Nonlinear Distortion by Stimulated Brillouin Scattering in Kramers-Kronig Receiver Based Optical Transmission
<p>SBS induced nonlinear distortion for SSB signals. (<b>a</b>) RSB without guard band; (<b>b</b>) RSB without guard band after SBS distortion; (<b>c</b>) LSB without guard band; (<b>d</b>) LSB without guard band after SBS distortion; (<b>e</b>) RSB with guard band; (<b>f</b>) RSB with guard band after SBS distortion; (<b>g</b>) LSB with guard band; (<b>h</b>) LSB with guard band after SBS distortion.</p> "> Figure 2
<p>Experiment setup and DSP. Here, ECL: external cavity laser; PC: polarization controller; IQM: in-phase and quadrature modulator; AWG: arbitrary waveform generator; VOA: variable optical attenuator; EDFA: erbium-doped fiber amplifier; OBPF: optical bandpass filter; DSO: digital storage oscilloscope.</p> "> Figure 3
<p>Signal processing of the KK receiver scheme.</p> "> Figure 4
<p>Optical spectra of the 10 Gbaud and 28 Gbaud QAM16 signals. (<b>a</b>) 10 Gbaud LSB signal before OBPF; (<b>b</b>) 10 Gbaud LSB signal after OBPF; (<b>c</b>) 10 Gbaud RSB signal after OBPF; (<b>d</b>) 28 Gbaud LSB signal before OBPF; (<b>e</b>) 28 Gbaud LSB signal after OBPF; (<b>f</b>) 28 Gbaud RSB signal after OBPF.</p> "> Figure 5
<p>BER versus launch power. (<b>a</b>) 10 Gbaud for B2B; (<b>b</b>) after 80 km SSMF transmission.</p> "> Figure 6
<p>Constellation of 10 Gbaud QAM16 after 80 km SSMF transmission. (<b>a</b>) RSB, LP = 5 dBm; (<b>b</b>) RSB, LP = 11 dBm; (<b>c</b>) RSB, LP = 14 dBm; (<b>d</b>) LSB, LP = 5 dBm; (<b>e</b>) LSB, LP = 11 dBm; (<b>f</b>) LSB, LP = 14 dBm.</p> "> Figure 6 Cont.
<p>Constellation of 10 Gbaud QAM16 after 80 km SSMF transmission. (<b>a</b>) RSB, LP = 5 dBm; (<b>b</b>) RSB, LP = 11 dBm; (<b>c</b>) RSB, LP = 14 dBm; (<b>d</b>) LSB, LP = 5 dBm; (<b>e</b>) LSB, LP = 11 dBm; (<b>f</b>) LSB, LP = 14 dBm.</p> "> Figure 7
<p>BER versus launch power. (<b>a</b>) 28 Gbaud for B2B; (<b>b</b>) after 80 km SSMF transmission.</p> "> Figure 8
<p>Constellation of 28 Gbaud QAM16 at 80 km SSMF transmission. (<b>a</b>) RSB, LP = 5 dBm; (<b>b</b>) RSB, LP = 11 dBm; (<b>c</b>) RSB, LP = 14 dBm; (<b>d</b>) LSB, LP = 5 dBm; (<b>e</b>) LSB, LP = 11 dBm; (<b>f</b>) LSB, LP = 14 dBm.</p> "> Figure 8 Cont.
<p>Constellation of 28 Gbaud QAM16 at 80 km SSMF transmission. (<b>a</b>) RSB, LP = 5 dBm; (<b>b</b>) RSB, LP = 11 dBm; (<b>c</b>) RSB, LP = 14 dBm; (<b>d</b>) LSB, LP = 5 dBm; (<b>e</b>) LSB, LP = 11 dBm; (<b>f</b>) LSB, LP = 14 dBm.</p> ">
Abstract
:1. Introduction
2. Nonlinear Distortion Due to SBS for SSB Signals
3. Experimental Setup
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, W.; Du, J.; Sun, L.; Wang, C.; Xu, K.; Chen, B.; He, Z. 100-Gbps 100-m Hollow-Core Fiber Optical Interconnection at 2-Micron Waveband by PS-DMT. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Shen, W.; Du, J.; Wang, C.; Sun, L.; Xu, K.; He, Z. Single lane 90-Gbps optical interconnection at 2-micron waveband. In Proceedings of the 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, 7–11 July 2019; pp. 1–3. [Google Scholar] [CrossRef]
- He, Z.; Du, J.; Shen, W.; Huang, Y.; Wang, C.; Xu, K.; He, Z. Inverse Design of Few-Mode Fiber by Neural Network for Weak-Coupling Optimization. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Shen, W.; Du, J.; Shen, W.; Sun, L.; Wang, C.; Zhu, Y.; Xu, K.; Chen, B.; He, Z. Low-Latency and High-Speed Hollow-Core Fiber Optical Interconnection at 2-Micron Waveband. J. Light. Technol. 2020, 38, 3874–3882. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.; Shen, W.; Chen, G.; Wang, H.; Sun, L.; Xu, K.; Liu, B.; He, Z. QAM classification methods by SVM machine learning for improved optical interconnection. Opt. Commun. 2019, 444, 1–8. [Google Scholar] [CrossRef]
- Kao, K.C.; Hockham, G.A. Dielectric-fibre surface waveguides for optical frequencies. IEE Proc. J Optoelectron. 1986, 133, 191–198. [Google Scholar] [CrossRef]
- Mecozzi, A.; Antonelli, C.; Shtaif, M. Kramers–Kronig coherent receiver. Optica 2016, 3, 1220–1227. [Google Scholar] [CrossRef]
- Kronig, R.L. On the theory of the dispersion of x-rays. J. Opt. Soc. Am. 1926, 12, 547–557. [Google Scholar] [CrossRef]
- Sun, C.; Che, D.; Shieh, W. Comparison of Chromatic Dispersion Sensitivity between Kramers-Kronig and SSBI Iterative Cancellation Receiver. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Vier, E.; Lemmen, R.; Schwarz, H. Energy- and phase-frequency characteristics of nonlinear systems. In Proceedings of the 1997 European Control Conference (ECC), Brussels, Belgium, 1–7 July 1997; pp. 1146–1151. [Google Scholar] [CrossRef]
- Civalleri, P. On the formal theory of nonuniform transmission lines. IEEE Trans. Circuit Theory 1971, 18, 479–481. [Google Scholar] [CrossRef]
- Voelcker, H. Demodulation of Single-Sideband Signals Via Envelope Detection. IEEE Trans. Commun. 1966, 14, 22–30. [Google Scholar] [CrossRef]
- Chen, X.; Antonelli, C.; Chandrasekhar, S.; Raybon, G.; Sinsky, J.; Mecozzi, A.; Shtaif, M.; Winzer, P. 218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Le, S.T.; Schuh, K.; Chagnon, M.; Buchali, F.; Dischler, R.; Aref, V.; Engenhardt, K.M. 1.72-Tb/s Virtual-Carrier-Assisted Direct-Detection Transmission Over 200 km. J. Light. Technol. 2017, 36, 1347–1353. [Google Scholar] [CrossRef]
- Chen, X.; Cho, J.; Chandrasekhar, S.; Winzer, P.; Antonelli, C.; Mecozzi, A.; Shtaif, M. Single-wavelength, single-polarization, single- photodiode kramers-kronig detection of 440-Gb/s entropy-loaded discrete multitone modulation transmitted over 100-km SSMF. In Proceedings of the 2017 IEEE Photonics Conference (IPC) Part II, Orlando, FL, USA, 1–5 October 2017; pp. 1–2. [Google Scholar] [CrossRef]
- An, S.; Zhu, Q.; Li, J.; Su, Y. Accurate Field Reconstruction at Low CSPR Condition Based on a Modified KK Receiver With Direct Detection. J. Light. Technol. 2019, 38, 485–491. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, C. Frequency Comb Based Kramers-Kronig Detection. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zheng, B.F.; Shu, C. Kramers–Kronig detection with Brillouin-amplified virtual carrier. Opt. Lett. 2018, 43, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Du, J.; Shen, W.; He, Z. Nonlinear Distortion by Stimulated Brillouin Scattering in Kramers-Kronig Receiver Based Optical Transmission. Sensors 2022, 22, 7287. https://doi.org/10.3390/s22197287
Zhu Y, Du J, Shen W, He Z. Nonlinear Distortion by Stimulated Brillouin Scattering in Kramers-Kronig Receiver Based Optical Transmission. Sensors. 2022; 22(19):7287. https://doi.org/10.3390/s22197287
Chicago/Turabian StyleZhu, Yuzhu, Jiangbing Du, Weihong Shen, and Zuyuan He. 2022. "Nonlinear Distortion by Stimulated Brillouin Scattering in Kramers-Kronig Receiver Based Optical Transmission" Sensors 22, no. 19: 7287. https://doi.org/10.3390/s22197287
APA StyleZhu, Y., Du, J., Shen, W., & He, Z. (2022). Nonlinear Distortion by Stimulated Brillouin Scattering in Kramers-Kronig Receiver Based Optical Transmission. Sensors, 22(19), 7287. https://doi.org/10.3390/s22197287