A Single-Antenna Method and Post-Processing Strategy for Radar Cross-Section Measurements at Near-Field Ranges
<p>Magnetic field radiated by a rectangular plate.</p> "> Figure 2
<p>Radar type setup with a single antenna.</p> "> Figure 3
<p>Proposed distance averaging technique.</p> "> Figure 4
<p>Antenna gain as a function of frequency in the main direction of radiation.</p> "> Figure 5
<p>Measurement configuration in a real environment (<b>a</b>) and in an anechoic chamber (AC) (<b>b</b>).</p> "> Figure 6
<p>Input reflection coefficient of the horn antenna measured at eight distances far away from the target.</p> "> Figure 7
<p>Comparison between simulated far-field RCS, RCS measured at near-field distances, RCS measured at near-field distances corrected with F (in an AC or in a real site, after applying DA or a combination of DA and TG), at <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 0° (<b>a</b>), <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 15° (<b>c</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 25° (<b>e</b>). Absolute error between the RCS measured at near-field distances corrected with <span class="html-italic">F</span> (in an AC or in a real site, after applying DA or a combination DA+TG), and the far-field RCS simulations at <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 0° (<b>b</b>), <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 15° (<b>d</b>) <math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 25° (<b>f</b>).</p> "> Figure 8
<p>The F correction factor.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Radar Cross-Section Formulation
2.2. Near to Far-Field Correction Factor and Multipath Effect Reduction
3. Method Validation by Simulations and Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moon, T.T.; Taliana, P.W. RCS Measurements in Multipath Environments. In Proceedings of the AMPC Asia-Pacific Microwave Conference, Adelaide, SA, Australia, 11–13 August 1992; pp. 799–801. [Google Scholar]
- Mihai, I.V.; Tamas, R.D.; Sharaiha, A. A Technique for Radar Cross Section Measurements in the Fresnel Region. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1149–1153. [Google Scholar] [CrossRef]
- Potgieter, M.; Odendaal, J.W.; Blaauw, C.; Joubert, J. Bistatic RCS Measurements of Large Targets in a Compact Range. IEEE Trans. Antennas Propag. 2019, 67, 2847–2852. [Google Scholar] [CrossRef]
- Pienaar, M.; Odendaal, J.W.; Joubert, J.; Pienaar, C.; Smit, J.C. Bistatic RCS measurements in a compact range. In Proceedings of the International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 11–15 September 2017; pp. 1199–1202. [Google Scholar]
- Reis, A.; Sarrazin, F.; Pouliguen, P.; Sol, J.; Besnier, P.; Richalot, E. Radar Cross Section Measurement within Reverberation Chamber: Stirrer Position Issues. In Proceedings of the 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Soltane, A.; Andrieu, G.; Reineix, A. Monostatic Radar Cross-Section Estimation of Canonical Targets in Reverberating Room Using Time-Gating Technique. In Proceedings of the International Symposium on Electromagnetic Compatibility, Amsterdam, The Netherlands, 27–30 August 2018; pp. 355–359. [Google Scholar]
- Besnier, P.; Sol, J.; Méric, S. Estimating radar cross-section of canonical targets in reverberation chamber. In Proceedings of the International Symposium on Electromagnetic Compatibility, Beijing, China, 28–31 October 2017; pp. 1–5. [Google Scholar]
- Tice, T.E. An overview of radar cross section measurement techniques. IEEE Trans. Instrum. Meas. 1990, 39, 205–207. [Google Scholar] [CrossRef]
- Falconer, D.G. Extrapolation of near-field RCS measurements to the far zone. IEEE Trans. Antennas Propag. 1988, 36, 822–829. [Google Scholar] [CrossRef]
- Omi, S.; Uno, T.; Arima, T.; Fujii, T. Subdivision technique in near-field far-field transformation for 2-D radar cross section measurement for large objects. In Proceedings of the CAMA, Bangkok, Thailand, 6–7 July 2017; pp. 348–350. [Google Scholar]
- Petre, P.; Sarkar, T.K. Planar near-field to far-field transformation using an equivalent magnetic current approach. IEEE Trans. Antennas Propag. 1992, 40, 1348–1356. [Google Scholar] [CrossRef]
- Cown, B.J.; Ryan, C.E., Jr. Near-field scattering measurements for determining complex target RCS. IEEE Trans. Antennas Propag. 1989, 31, 576–585. [Google Scholar] [CrossRef]
- Guo, G.; Guo, L. Hybrid Time-Domain PTD and Physical Optics Contour Integral Representations for the Near-Field Backscattering Problem. IEEE Trans. Antennas Propag. 2019, 67, 2655–2665. [Google Scholar] [CrossRef]
- Birtcher, C.R.; Balanis, C.A.; Vokurka, V.J. RCS measurements, transformations, and comparisons under cylindrical and plane wave illumination. IEEE Trans. Antennas Propag. 1994, 42, 329–334. [Google Scholar] [CrossRef]
- Chen, B.; Tong, C. Near-field scattering evaluation based on improved PO and EECs. Electron. Lett. 2019, 55, 180–182. [Google Scholar] [CrossRef]
- Watanabe, T.; Yamada, H. Far-Field Radar Cross Section Determination From Near-Field 3-D Synthetic Aperture Imaging With Arbitrary Antenna-Scanning Surfaces. IEEE Trans. Antennas Propag. 2022, 70, 5831–5840. [Google Scholar] [CrossRef]
- Omi, S.; Hirose, M.; Ameya, M.; Kurokawa, S. Plane-Wave Synthesis Employing Propagating Plane-Wave Expansion for 3-D and 2-D RCS Prediction Including the Multiple Scattering Effects. IEEE Trans. Antennas Propag. 2021, 69, 4827–4835. [Google Scholar] [CrossRef]
- Kouyoumjian, R.G.; Pathak, P.H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 1974, 62, 1448–1461. [Google Scholar] [CrossRef]
- Ross, R. Radar cross section of rectangular flat plates as a function of aspect angle. IEEE Trans. Antennas Propag. 1966, 14, 329–335. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics; Wiley: New York, NY, USA, 1989; pp. 824–827. [Google Scholar]
- Ridenour, L. The Radar Equation. Radar Systems Engineering, 1st ed.; McGraw-Hill: New York, NY, USA, 1947; pp. 18–62. [Google Scholar]
- Tamas, R.D.; Deacu, D.; Vasile, G.; Ioana, C. A method for antenna gain measurements in nonanechoic sites. Microw. Opt. Technol. Lett. 2014, 56, 1553–1557. [Google Scholar] [CrossRef]
DA | AC | DA+TG | |
---|---|---|---|
0° | 0.04 | 0.05 | 0.00 |
15° | 0.95 | 0.11 | 0.15 |
25° | 0.89 | 0.10 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, I.V.; Constantin, A.; Bucuci, S.; Tamas, R.D. A Single-Antenna Method and Post-Processing Strategy for Radar Cross-Section Measurements at Near-Field Ranges. Sensors 2022, 22, 7453. https://doi.org/10.3390/s22197453
Mihai IV, Constantin A, Bucuci S, Tamas RD. A Single-Antenna Method and Post-Processing Strategy for Radar Cross-Section Measurements at Near-Field Ranges. Sensors. 2022; 22(19):7453. https://doi.org/10.3390/s22197453
Chicago/Turabian StyleMihai, Ilie Valentin, Andreea Constantin, Stefania Bucuci, and Razvan D. Tamas. 2022. "A Single-Antenna Method and Post-Processing Strategy for Radar Cross-Section Measurements at Near-Field Ranges" Sensors 22, no. 19: 7453. https://doi.org/10.3390/s22197453
APA StyleMihai, I. V., Constantin, A., Bucuci, S., & Tamas, R. D. (2022). A Single-Antenna Method and Post-Processing Strategy for Radar Cross-Section Measurements at Near-Field Ranges. Sensors, 22(19), 7453. https://doi.org/10.3390/s22197453