Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks
<p>Timelines of agricultural revolutions (based on [<a href="#B10-sensors-22-07295" class="html-bibr">10</a>]).</p> "> Figure 2
<p>IMT scenarios for 2020 and beyond. Source: [<a href="#B7-sensors-22-07295" class="html-bibr">7</a>,<a href="#B29-sensors-22-07295" class="html-bibr">29</a>,<a href="#B30-sensors-22-07295" class="html-bibr">30</a>].</p> "> Figure 3
<p>Coverage of 2G, 3G, and 4G technologies in Colombia. Source: [<a href="#B50-sensors-22-07295" class="html-bibr">50</a>].</p> "> Figure 4
<p>General 5G/IoT architecture. Source: [<a href="#B36-sensors-22-07295" class="html-bibr">36</a>].</p> "> Figure 5
<p>Use cases for agriculture [<a href="#B62-sensors-22-07295" class="html-bibr">62</a>].</p> "> Figure 6
<p>(<b>a</b>) Map of the agricultural frontier in Colombia (highlighted in green); (<b>b</b>) map of zones of interest for rural, economic, and social development (Zidres) in Colombia (highlighted in purple). Source: [<a href="#B72-sensors-22-07295" class="html-bibr">72</a>].</p> "> Figure 7
<p>(<b>a</b>) Political map of Colombia’s regions; (<b>b</b>) agricultural products grown in most of the country’s regions.</p> ">
Abstract
:1. Introduction
- To contextualize the current situation of 5G network deployment in Colombia and its projection to enhance smart agriculture.
- To document smart agriculture applications with IoT and 5G in Colombian departments and regions.
- To propose future applications of 5G/IoT in the field of smart agriculture in Colombia.
Related Work
2. Background
2.1. Agriculture 4.0
2.2. Smart Farming (SF)
2.3. 5G Usage Scenarios
2.4. 5G Frequency Bands and Their Applications
2.5. Projected 5G Frequency Bands in Colombia
Relationship between IoT and 5G
2.6. Implementation of 5G Deployment in Colombia
Frequency Bands Identified in the 5G Deployment in Colombia
3. Materials and Methods
3.1. Search
3.2. Analysis
3.3. Selection of Information
4. Analysis of Results
4.1. Agriculture and Applications Supported by the 5G Network
Agricultural Panorama in Colombia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spedding, R.C. Ecología de los Sistemas Agrícolas; H. Blume Ediciones: Madrid, Spain, 1979. [Google Scholar]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Guo, X. Application of agricultural IoT technology based on 5 G network and FPGA. Microprocess. Microsyst. 2021, 80, 103597. [Google Scholar] [CrossRef]
- Nnadi, N.S.; Idachaba, E.F. Design and Implementation of a Sustainable IOT Enabled Greenhouse Prototype. In Proceedings of the 2018 IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA, 9–11 July 2018; pp. 457–461. [Google Scholar] [CrossRef]
- Sharma, A. MERLIN: Smart Framework for Agriculture in India. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20 October 2021; p. 5. [Google Scholar]
- Ghutke, P.; Agrawal, R. The utilization of IoT and remote sensor organizations and their application in agriculture for the improvement of yield productivity in India. In Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1–3 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, B.M. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Valecce, G.; Strazzella, S.; Grieco, A.L. On the Interplay Between 5G, Mobile Edge Computing and Robotics in Smart Agriculture Scenarios. In Ad-Hoc, Mobile, and Wireless Networks; Palattella, R.M., Scanzio, S., Coleri Ergen, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11803, pp. 549–559. [Google Scholar] [CrossRef]
- Ahmed, T.A.; El Gohary, F.; Tzanakakis, A.V.; Angelakis, N.A. Egyptian and Greek Water Cultures and Hydro-Technologies in Ancient Times. Sustainability 2020, 12, 9760. [Google Scholar] [CrossRef]
- Dayioğlu, A.M.; Turker, U. Digital Transformation for Sustainable Future-Agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, I.V. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Mondal, P.; Basu, M. Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Prog. Nat. Sci. 2009, 19, 659–666. [Google Scholar] [CrossRef]
- Núñez, V.J.M.; Vargas, L.V.; Quezada, M.Y.L. Implementation of a participatory methodology based on STEAM for the transfer of ICT knowledge and creation of Agtech spaces for the co-design of solutions that contribute to the development of small and medium agricultural producers in Colombia, Panama and China. In Proceedings of the 2020 IEEE World Conference on Engineering Education (EDUNINE), Bogota, Colombia, 15–18 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Nyaga, J.M.; Onyango, C.M.; Wetterlind, J.; Söderström, M. Precision agriculture research in sub-Saharan Africa countries: A systematic map. Precis. Agric. 2021, 4, 22. [Google Scholar]
- Faid, A.; Sadik, M.; Sabir, E. An Agile AI and IoT-Augmented Smart Farming: A Cost-Effective Cognitive Weather Station. Agriculture 2022, 12, 35. [Google Scholar] [CrossRef]
- Thorat, A.; Kumari, S.; Valakunde, D.N. An IoT based smart solution for leaf disease detection. In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 193–198. [Google Scholar]
- Karim, F.; Karim, F. Monitoring system using web of things in precision agriculture. Procedia Comput. Sci. 2017, 110, 402–409. [Google Scholar] [CrossRef]
- Navulur, S.; Prasad, G.M. Agricultural management through wireless sensors and internet of things. Int. J. Electr. Comput. Eng. 2017, 7, 3492. [Google Scholar] [CrossRef]
- Alonso, S.R.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98, 102047. [Google Scholar] [CrossRef]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Ramirez-Morales, I.; Mazon-Olivo, B.; Pan, A. Capítulo 1: Ciencia de datos en el sector agropecuario. In Análisis de Datos Agropecuarios; Universidad Técnica de Machala: Machala, Ecuador, 2018; pp. 12–44. [Google Scholar]
- Catelani, M.; Ciani, L.; Bartolini, A.; Del Rio, C.; Guidi, G.; Patrizi, G. Reliability Analysis of Wireless Sensor Network for Smart Farming Applications. Sensors 2021, 21, 7683. [Google Scholar] [CrossRef]
- Naciones Unidas. Población|Naciones Unidas. Naciones Unidas. 2022. Available online: https://www.un.org/es/global-issues/population (accessed on 8 August 2022).
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3–4, 100009. [Google Scholar] [CrossRef]
- United Nations. “El Papel de la Gobernanza Electrónica en la Reducción de la Brecha Digital|Naciones Unidas,” United Nations. Available online: https://www.un.org/es/chronicle/article/el-papel-de-la-gobernanza-electronica-en-la-reduccion-de-la-brecha-digital (accessed on 8 August 2022).
- O’Shaughnessy, S.A.; Kim, M.; Lee, S.; Kim, Y.; Kim, H.; Shekailo, J. Towards smart farming solutions in the U.S. and South Korea: A comparison of the current status. Geogr. Sustain. 2021, 2, 312–327. [Google Scholar] [CrossRef]
- World Bank. Water in Agriculture. Available online: https://www.bancomundial.org/es/topic/water-in-agriculture (accessed on 8 August 2022).
- Balasubramaniyan, M.; Navaneethan, C. Applications of Internet of Things for smart farming—A survey. Mater. Today Proc. 2021, 47, 18–24. [Google Scholar] [CrossRef]
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A Survey on 5G Usage Scenarios and Traffic Models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- UIT-R. Concepción de las IMT–Marco y objetivos generales del futuro desarrollo de las IMT para 2020 y en adelante; UIT-R: Geneva, Switzerland, 2015; p. 22. [Google Scholar]
- GSMA. 5G Spectrum, GSMA Public Policy Position. 2019. Available online: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-InfoG.pdf (accessed on 8 August 2022).
- Constaín, S.; Gaviria, I.A.M. Plan 5G Colombia El Futuro Digital es de Todos; Ministerio de Tecnologías de la Información y las Comunicaciones: Bogotá, Colombia, 2019; p. 93.
- Mekuria, F.; Mfupe, L. Spectrum Sharing for Unlicensed 5G Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–18 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- ANE. Plan Maestro de Gestion de Espectro a 5 años. 2022. Available online: https://www.ane.gov.co/Sliders/archivos/Cargas%20Nuevas/Plan%20Maestro%20de%20Gestion%20de%20Espectro%20a%205%20a%C3%B1os.pdf (accessed on 8 August 2022).
- MinICT. Mintic Expects to Have a 5G Auction Before Government Ends-Mintic Expects to Have a 5G Auction Before Government Ends. MINTIC Colombia. Available online: http://www.mintic.gov.co/portal/715/w3-article-161584.html (accessed on 8 August 2022).
- MinICT. Spectrum Auction Remains: Sylvia Constain, ICT Minister-MINTIC Colombia. Available online: http://www.mintic.gov.co/portal/715/w3-article-118136.html (accessed on 8 August 2022).
- MinICT. Normogram of the Ministry of Information and Communications Technologies [RESOLUCION_MINTIC_3078_2019]. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3078_2019.htm (accessed on 8 August 2022).
- MinICT. Normogram of the Ministry of Information and Communications Technologies [RESOLUCION_MINTIC_3121_2019]. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_3121_2019.htm (accessed on 8 August 2022).
- MinTIC. Resolution 1322-Preliminary Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands. 2020. Available online: https://mintic.gov.co/portal/715/articles-146624_resolucion_1322_20200727.pdf (accessed on 8 August 2022).
- Qualcomm. Global Update on 5G Spectrum. 2019. Available online: https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/spectrum-for-4g-and-5g.pdf (accessed on 8 August 2022).
- MinICT. Resolution 325-Granting a Permit for the Use of the Radio Spectrum to Comunicación Celular S.A. COMCEL S.A. con NIT 800.153.993—7. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172495_Resolucion_No__325.pdf (accessed on 8 August 2022).
- MinICT. Resolution 326-Granting a Permit for the Use of the Radio Spectrum to Comunicación Celular S.A. COMCEL S.A. con NIT 800.153.993—7. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172496_Resolucion_No__326.pdf (accessed on 8 August 2022).
- MinICT. Resolution 327-Granting a Permit for the Use of the Radio Spectrum to Comunicación Celular S.A. COMCEL S.A. S.A. con NIT 800.153.993—7. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172497_Resolucion_No__327.pdf (accessed on 8 August 2022).
- MinICT. Resolution 328-Granting a Permit for the Use of the Radio Spectrum to Comunicación PARTNERS TELECOM COLOMBIA S.A.S.354.361—1. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172499_Resolucion_No__328.pdf (accessed on 8 August 2022).
- MinICT. Resolution 330-Granting a Permit for the Use of the Radio Spectrum to PARTNERS TELECOM COLOMBIA S.A.S.354.361—1. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172501_recurso_1.pdf (accessed on 8 August 2022).
- MinICT. Resolution 331-Granting a Permit for the Use of the Radio Spectrum to a COMUNICACIÓN CELULAR S.A. COMCEL S.A. con NIT 800.153.993—7. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172502_recurso_1.pdf (accessed on 8 August 2022).
- MinICT. Resolution 332-Granting a Permit for the Use of the Radio Spectrum to co 8 COLOMBIA MÓVIL S.A. ESP con NIT 830.114.921—1. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172503_recurso_1.pdf (accessed on 8 August 2022).
- MinICT. Resolution 333-Granting a Permit for the Use of the Radio Spectrum to COLOMBIA MÓVIL S.A. ESP con NIT 830.114.921—1. Available online: https://www.mintic.gov.co/micrositios/asignacion_espectro-imt/742/articles-172504_recurso_1.pdf (accessed on 8 August 2022).
- ANE. Public Consultation on Available Bands for the Future Development of IMT in Colombia. 2020. Available online: https://www.ane.gov.co/Documentos%20compartidos/ArchivosDescargables/noticias/Consulta%20p%C3%BAblica%20sobre%20las%20bandas%20disponibles%20para%20el%20futuro%20desarrollo%20de%20las%20IMT%20en%20Colombia.pdf (accessed on 8 August 2022).
- MinICT. Documento Soporte y Consulta Pública. Desarrollo 5G en Colombia. Available online: https://www.mintic.gov.co/portal/715/articles-236811_documento_soporte_consulta_publica_desarrollo_5g_colombia.pdf (accessed on 8 August 2022).
- Khurpade, M.J.; Rao, D.; Sanghavi, P.D. A Survey on IOT and 5G Network. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Painuly, S.; Sharma, S.; Matta, P. Future Trends and Challenges in Next Generation Smart Application of 5G-IoT. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 354–357. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet of Things J. 2020, 7, 8879484. [Google Scholar] [CrossRef]
- MinICT. Ministry of Information and Communications Technology-Adoption of 5G technology in Colombia. 2020. Available online: https://mintic.gov.co/micrositios/plan_5g//764/articles-162230_recurso_1.pdf (accessed on 8 August 2022).
- MinICT. Informe de Asignación–Espectro Para Uso de Pruebas Tecnicas 5G; Ministerio de las tecnologías de la Información y las Comunicaciones MINTIC: Bogotá, Colombia, 2020. Available online: http://www.mintic.gov.co/portal/715/w3-article-180029.html (accessed on 8 August 2022).
- MinICT. Resolution 467 of 1 July 2020; Ministry of Information and Communications Technology-MinICT: Bogotá, Colombia, 2020. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_icanh_0467_2020.htm (accessed on 8 August 2022).
- MinICT. Resolution 000638 of 1 April 2020; Ministry of Information and Communications Technology - MinICT: Bogotá, Colombia, 2020; pp. 1–6. Available online: https://micrositios.mintic.gov.co/plan_5g/pdf/resolucion_638.pdf (accessed on 8 August 2022).
- MinICT. Resolución Numero-00722 DE 30 de Abril de 2020. 2020. Available online: https://www.mintic.gov.co/portal/604/articles-135751_resolucion.pdf (accessed on 8 August 2022).
- MinICT. ‘El 5G Será Una Herramienta de Sofisticación Para el Desarrollo Industrial Colombiano’: Walid David, Viceministro de Conectividad del MinTIC. MINTIC Colombia. Available online: http://www.mintic.gov.co/portal/715/w3-article-180029.html (accessed on 8 August 2022).
- FAO. Marco Estratégico Para 2022–2031; FAO: Rome, Italy, 2021. [Google Scholar]
- Cerezo, J.; Cerezo, P. “El impacto de 5G,” Cuadernos de Tecnología Evoca, Evoca 2014; pp. 1–42. Available online: http://evocaimagen.com/cuadernos-tecnologia/cuadernos-evoca-tecnologia-1.pdf (accessed on 8 August 2022).
- Swain, W.; Lopes, A.; Agnese, S. Why 5G in Latin America? A Call to Action for Latin American Operators and Policymakers; Omdia: London, UK, 2020. [Google Scholar]
- Nasir, I.; Bibi, A.; Shah, J.H.; Khan, M.A.; Sharif, M.; Iqbal, K. Deep Learning-Based Classification of Fruit Diseases: An Application for Precision Agriculture. Comput. Mater. Contin. 2020, 66, 1949–1962. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Yang, Q.; Hu, T.; Guo, K.; Hong, T. Research on Application Technology of 5G Internet of Things and Big Data in Dairy Farm. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June 2021; pp. 138–140. [Google Scholar] [CrossRef]
- Hsu, C.-K.; Chiu, Y.-H.; Wu, K.-R.; Liang, J.-M.; Chen, J.-J.; Tseng, Y.-C. Design and Implementation of Image Electronic Fence with 5G technology for Smart Farms. In Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Singapore, 28–30 August 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Patel, N.; Shukla, A.; Tanwar, S.; Singh, D. KRanTi: Blockchain-based farmer’s credit scheme for agriculture-food supply chain. Trans. Emerg. Telecommun. Technol. 2021, e4286. [Google Scholar] [CrossRef]
- Li, F. Intelligent agricultural monitoring system based on lot. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; Volume 6, pp. 652–655. [Google Scholar] [CrossRef]
- Shao, S.; Hailes, P.; Wang, T.Y.; Wu, J.Y.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. Survey of Turbo, LDPC, and Polar Decoder ASIC Implementations. IEEE Commun. Surv. Tutor. 2019, 21, 2309–2333. [Google Scholar] [CrossRef]
- Fang, Y.; Bu, Y.; Chen, P.; Lau, F.C.M.; Otaibi, A.S. Irregular-Mapped Protograph LDPC-Coded Modulation: A Bandwidth-Efficient Solution for 6G-Enabled Mobile Networks. IEEE Trans. Intell. Transp. Syst. 2021, 1–14. [Google Scholar] [CrossRef]
- Tervo, O.; Nousiainen, I.; Nasarre, P.I.; Tiirola, E.; Hulkkonen, J. On the Potential of Using Sub-THz Frequencies for Beyond 5G. In Proceedings of the 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Grenoble, France, 10 June 2022; pp. 37–42. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development. Política Agropecuaria y de Desarrollo Rural 2018–2022; Ministry of Agriculture and Rural Development: Bogotá, Colombia, 2019; pp. 1–62.
- Ministerio de Agricultura y Desarrollo Rural. Identificación General de la Frontera Agrícola en Colombia; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2018. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Columnas-Ministra-TIC/126186:La-subasta-de-espectro-del-pasado-diciembre-fuea-muy-clara-Sylvia-Constain (accessed on 8 August 2022).
- Unidad de Planificación Rural Agropecuaria-UPRA. Plan Estratégico Institucional 2019–2022. 2019. Available online: https://www.upra.gov.co/documents/10184/90154/PLAN+ESTRAT%C3%89GICO+UPRA+2019-2022+En+Consulta.pdf/00a00ea8-8193-4c88-ae5b-89b6a35b9101 (accessed on 8 August 2022).
- Malagón, C.D. Los Suelos de Colombia. Available online: https://www.sogeocol.edu.co/documentos/05loss.pdf (accessed on 6 June 2022).
- Food and Agriculture Organization of the United Nations. Policy for the Improvement of Air Quality. CONPES Document N° 3943-Colombia. 2018. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC191823/ (accessed on 8 August 2022).
- Ministry of Agriculture and Rural Development. UPRA, Rural Agricultural Planning Unit. 2016. Available online: https://www.upra.gov.co/documents/10184/40597/Plan+de+Accio%CC%81n+2016+Versio%CC%81n+Publicacio%CC%81n+%281%29.pdf/b5c79d3f-0fa6-4a94-be68-ca7b9f62cac4 (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Bovine—Meat Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Bovina/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Pork Meat Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Porcina/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Poultry Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Avicola/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Ovino-Caprina Chain. 2019. Available online: https://sioc.minagricultura.gov.co/OvinoCaprina/Documentos/2019-03-31%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- ACOLGEN. Map of Electricity Generation in Colombia. Available online: https://www.acolgen.org.co/mapa-generacion/ (accessed on 8 August 2022).
- Office of Economic Studies Manufacturing. Manufacturing Sector Report. 2021. Available online: https://www.mincit.gov.co/getattachment/estudios-economicos/estadisticas-e-informes/informes-de-industria/2021/enero/oee-dp-industria-manufacturera-enero-2021.pdf.aspx (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Equine, Donkey and Mule Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Equino/Documentos/2019-03-30%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Bee and Beekeeping Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Apicola/Documentos/2019-03-30%20Cifras%20sectoriales.pdf (accessed on 8 August 2022).
- Government of Antioquia. Development Plan ‘United for Life 2020–2023’. Available online: https://plandesarrollo.antioquia.gov.co/archivo/PlanDesarrolloUNIDOS_VF-comprimido-min.pdf (accessed on 8 August 2022).
- Agricultural and Forestry Chain Directorate. Flower Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Flores/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- AGRONET Antioquia. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ANTIOQUIA_2017.pdf (accessed on 8 August 2022).
- Directorate of Fishery and Aquaculture Chain Management. Aquaculture Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 8 August 2022).
- Government of Boyacá. Development Plan 2020–2023 ‘Social Pact for Boyacá: Land That Continues to Advance’. Available online: https://www.boyaca.gov.co/wp-content/uploads/2020/06/pdd2020-2023boy.pdf (accessed on 8 August 2022).
- Boyacá Tourism Information System. Tourist Map of Boyacá. Available online: https://situr.boyaca.gov.co/boyaca-es-para-vivirla/# (accessed on 8 August 2022).
- Government of Caldas. Development Plan 2020–2023 ‘United Is Possible’. Available online: https://docs.google.com/viewer?url=https://caldas.gov.co/index.php/inicio/mecanismos-de-control/transparencia-1/1494-plan-de-desarrollo-de-caldas-2020-2023/download?p=1 (accessed on 8 August 2022).
- AGRONET Caldas. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CALDAS_2017.pdf (accessed on 8 August 2022).
- Government of Cundinamarca. Departmental Development Plan 2020–2024 ‘Cundinamarca, Region That Progresses’. Available online: http://www.cundinamarca.gov.co/wcm/connect/37b90ffc-f445-462b-8faa-8a16f4427fe8/PLAN+DE+DESARROLLO+PLIEGOS1_compressed.pdf?MOD=AJPERES&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi (accessed on 8 August 2022).
- Government of Huila. Departmental Development Plan 2020–2023 ‘Huila Crece’. Available online: https://www.huila.gov.co/documentos/1336/plan-de-desarrollo-2020-2023/ (accessed on 8 August 2022).
- AGRONET Huila. Main Crops by Sembled Area 2017. Available online: https://www.agronet.gov.co/Documents/HUILA_2017.pdf (accessed on 8 August 2022).
- Government of Norte de Santander. Development Plan for Norte de Santander 2020–2023. Available online: http://www.nortedesantander.gov.co/Portals/0/PDDNdS2020-2023(Ordenanza006de2020).pdf (accessed on 8 August 2022).
- Government of Norte de Santander. Tourism. Available online: http://www.nortedesantander.gov.co/Gobernacion/Nuestro-Departamento/Turismo (accessed on 8 August 2022).
- Government of Quindio. Departmental Development Plan 2020–2023. Available online: https://www.quindio.gov.co/home/docs/items/item_100/PDD_2020_2023_TU_Y_YO_SOMOS_QUINDIO/PDD_QUINDIO_2020_2023_ORDENANZA_002_.pdf (accessed on 8 August 2022).
- AGRONET Quindio. Main Crops by Sembled Area 2017. 2018. Available online: https://www.agronet.gov.co/Documents/QUIND%C3%8DO_2017.pdf (accessed on 8 August 2022).
- Government of Quindio. Tourism in the Department of Quindio. Available online: https://www.quindio.gov.co/inicio-turismo (accessed on 8 August 2022).
- Government of Risaralda. Departmental Development Plan 2020–2023 ‘Risaralda, Feeling of All’. Available online: https://www.risaralda.gov.co/documentos/150205/documento-plan-de-desarrollo/ (accessed on 8 August 2022).
- AGRONET Risaralda. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/RISARALDA_2017.pdf (accessed on 8 August 2022).
- Superintendence of Transportation Port Traffic in Colombia. Boletín Tráfico Portuario 2020. Available online: https://www.supertransporte.gov.co/documentos/2021/Febrero/Puertos_04/BOLETIN-TRAFICO-PORTUARIO-2020.pdf (accessed on 8 August 2022).
- Government of Santander. Departmental Development Plan ‘Santander Always with You and for the World’ 2020–2023. Available online: https://www.santander.gov.co/index.php/documentos-planeacion/send/2200-plan-de-desarrollo-2020-2023/18585-pdd-2020-2023-completo-pts-nna-aprobado (accessed on 8 August 2022).
- AGRONET Santander. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/SANTANDER_2017.pdf (accessed on 8 August 2022).
- SITUR Santander. Main Reason for Travel. Available online: http://www.sitursantander.co/Estadisticas/Graficos (accessed on 8 August 2022).
- Government of Tolima. Development Plan ‘El Tolima Unites Us’ 2020–2023. Available online: https://regioncentralrape.gov.co/wp-content/uploads/2020/05/Ordenanza-Plan-de-desarrollo-version-8.pdf (accessed on 8 August 2022).
- AGRONET Tolima. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/TOLIMA_2017.pdf (accessed on 8 August 2022).
- Government of Tolima. Tourism. Available online: https://www.tolima.gov.co/tolima/informacion-general/turismo (accessed on 8 August 2022).
- Government of Amazonas. Departmental Development Plan 2020–2023 ‘Progressing with Development’. Available online: http://www.amazonas.gov.co/noticias/plan-de-desarrollo-departamental-del-amazonas-20202023 (accessed on 16 June 2022).
- AGRONET Amazonas. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/AMAZONAS_2017.pdf (accessed on 8 August 2022).
- Government of Caquetá. Caquetá Departmental Development Plan. Available online: https://caqueta.micolombiadigital.gov.co/sites/caqueta/content/files/001016/50760_pdd-caqueta-20202023.pdf (accessed on 8 August 2022).
- Government of Guainía. Departmental Development Plan 2020–2023 ‘Guainía Opportunity for All’. Available online: https://guainia.micolombiadigital.gov.co/sites/guainia/content/files/000550/27454_documento-final-guainia-va1.pdf (accessed on 8 August 2022).
- Government of Guaviare. Departmental Development Plan 2020–2023 ‘Solutions at Your Service’. Available online: https://guaviare.micolombiadigital.gov.co/sites/guaviare/content/files/000705/35240_ordenanza-no-410-de-2020.pdf (accessed on 8 August 2022).
- AGRONET Guaviare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/GUAVIARE_2017.pdf (accessed on 8 August 2022).
- Government of Guaviare. Tourism. Available online: http://www.guaviare.gov.co/tema/turismo/sitios-para-visitar (accessed on 8 August 2022).
- Government of Putumayo. Putumayo Departmental Development Plan 2020–2023 ‘Thirteen Municipalities, One Heart’. Available online: https://www.putumayo.gov.co/index.php?option=com_content&view=article&id=37 (accessed on 8 August 2022).
- AGRONET Putumayo. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/PUTUMAYO_2017.pdf (accessed on 8 August 2022).
- Government of Vaupés. Departmental Development Plan ‘Vaupés, Together We Can’ 2020–2023. Available online: https://vaupes.micolombiadigital.gov.co/sites/vaupes/content/files/000483/24103_pdd-vaupes-juntos-podemos-20202023.pdf (accessed on 8 August 2022).
- Government of the Atlántico. Development Plan 2020–2023 ‘Atlántico for the People’. Available online: https://www.atlantico.gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf (accessed on 8 August 2022).
- AGRONET Atlántico. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ATL%C3%81NTICO_2017.pdf (accessed on 8 August 2022).
- SITUR Atlántico. Main Reason for Travel to the Department of Atlántico. Available online: https://www.situratlantico.com/indicadores/receptor (accessed on 8 August 2022).
- Government of Bolívar. Development Plan for the Department of Bolivar 2020–2023 ‘Bolivar First’. Available online: https://www.asambleadebolivar.gov.co/servicios/2020/proyecto-de-ordenanza-plan-de-desarrollo-bolivar-2020-2023 (accessed on 8 August 2022).
- AGRONET Bolivar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/BOL%C3%8DVAR_2017.pdf (accessed on 8 August 2022).
- SITUR Bolívar. Sites of Interest. Available online: http://www.siturbolivar.com/studies (accessed on 8 August 2022).
- Government of Cesar. Departmental Development Plan 2020–2023 ‘We Do It Better’. Available online: http://cesar.gov.co/d/filesmain/plan_desarrollo/plan_de_desarrollo_2020_2023_lo_hacemos_mejor_act.pdf (accessed on 16 May 2022).
- Government of Cesar. Tourist Guide of the Department of Cesar. Available online: http://cesar.gov.co/d/index.php/es/mainmeneldpto/mengobtur (accessed on 8 August 2022).
- AGRONET Cesar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/CESAR_2017.pdf (accessed on 8 August 2022).
- Government of Córdoba. Departmental Development Plan ‘Now It’s Córdoba’s Turn 2020–2023’. Available online: https://gobcordoba.micolombiadigital.gov.co/sites/gobcordoba/content/files/000057/2828_ordenanza-0009-plan-de-desarrollo-departamental--20202023--ahora-le-toca-a-cordoba--web.pdf (accessed on 8 August 2022).
- AGRONET Córdoba. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/C%C3%93RDOBA_2017.pdf (accessed on 8 August 2022).
- Government of La Guajira. Departmental Development Plan of La Guajira ‘United for Change 2020–2023’. Available online: https://www.laguajira.gov.co/NuestraGestion/PlaneacionGestionyControl/PDM%202020.pdf (accessed on 8 August 2022).
- AGRONET La Guajira. Main Crops by Area Planted in 2017. 2017. Available online: https://www.agronet.gov.co/Documents/LA%20GUAJIRA_2017.pdf (accessed on 8 August 2022).
- Colombia Tourist Information Center National Statistics. National Natural Parks. 2021. Available online: https://citur.gov.co/estadisticas/df_parques_naturales/detalle/18?t=1#gsc.tab=0 (accessed on 8 August 2022).
- Government of Magdalena. Departmental Development Plan ‘Magdalena Renace 2020–2023’. Available online: https://magdalena.micolombiadigital.gov.co/sites/magdalena/content/files/000782/39075_plan-de-desarrollo-departamental-magdalena-renace-2020--2023-1.pdf (accessed on 8 August 2022).
- AGRONET Magdalena. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/MAGDALENA_2017.pdf (accessed on 8 August 2022).
- SITUR Magdalena. Attractions. Available online: https://www.siturmagdalena.com/quehacer/index?tipo=2 (accessed on 8 August 2022).
- Government of Sucre. Departmental Development Plan Sucre 2020–2023 ‘Sucre Diferente’. Available online: https://sucre.micolombiadigital.gov.co/sites/sucre/content/files/000833/41615_proyecto-de-ordenanza-por-la-cual-se-adopta-el-plan-departamental.pdf (accessed on 8 August 2022).
- AGRONET Sucre. Main Crops by Sembled Area. 2018. Available online: https://www.agronet.gov.co/Documents/SUCRE_2017.pdf (accessed on 8 August 2022).
- Government of San Andres. Providencia and Santa Catalina Departmental Development Plan San Andres, Providencia and Santa Catalina Islands 2020–2023 ‘All for a New Beginning’. Available online: https://www.sanandres.gov.co/index.php/gestion/planeacion/plan-de-desarollo/plan-de-desarrollo-anuales/11524-plan-de-desarrollo-todos-por-un-nuevo-comienzo-2020-2023/file (accessed on 8 August 2022).
- Government of Cauca. Departmental Development Plan 2020–2023 ‘42 Motives to Advance’. Available online: https://www.cauca.gov.co/NuestraGestion/PlaneacionGestionyControl/PlandeDesarrolloDepartamental2020-2023.pdf (accessed on 8 August 2022).
- AGRONET Cauca. Main Crops by Area Planted in 2017. 2017. Available online: https://www.agronet.gov.co/Documents/CAUCA_2017.pdf (accessed on 8 August 2022).
- Government of Chocó. Departmental Development Plan ‘Chocó Generating Confidence’ 2020–2023. Available online: https://choco.micolombiadigital.gov.co/sites/choco/content/files/000440/21975_plan-de-desarrollo-departamental-del-choco-20202023--version-final.pdf (accessed on 8 August 2022).
- Government of Nariño. Departmental Development Plan ‘My Nariño, in Defense of What Is Ours’ 2020–2023. Available online: https://sitio.narino.gov.co/wp-content/uploads/2020/11/Plan_de_Desarrollo_Mi_Narino_en_Defensa_de_lo_Nuestro_2020-2023.pdf (accessed on 8 August 2022).
- AGRONET Nariño. Main Crops by Areas Planted in 2017. 2017. Available online: https://www.agronet.gov.co/Documents/NARI~NO_2017.pdf (accessed on 8 August 2022).
- SITUR Nariño. Tourist Attractions. Available online: https://situr.narino.gov.co/atractivos-turisticos (accessed on 8 August 2022).
- Government of Valle del Cauca. Development Plan ‘Invincible Valle’ 2020–2023. Available online: https://www.valledelcauca.gov.co/loader.php?lServicio=Tools2&lTipo=viewpdf&id=48214 (accessed on 8 August 2022).
- AGRONET Valle del Cauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/VALLE%20DEL%20CAUCA_2017.pdf (accessed on 8 August 2022).
- Government of Arauca. Arauca Departmental Participative Development Plan ‘Building the Future’ 2020–2023. Available online: https://www.arauca.gov.co/mapa-red-hospitalaria-del-departamento-de-arauca/62-plan-de-desarrollo/2825-plan-de-desarrollo-departamental-2020-2023 (accessed on 8 August 2022).
- AGRONET Arauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ARAUCA_2017.pdf (accessed on 8 August 2022).
- Government of Casanare. Development Plan 2020–2023. It Is Time for Productive, Equitable and Sustainable Casanare. Available online: https://www.casanare.gov.co/NuestraGestion/PlaneacionGestionyControl/ORDENANZA%20002-2020%20PLAN%20DE%20DESARROLLO.pdf (accessed on 8 August 2022).
- AGRONET Casanare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/CASANARE_2017.pdf (accessed on 8 August 2022).
- Government of Meta. Departmental Economic and Social Development Plan ‘Let’s Make Meta Great’ 2020–2023. Available online: https://asambleameta.micolombiadigital.gov.co/sites/asambleameta/content/files/000189/9449_ordenanza-1069-de-mayo-30-de-2020.pdf (accessed on 8 August 2022).
- AGRONET Meta. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/META_2017.pdf (accessed on 8 August 2022).
- Government of Vichada. Departmental Development Plan ‘Work for All of Vichada’ 2020–2023. Available online: https://vichada.micolombiadigital.gov.co/sites/vichada/content/files/000331/16528_plan-de-desarrollo-aprobado-ordenanza.pdf (accessed on 8 August 2022).
- AGRONET Vichada. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/VICHADA_2017.pdf (accessed on 8 August 2022).
- Lu, X.; Zhang, L.; Liu, H.; Zhi, C.; Li, J. Design of the networked precision irrigation system for paddy field crops in intelligent agriculture. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2021, 37, 71–81. [Google Scholar] [CrossRef]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Valle, C.D.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What is the future for agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef]
- Barrios-Ulloa, A.; Cama-Pinto, D.; Mardini-Bovea, J.; Díaz-Martínez, J.; Cama-Pinto, A. Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors 2021, 21, 7167. [Google Scholar] [CrossRef]
- Chaparro Mesa, J.E.; Barrera Lombana, N.; León Socha, F.A.; Chaparro Mesa, J.E.; Barrera Lombana, N.; León Socha, F.A. Remote Terminal Module, for data acquisition, monitoring and control of Agro-industrial processes-AgriculTIC. Ingeniare Rev. Chil. Ing. 2021, 29, 245–264. [Google Scholar] [CrossRef]
- Núñez, V.J.M.; Fonthal, R.F.; Quezada, L.Y.M. Design and Implementation of WSN and IoT for Precision Agriculture in Tomato Crops. In Proceedings of the 2018 IEEE ANDESCON, Cali, Colombia, 22–24 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Hincapié Gómez, E.; Sánchez Benítez, J.; Carbonell González, J.A. IoT Network Applied to Agriculture: Monitoring Stations for Irrigation Management in Soils Cultivated with Sugarcane. In Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II; Springer: Cham, Switzerland, 2019; pp. 249–259. [Google Scholar] [CrossRef]
- Irrigation Control in Ahuyama Crops in Sincelejo, Sucre (Colombia) Managed through the Internet of Things (IoT). Available online: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642020000500079&lng=en&nrm=iso&tlng=en (accessed on 8 August 2022).
- Rodríguez, P.J.; Montoya-Munoz, A.I.; Rodriguez-Pabon, C.; Hoyos, J.; Corrales, C.J. IoT-Agro: A smart farming system to Colombian coffee farms. Comput. Electron. Agric. 2021, 190, 106442. [Google Scholar] [CrossRef]
- Camacho, A.; Arguello, H. Smartphone-based application for agricultural remote technical assistance and estimation of visible vegetation index to farmer in Colombia: AgroTIC. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX; SPIE: New York, NY, USA, 2018; Volume 10783, pp. 137–148. [Google Scholar] [CrossRef]
Band range | Typical Spectrum Types | 5G App1 | 5G App2 |
---|---|---|---|
<1 GHz | 600 MHz, 700 MHz, 800 MHz, 900 MHz | Rural/unlicensed | Urban, WLAN(IoT) |
1–6 GHz | 1800 MHz 3.3–3.8 GHz | Urban/unlicensed | IoT/ITS |
>6 GHz | (6–28 GHz)—24 GHz, 26 GHz, 28 GHz | UWB wireless fiber | Wireless VOD |
Band Range (MHz) | Total, Free Spectrum in Band (MHz) | Uplink (MHz) | Downlink (MHz) | Status | Operator | Reference |
---|---|---|---|---|---|---|
600 | 70 | 663–698 | 617–652 | Available in March 2029 | - | [34] |
700 | 10 | 703–748 | 758–803 | Before September 2022 (auction). For 4G use, most of this frequency band was licensed in December 2019. | Colombia Movil S.A (Tigo) (713–723 MHz couplet with 768–778 MHz) and (703–713 MHz couplet (758 MHz–768 MHz) Partners (Wom) 723–733 MHz couplet with (778–788 MHz. Comunicación Celular. S.A Comcel.SA (Claro) 733–743 MHz couplet with 788–798 MHz) | [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] |
1900 | 5 | 1850–1910 | 1930–1990 | For 4G use, most of this frequency band was licensed in December 2019. | Established for IMT with no regulations in force for its use. | [36,37,38,39,40,41] |
2500 | 30 | 2500–2570 | 2620–2690 | Before September 2022 (auction). For 4G use, most of this frequency band was licensed in December 2019. | Partners (Wom) 25154–(2520 MHz, couplet with 2635–2640 MHz) Comunicación Celular. S.A Comcel.SA (Claro) (2550–2555 MHz couplet with 2670–2675 MHz) (2545–2550 MHz 2665 couplet with 2670 MHz) (2540–2545 MHz 2660 couplet with 2665 MHz) | [37,38,39,40,41,42,43,44,45,46,47,48,49] |
3500 | 400 | 3300–3700 (Canalization TDD) | Study auction | Unassigned operator | [34] | |
26,000 | 1000 | 24,250–27,500 | Available in 2027 | Unassigned operator | [31,49] |
No. | Operator | Frequency Bands |
---|---|---|
1 | Colombia Telecomunicaciones S.A E.S.P | 3500 MHz–3600 MHz |
2 | Comunicación Celular S.A Comcel S.A | 3500 MHz–3600 MHz |
3 | Empresa de Telecomunicaciones de Bógota S.A E.S.P | 3500 MHz–3600 MHz |
4 | ITICS S.A.S | 3500 MHz–3600 MHz |
5 | Xiris Investment Group SAS | 3300 MHz–3400 MHz |
Frequency bands | Advantages | Disadvantages | |
---|---|---|---|
Low band (frequencies below 1 GHz) | 600 MHz band (614–698 MHz) | Lower propagation losses and, therefore, requires fewer base stations (BSs) to provide coverage | Lower available bandwidth compared to the rest of the bands |
700 MHz band (698–806 MHz) | |||
Medium bands (frequencies in the range of 1 to 6 GHz) | 3.4 GHz band (3.3–3.4 GHz) | Spectrum harmonized with most countries in the world | High occupancy of the radio spectrum |
3.5 GHz band (3.4–3.6 GHz) | |||
3.6 GHz band (3.6–3.7 GHz) | |||
High band (frequencies higher than 6 GHz) | Item A (24.25–27.5 GHz) | High amounts of radio spectrum are available for critical applications requiring low latency | High radio signal losses require a greater amount of BS to provide coverage |
Banda de 28 GHz (26.5–29.5 GHz) | |||
Item B (31.8–33.4 GHz) | |||
Item C (37–40.5 GHz) | |||
Item K (71–76 GHz) | |||
Item L (81–86 GHz) |
Subject Consulted | Colombian National Government Entity | Documents Consulted |
---|---|---|
Agriculture | National Development Plan (DNP) 2018 Departmental development plans, Agronet (Information and communication network for the Colombian agricultural sector). | National Development Plan (DNP) 2018–2022 “Pact for Colombia, Pact for Equity Agricultural and Rural Development Policy 2018–2022, agricultural frontier database |
5G | National Spectrum Agency (ANE), MinTIC | 5G Plan, New Technologies Transition Plan |
Application | Technologies and Techniques Used | Results | Reference |
---|---|---|---|
Classification of fruit diseases | 5G, IoT, neural networks | 99.6% accuracy in the classification method, far superior to previously proposed techniques | [63] |
Identification and tracking of livestock | 5G, image recognition, blockchain (BC), BD, unmanned vehicles (UAV) | Reduction in labor costs | [64] |
Security and surveillance of agricultural installations | 5G, image recognition | 90% accuracy in the identification of persons | [65] |
Solving the problem of production control and efficiency in the agricultural food supply chain | 5G, BC | The proposed system makes it possible to manage the crop from the sowing stage to the final marketing stage | [66] |
Gathering information on the environmental, soil, and plant conditions of a cotton crop | 5G, IoT, BD | 10% increase in crop production | [67] |
Control of the devices involved in crop management, plant growth management, and generation of notifications to users | 5G, IoT, AI | Reduction in the costs of the agricultural process by using less equipment and labor | [5] |
Category | Hectares | % |
---|---|---|
National agricultural frontier | 39,600,142.6 | 34.71 |
Natural forests and nonagricultural areas | 48,036,042.4 | 42.11 |
Legal exclusions | 26,438,785.4 | 23.18 |
Activity/Coverage | Hectares | % |
---|---|---|
Agriculture | 5,079,341 | 4.50 |
Grazing areas | 31,156,166 | 27.30 |
Production forestry | 135,235 | 23.18 |
Water bodies | 1,704,041 | 0.10 |
Family farming | 1,225,065 | 1.50 |
Nonagricultural | 74,775,590 | 65.50 |
Total in the continental area | 114,074,970 | 100.00 |
Department | Cultivated Products | References |
---|---|---|
Antioquia | Coffee, banana, sugar cane, plantain, cocoa, corn, and rice | [77,78,79,80,81,82,83,84,85,86,87] |
Boyacá | Potatoes, vegetables, cocoa, fruit trees, sugar cane, quinoa, and cereals | [77,79,80,82,84,88,89,90] |
Caldas | Coffee, banana, sugar cane, avocado, citrus, and cocoa | [77,78,79,81,82,88,91,92] |
Cundinamarca | Potatoes, carrots, tomatoes, onions, lettuce, corn, bananas, sugar cane, flowers, coffee, rice, and beans | [77,78,79,80,81,82,83,84,86,88,93] |
Huila | Coffee, rice, banana, beans, maize, sugar cane, cocoa, and cassava | [77,78,79,81,84,88,94,95] |
Norte de Santander | Coffee, cocoa, palm oil, sugar cane, banana, avocado, rice, and beans | [77,78,80,81,83,88,96,97] |
Quindío | Banana, coffee, citrus, and avocado | [77,78,79,98,99,100] |
Risaralda | Coffee, banana, avocado, sugar cane, corn, beans, tomato, onion, and various vegetables | [78,79,82,88,101,102] |
Santander | Palm oil, cocoa, coffee, sugar cane, citrus, banana, rubber, pineapple, cassava, rice, corn, beans, tomato, onion, and several vegetables | [77,78,79,80,81,82,83,88,103,104,105,106] |
Tolima | Coffee, rice, corn, banana, beans, sugar cane, avocado, cocoa, sugar cane, and mango | [68,69,70,71,72,73,78,107,109] |
Department | Cultivated products | References |
---|---|---|
Amazonas | Yucca, banana, and various fruit trees | [79,110,111] |
Caquetá | Banana, cassava, cocoa, rubber, coffee, sugar cane, rice, and maize | [77,78,80,88,112] |
Guainía | Banana, cassava, maize, and cocoa | [78,79,113] |
Guaviare | Maize, banana, cassava, rice, rubber, sugar cane, and cocoa | [79,83,114,115,116] |
Putumayo | Cassava, corn, cocoa, sugar cane, chontaduro, pepper, cocoa, and banana | [77,78,79,83,90,117,118] |
Vaupés | Cassava and cocoa | [119] |
Department | Cultivated products | References |
---|---|---|
Atlántico | Corn, cassava, mango, citrus fruits, pigeon peas, sorghum, and melon | [77,78,79,80,81,82,88,103,120,121,122] |
Bolívar | Maize, oil palm, cassava, rice, yam, banana, cocoa, avocado, and plantain | [77,79,80,81,82,83,84,88,103,123,124,125] |
Cesar | Palm oil, cassava, plantain, rice, corn, raisin, and melon | [77,79,88,80,108,109,126,127,128] |
Córdoba | Corn, banana, cassava, rice, yams, cotton, oil palm, cocoa, etc. | [77,78,79,80,81,83,84,88,129,130] |
La Guajira | Corn, coffee, cassava, rice, plantain, beans, oil palm, etc. | [77,80,81,103,83,131,132] |
Magdalena | Palm oil, corn, cassava, yucca, banana, coffee, citrus, mango, and plantain | [77,79,80,88,133,134,135,136] |
Sucre | Rice, cassava, corn, yam, plantain, oil palm, and pine | [77,78,83,84,103,137,138] |
Department | Cultivated products | References |
---|---|---|
San Andrés, Providencia y Santa Catalina | Coconut, yam, plantain, cassava, and corn | [79,103,139] |
Department | Cultivated products | References |
---|---|---|
Cauca | Sugar cane, coffee, banana, corn, cassava, rice, cocoa, and coconut | [78,79,80,81,82,83,88,124,140,141] |
Chocó | Banana, corn, rice, cocoa, and coconut. | [77,79,88,142] |
Nariño | Coffee, potato, banana, cocoa, palm oil, sugar cane, pea, corn, coconut, and bean | [77,78,79,80,81,83,88,143,144,145] |
Valle del Cauca | Sugar cane, coffee, banana, maize, citrus, banana, rice, pineapple, and avocado | [77,78,79,81,82,84,88,103,146,147] |
Department | Cultivated products | References |
---|---|---|
Arauca | Banana, cocoa, rice, corn, and cassava | [77,79,80,88,148,149] |
Casanare | Rice, palm oil, coffee, corn, banana, and cassava | [77,78,79,80,83,88,150,151] |
Meta | Palm oil, corn, sugar cane, rice, soybean, and banana | [77,81,85,90,152,153] |
Vichada | Soybean, corn, palm oil, cashew, cassava, rice, rubber, and timber | [77,154,155] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors 2022, 22, 7295. https://doi.org/10.3390/s22197295
Arrubla-Hoyos W, Ojeda-Beltrán A, Solano-Barliza A, Rambauth-Ibarra G, Barrios-Ulloa A, Cama-Pinto D, Arrabal-Campos FM, Martínez-Lao JA, Cama-Pinto A, Manzano-Agugliaro F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors. 2022; 22(19):7295. https://doi.org/10.3390/s22197295
Chicago/Turabian StyleArrubla-Hoyos, Wilson, Adelaida Ojeda-Beltrán, Andrés Solano-Barliza, Geovanny Rambauth-Ibarra, Alexis Barrios-Ulloa, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos, Juan Antonio Martínez-Lao, Alejandro Cama-Pinto, and Francisco Manzano-Agugliaro. 2022. "Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks" Sensors 22, no. 19: 7295. https://doi.org/10.3390/s22197295
APA StyleArrubla-Hoyos, W., Ojeda-Beltrán, A., Solano-Barliza, A., Rambauth-Ibarra, G., Barrios-Ulloa, A., Cama-Pinto, D., Arrabal-Campos, F. M., Martínez-Lao, J. A., Cama-Pinto, A., & Manzano-Agugliaro, F. (2022). Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors, 22(19), 7295. https://doi.org/10.3390/s22197295