 bc | 4.451 ± 0.395 d | 1.127 ± 0.009 a |
72 h | 0.804 ± 0.012 d | 8.997 ± 1.217 ef | 0.907 ± 0.007 e | 1.045 ± 0.005 c | 0.934 ± 0.004 f | 1.566 ± 0.034 de | 7.731 ± 0.610 de | 1.293 ± 0.019 d | 4.356 ± 0.282 d | 1.127 ± 0.008 a |
84 h | 0.826 ± 0.010 b | 8.170 ± 0.705 fg | 0.919 ± 0.005 b | 1.041 ± 0.013 d | 0.943 ± 0.003 c | 1.492 ± 0.040 g | 7.243 ± 0.656 fg | 1.244 ± 0.021 f | 4.073 ± 0.283 e | 1.108 ± 0.004 ef |
96 h | 0.806 ± 0.013 cd | 8.627 ± 1.105 f | 0.908 ± 0.007 de | 1.04 ± 0.003 de | 0.936 ± 0.004 ef | 1.575 ± 0.040 d | 7.318 ± 0.550 efg | 1.293 ± 0.023 d | 4.129 ± 0.258 e | 1.125 ± 0.007 a |
108 h | 0.810 ± 0.012 cd | 8.220 ± 1.179 fg | 0.910 ± 0.006 de | 1.037 ± 0.002 ef | 0.938 ± 0.004 de | 1.567 ± 0.033 de | 7.171 ± 0.586 gh | 1.284 ± 0.018 de | 4.019 ± 0.248 ef | 1.119 ± 0.007 b |
120 h | 0.819 ± 0.022 bc | 7.406 ± 1.410 g | 0.915 ± 0.013 cd | 1.037 ± 0.003 ef | 0.941 ± 0.008 d | 1.536 ± 0.055 def | 6.778 ± 0.382 hi | 1.270 ± 0.028 e | 3.851 ± 0.193 fg | 1.115 ± 0.008 bc |
132 h | 0.822 ± 0.011 b | 6.375 ± 0.805 h | 0.916 ± 0.006 bc | 1.034 ± 0.003 fg | 0.943 ± 0.004 c | 1.535 ± 0.030 ef | 6.673 ± 0.496 ij | 1.271 ± 0.015 e | 3.802 ± 0.224 g | 1.111 ± 0.007 de |
144 h | 0.851 ± 0.013 a | 5.727 ± 0.651 h | 0.931 ± 0.006 a | 1.034 ± 0.003 fg | 0.954 ± 0.004 b | 1.455 ± 0.043 h | 6.245 ± 0.578 jk | 1.221 ± 0.022 g | 3.590 ± 0.272 h | 1.105 ± 0.006 fg |
156 h | 0.847 ± 0.033 a | 4.738 ± 1.115 i | 0.933 ± 0.015 a | 1.035 ± 0.005 fg | 0.958 ± 0.008 a | 1.522 ± 0.083 f | 5.947 ± 0.756 kl | 1.241 ± 0.042 f | 3.387 ± 0.310 i | 1.101 ± 0.008 g |
168 h | 0.842 ± 0.029 a | 4.737 ± 0.989 i | 0.931 ± 0.015 a | 1.033 ± 0.004 g | 0.956 ± 0.009 ab | 1.527 ± 0.093 f | 5.724 ± 0.604 l | 1.254 ± 0.046 f | 3.215 ± 0.287 i | 1.106 ± 0.006 f |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | Log(CFU/mL) | |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 1 | ||||||||||
S2 | −0.960 ** | 1 | |||||||||
S3 | 0.996 ** | −0.960 ** | 1 | ||||||||
S4 | −0.903 ** | 0.943 ** | −0.887 ** | 1 | |||||||
S5 | 0.986 ** | −0.959 ** | 0.996 ** | −0.889 ** | 1 | ||||||
S6 | −0.935 ** | 0.903 ** | −0.908 ** | 0.921 ** | −0.885 ** | 1 | |||||
S7 | −0.951 ** | 0.981 ** | −0.943 ** | 0.950 ** | −0.934 ** | 0.906 ** | 1 | ||||
S8 | −0.972 ** | 0.885 ** | −0.954 ** | 0.869 ** | −0.934 ** | 0.952 ** | 0.890 ** | 1 | |||
S9 | −0.954 ** | 0.987 ** | −0.950 ** | 0.953 ** | −0.942 ** | 0.909 ** | 0.998 ** | 0.891 ** | 1 | ||
S10 | −0.569 * | 0.415 | −0.585 * | 0.434 | −0.615 * | 0.459 | 0.389 | 0.635 * | 0.392 | 1 | |
Log(CFU/mL) | 0.847 ** | −0.906 ** | 0.823 ** | −0.883 ** | 0.791 ** | −0.875 ** | −0.937 ** | −0.806 ** | −0.934 ** | −0.142 | 1 |
Models | λ (h) | μmax (h−1) | Training | Testing | r | ||
---|---|---|---|---|---|---|---|
Rc2 | RMSEc | Rp2 | RMSEp | ||||
Modified Gompertz | 10.000 | 0.031 | 0.890 | 0.458 | 0.893 | 0.478 | 0.955 |
Logistic | 22.300 | 0.027 | 0.914 | 0.405 | 0.919 | 0.401 | 0.826 |
Huang | 2.400 | 0.030 | 0.920 | 0.407 | 0.920 | 0.414 | 0.984 |
Baranyi | 2.900 | 0.030 | 0.922 | 0.370 | 0.923 | 0.407 | 0.995 |
Sourness | Bitterness | Astringency | Aftertaste-B | Aftertaste-A | Umami | Richness | Saltiness | Sweetness | Log(CFU/mL) | |
---|---|---|---|---|---|---|---|---|---|---|
Sourness | 1 | |||||||||
Bitterness | 0.292 | 1 | ||||||||
Astringency | 0.667 ** | 0.764 ** | 1 | |||||||
Aftertaste-B | 0.342 | 0.931 ** | 0.702 ** | 1 | ||||||
Aftertaste-A | 0.577 * | 0.405 | 0.666 ** | 0.512 | 1 | |||||
Umami | −0.812 ** | −0.511 | −0.774 ** | −0.514 * | −0.464 | 1 | ||||
Richness | 0.032 | −0.092 | 0.106 | 0.095 | 0.121 | −0.131 | 1 | |||
Saltiness | −0.622 * | −0.722 ** | −0.904 ** | −0.622 * | −0.372 | 0.854 ** | −0.076 | 1 | ||
Sweetness | 0.533 * | 0.323 | 0.668 ** | 0.302 | 0.325 | −0.867 ** | 0.304 | −0.777 ** | 1 | |
Log(CFU/mL) | 0.243 | −0.044 | 0.219 | 0.092 | 0.166 | −0.578 * | 0.641 ** | −0.349 | 0.772 ** | 1 |
Models | λ (h) | μmax(h−1) | Training | Testing | r | ||
---|---|---|---|---|---|---|---|
Rc2 | RMSEc | Rp2 | RMSEp | ||||
Modified Gompertz | 23.240 | 0.020 | 0.863 | 0.345 | 0.873 | 0.310 | 0.976 |
Logistic | 83.590 | 0.053 | 0.875 | 0.345 | 0.885 | 0.295 | 0.954 |
Huang | 38.070 | 0.030 | 0.861 | 0.364 | 0.881 | 0.290 | 0.970 |
Baranyi | 69.820 | 0.065 | 0.874 | 0.331 | 0.884 | 0.296 | 0.999 |
Time/h | PC1 | PC2 | PC3 | PC4 | Score |
---|---|---|---|---|---|
60.98% | 18.43% | 6.99% | 5.51% | ||
0 | 5.50 | 3.34 | −0.51 | −1.84 | 3.83 |
12 | 3.73 | 1.64 | −1.07 | 0.00 | 2.50 |
24 | 3.38 | 0.50 | −0.65 | 0.64 | 2.14 |
36 | 3.16 | 0.17 | −0.37 | 1.67 | 2.02 |
48 | 1.94 | 0.50 | 0.80 | 0.85 | 1.37 |
60 | 2.13 | −0.50 | 0.39 | 0.18 | 1.25 |
72 | 1.33 | −1.87 | 1.32 | 0.34 | 0.58 |
84 | −0.53 | −2.28 | −0.66 | −0.44 | −0.81 |
96 | 0.90 | −1.68 | 0.94 | −0.45 | 0.28 |
108 | −2.08 | −0.03 | 1.16 | 0.09 | −1.19 |
120 | −3.31 | 1.41 | 2.39 | −0.37 | −1.61 |
132 | −2.42 | −0.53 | −0.83 | −1.34 | −1.70 |
144 | −3.59 | −2.38 | −1.32 | −1.35 | −2.79 |
156 | −5.24 | 0.81 | −1.80 | 1.72 | −3.08 |
168 | −4.89 | 0.90 | 0.20 | 0.29 | −2.79 |
Models | λ(h) | μmax(h−1) | R2 | RMSE | r |
---|---|---|---|---|---|
Modified Gompertz | 9.240 | 0.050 | 0.954 | 0.505 | 0.968 |
Logistic | 75.670 | 0.022 | 0.961 | 0.462 | 0.944 |
Huang | 0.960 | 0.045 | 0.963 | 0.450 | 0.993 |
Baranyi | 8.897 | 0.045 | 0.964 | 0.464 | 0.997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.-W.; Pan, L.-Q.; Tu, K. Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue. Sensors 2022, 22, 8205. https://doi.org/10.3390/s22218205
Zhang J-W, Pan L-Q, Tu K. Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue. Sensors. 2022; 22(21):8205. https://doi.org/10.3390/s22218205
Chicago/Turabian StyleZhang, Jing-Wen, Lei-Qing Pan, and Kang Tu. 2022. "Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue" Sensors 22, no. 21: 8205. https://doi.org/10.3390/s22218205
APA StyleZhang, J.-W., Pan, L.-Q., & Tu, K. (2022). Growth Prediction of the Total Bacterial Count in Freshly Squeezed Strawberry Juice during Cold Storage Using Electronic Nose and Electronic Tongue. Sensors, 22(21), 8205. https://doi.org/10.3390/s22218205