Parameter-Adaptive TVF-EMD Feature Extraction Method Based on Improved GOA
<p>The relationship between <math display="inline"><semantics> <mrow> <mi>ω</mi> <mn>1</mn> </mrow> </semantics></math> and parameters <math display="inline"><semantics> <mrow> <mi>k</mi> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The relationship between <math display="inline"><semantics> <mrow> <mi>ω</mi> <mn>2</mn> </mrow> </semantics></math> and parameters <math display="inline"><semantics> <mrow> <mi>k</mi> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The calculation process of the IGOA-based TVF-EMD model.</p> "> Figure 4
<p>Convergence curves for all algorithms.</p> "> Figure 5
<p>(<b>a</b>) Simulated signal <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and its frequency-domain waveform, and (<b>b</b>) its three components.</p> "> Figure 6
<p>The decomposition results of simulated signal x(t) obtained by: (<b>a</b>) EEMD; (<b>b</b>) VMD; and (<b>c</b>) TVF-EMD.</p> "> Figure 7
<p>(<b>a</b>) Simulated signal <math display="inline"><semantics> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and its frequency-domain waveform, and (<b>b</b>) its three components and noise signal.</p> "> Figure 8
<p>The decomposition results of simulated signal <math display="inline"><semantics> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> obtained by: (<b>a</b>) red line: TVF-EMD; (<b>b</b>) black line: VMD; (<b>c</b>) blue line: EEMD.</p> "> Figure 9
<p>The relationship between the indexes of the IMF and the parameters (<b>a</b>) bandwidth threshold <math display="inline"><semantics> <mi>ξ</mi> </semantics></math>, and (<b>b</b>) B-spline order <math display="inline"><semantics> <mi>n</mi> </semantics></math> for simulated signal <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 9 Cont.
<p>The relationship between the indexes of the IMF and the parameters (<b>a</b>) bandwidth threshold <math display="inline"><semantics> <mi>ξ</mi> </semantics></math>, and (<b>b</b>) B-spline order <math display="inline"><semantics> <mi>n</mi> </semantics></math> for simulated signal <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>The relationship between the indexes of the IMF and the parameters (<b>a</b>) bandwidth threshold <math display="inline"><semantics> <mi>ξ</mi> </semantics></math>, and (<b>b</b>) B-spline order <math display="inline"><semantics> <mi>n</mi> </semantics></math> for simulated signal <math display="inline"><semantics> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 10 Cont.
<p>The relationship between the indexes of the IMF and the parameters (<b>a</b>) bandwidth threshold <math display="inline"><semantics> <mi>ξ</mi> </semantics></math>, and (<b>b</b>) B-spline order <math display="inline"><semantics> <mi>n</mi> </semantics></math> for simulated signal <math display="inline"><semantics> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 11
<p>The optimization of TVF-EMD in the decomposition of simulation signal <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>The optimization of TVF-EMD in the decomposition of simulation signal <math display="inline"><semantics> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>Bearing test rig.</p> "> Figure 14
<p>Time-domain and frequency-domain waveform of outer ring slight damage signal.</p> "> Figure 15
<p>The IMFs obtained by TVF-EMD with assigned parameters.</p> "> Figure 16
<p>The fitness curve obtained by IGOA and GOA during the decomposition of the outer ring signal.</p> "> Figure 17
<p>The IMFs of outer ring obtained by the optimized TVF-EMD method based on IGOA.</p> "> Figure 18
<p>Decomposition results evaluation of outer ring slight damage signal.</p> "> Figure 19
<p>The envelope spectrum of the sensitive IMF obtained by (<b>a</b>) TVF-EMD with assigned parameters, and (<b>b</b>) TVF-EMD based on IGOA and GOA.</p> "> Figure 20
<p>Time-domain and frequency-domain waveform of rolling element slight damage signal.</p> "> Figure 21
<p>The fitness curve obtained by IGOA and GOA during the decomposition of the rolling element signal.</p> "> Figure 22
<p>The IMFs of rolling element obtained by the optimized TVF-EMD based on IGOA.</p> "> Figure 23
<p>Decomposition results evaluation of rolling element slight damage signal.</p> "> Figure 24
<p>The envelope spectrum of the sensitive IMF obtained by (<b>a</b>) TVF-EMD with assigned parameters, and (<b>b</b>) TVF-EMD based on GOA; (<b>c</b>) TVF-EMD based on IGOA.</p> ">
Abstract
:1. Introduction
2. Methodology and Theory
2.1. Empirical Mode Decomposition of Time-Varying Filtering
- (1)
- Local cut-off frequency rearrangement
- (2)
- Screening process based on time-varying filtering
2.2. Grasshopper Optimization Algorithm
3. Proposed Method
3.1. Improved Grasshopper Optimization Algorithm
3.2. Construction of Optimization Model
3.3. Proposed Parameter-Adaptive TVF-EMD
4. Experimental Study
4.1. Function Optimization Experiment
4.1.1. The Effects of Coefficients and
4.1.2. The Effects of the Maxiter and Population Size
4.1.3. Comparison between IGOA and Other Methods
4.2. Analysis of Simulated Signals
4.2.1. Simulation and Comparison
4.2.2. The Effects of TVF-EMD Parameters
- 1.
- Analysis of the simulated signalIn the decomposition of AM-FM signal , we study the effect of bandwidth threshold and B-spline order on the decomposition result of TVF-EMD. is set to 20 and is increased from 0.1 to 0.8. As shown in Figure 9a, we analyze the resulting IMFs by Cor, MI, Kurt, EC, EE and EEMI (green indicates the starting value of the parameter, and red indicates the best result). When , two IMFs are obtained by decomposition. Mode aliasing and under-decomposition occur, and the three components of cannot be separated. When , three IMFs are obtained by decomposition. When increases from 0.1 to 0.3, the Cor, Kurt, EC, and EE indexes of IMF1, IMF2, and IMF3 do not change much, indicating that these indexes are not sensitive to the change of . MI and EEMI are sensitive to , but their changes are irregular when increases from 0.1 to 0.3. When , the sum of the EEMI indexes of IMF1, IMF2, and IMF3 is the largest, so it can be used as the selection rule for the best parameters. The results show that: (1) under-decomposition and mode aliasing will occur when is too large; (2) MI and EEMI are sensitive to , while other indexes are not sensitive to ; (3) the effects of on the decomposition results are not regular; and (4) the introduced EEMI index and optimization model are effective.Next, the bandwidth threshold is set to 0.1, and the B-spline order is increased from 6 to 30. The results are shown in Figure 9b. When or , five IMFs are obtained by decomposition. When takes values other than 6, 8, 9, 11, 20, and 24 in [6, 30], four IMFs are obtained by decomposition. In these two values, over resolution and modal aliasing occur. When is 8, 11, 20, 23, 24 (yellow), tree IMFs are obtained by decomposition. When varies in 8, 11, 20, 23, and 24, the Cor, Kurt, EC, and EE indexes of IMF1, IMF2, and IMF3 do not change much, indicating that these indexes are not sensitive to . MI and EEMI are sensitive to , but their changes are irregular. In addition, when , the sum of EEMI of IMF1, IMF2, IMF3 is the largest, indicating that the optimization model based on EEMI is effective. The results show that: (1) over-decomposition and modal aliasing will occur when is not selected properly; (2) MI and EEMI are sensitive to , and other indexes are not sensitive to ; (3) the effects of on the decomposition results are not regular; and (4) the introduced EEMI index and optimization model are effective.
- 2.
- Analysis of the simulated signalIn the decomposition of the noisy linear signal , we analyze the influence of two parameters on the decomposition results. The B-spline order is set to 26, and the bandwidth threshold increases from 0.1 to 0.8, as shown in Figure 10a. When is 0.1, five IMFs are obtained by decomposition. When is 0.2, three IMFs are obtained by decomposition. When , two IMFs are obtained by decomposition. Because contains four components, under-decomposition and mode aliasing occur when . When changes from 0.3 to 0.8, the Cor, Kurt, EC, and EE indexes of IMF1 and IMF2 change little, indicating that these indexes are not sensitive to , while MI and EEMI are sensitive to . The experimental results show that: (1) when is too large, under-decomposition and mode aliasing will occur; and (2) MI and EEMI are sensitive to , and other indexes are not sensitive to .
4.2.3. Validation of the Proposed Method
4.3. Signal Analysis of CWRU Rolling Bearing
4.3.1. Analysis of Outer Ring Vibration Signal
4.3.2. Analysis of Rolling Element Vibration Signal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Z.; Chen, X.J.M.S.; Processing, S. Adaptive iterative generalized demodulation for nonstationary complex signal analysis: Principle and application in rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 110, 1–27. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Y.; Ma, G.; Wang, Y.; Sun, Y.; He, Y. Weak fault feature extraction of rolling bearings based on improved ensemble noise-reconstructed EMD and adaptive threshold denoising. Mech. Syst. Signal Process. 2022, 171, 108834. [Google Scholar] [CrossRef]
- Feng, Z.; Ma, H.; Zuo, M.J. Amplitude and frequency demodulation analysis for fault diagnosis of planet bearings. J. Sound Vib. 2016, 382, 395–412. [Google Scholar] [CrossRef]
- Moshrefzadeh, A.; Fasana, A. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis. Mech. Syst. Signal Process. 2018, 105, 294–318. [Google Scholar] [CrossRef]
- Antoni, J. The infogram: Entropic evidence of the signature of repetitive transients. Mech. Syst. Signal Process. 2016, 74, 73–94. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, M.; Lin, J.; Lei, Y. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2017, 92, 173–195. [Google Scholar] [CrossRef]
- Plaza, E.G.; López, P.N. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech. Syst. Signal Process. 2018, 98, 902–919. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Miao, Q.; Zhang, X. Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings. Mech. Syst. Signal Process. 2018, 106, 24–39. [Google Scholar] [CrossRef]
- Feng, Z.; Lin, X.; Zuo, M.J. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis. Mech. Syst. Signal Process. 2016, 72, 223–240. [Google Scholar] [CrossRef]
- Ma, J.; Wu, J.; Wang, X. Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator. ISA Trans. 2018, 80, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tu, X.; Li, F.; Meng, G. Joint high-order synchrosqueezing transform and multi-taper empirical wavelet transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions. Sensors 2018, 18, 150. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.; Miao, Q.; Zhang, X. Time–frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 103, 60–75. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Yi, C.; Tsui, K.-L.; Lin, J. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2018, 101, 292–308. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, C.; Li, S.; Zhao, Q.; Liu, J.; Xie, Z. Adaptive variational mode decomposition based on Archimedes optimization algorithm and its application to bearing fault diagnosis. Measurement 2022, 191, 110798. [Google Scholar] [CrossRef]
- Jin, Z.; He, D.; Wei, Z. Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN. Eng. Appl. Artif. Intell. 2022, 110, 104713. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, Y.; Zhu, B.; Pan, Z.; Cui, L.; Li, J.; Fan, F. Research on rolling bearing fault diagnosis method based on ARMA and optimized MOMEDA. Measurement 2022, 189, 110465. [Google Scholar] [CrossRef]
- Ji, X.; Tian, Z.; Song, H.; Liu, F. Structural performance degradation identification of offshore wind turbines based on variational mode decomposition with a Grey Wolf Optimizer algorithm. Ocean Eng. 2022, 256, 111449. [Google Scholar] [CrossRef]
- Lu, J.; Yue, J.; Zhu, L.; Wang, D.; Li, G. An improved variational mode decomposition method based on the optimization of salp swarm algorithm used for denoising of natural gas pipeline leakage signal. Measurement 2021, 185, 110107. [Google Scholar] [CrossRef]
- Nassef, M.; Hussein, T.M.; Mokhiamar, O.J.M. An adaptive variational mode decomposition based on sailfish optimization algorithm and Gini index for fault identification in rolling bearings. Measurement. 2021, 173, 108514. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, Q.; Zhang, H.; Wang, L. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mech. Syst. Signal Process. 2018, 108, 58–72. [Google Scholar] [CrossRef]
- Bigdeli, M.; Abu-Siada, A. Clustering of transformer condition using frequency response analysis based on k-means and GOA. Electr. Power Syst. Res. 2022, 202, 107619. [Google Scholar] [CrossRef]
- Hu, H.; Xia, X.; Luo, Y.; Zhang, C.; Nazir, M.S.; Peng, T. Development and application of an evolutionary deep learning framework of LSTM based on improved grasshopper optimization algorithm for short-term load forecasting. J. Build. Eng. 2022, 57, 104975. [Google Scholar] [CrossRef]
- Algamal, Z.Y.; Qasim, M.K.; Lee, M.H.; Ali, H.T.M. Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression. Chemom. Intell. Lab. Syst. 2021, 208, 104196. [Google Scholar] [CrossRef]
- Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst. Appl. 2018, 112, 156–172. [Google Scholar] [CrossRef]
- Liu, N.; Hu, M.; Wang, J.; Ren, Y.; Tian, W. Fault detection and diagnosis using Bayesian network model combining mechanism correlation analysis and process data: Application to unmonitored root cause variables type faults. Process Saf. Environ. Prot. 2022, 164, 15–29. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Lu, S.; Zhou, M.; Chen, X. Decentralized plant-wide monitoring based on mutual information-Louvain decomposition and support vector data description diagnosis. ISA Trans. 2022. [Google Scholar] [CrossRef]
- Chen, B.; Chen, X.; Chen, F.; Zhou, B.; Xiao, W.; Fu, W.; Li, G. Integrated early fault diagnosis method based on direct fast iterative filtering decomposition and effective weighted sparseness kurtosis to rolling bearings. Mech. Syst. Signal Process. 2022, 171, 108897. [Google Scholar] [CrossRef]
- Gao, S.; Ren, Y.; Zhang, Y.; Li, T. Fault diagnosis of rolling bearings based on improved energy entropy and fault location of triangulation of amplitude attenuation outer raceway. Measurement 2021, 185, 109974. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, X.; Ye, C. Adaptive stochastic resonance quantified by a novel evaluation index for rotating machinery fault diagnosis. Measurement 2021, 184, 109920. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, X.; Liu, G.; Fan, K. Multi-source fault diagnosis of chiller plant sensors based on an improved ensemble empirical mode decomposition Gaussian mixture model. Energy Reports. 2022, 8, 2831–2842. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, F.; Hu, M.; Zhang, L.; Liu, H.; Li, M. A novel denoising algorithm based on TVF-EMD and its application in fault classification of rotating machinery. Measurement 2021, 179, 109337. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Mo, W. A time varying filter approach for empirical mode decomposition. Signal Process. 2017, 138, 146–158. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, D. Parameter identification of photovoltaic cell model based on improved grasshopper optimization algorithm. Optik 2021, 247, 167979. [Google Scholar] [CrossRef]
- Cui, B.; Weng, Y.; Zhang, N. A feature extraction and machine learning framework for bearing fault diagnosis. Renew. Energy 2022, 191, 987–997. [Google Scholar] [CrossRef]
- Pan, J.-S.; Zhang, L.-G.; Wang, R.-B.; Snášel, V.; Chu, S.-C. Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [Google Scholar] [CrossRef]
- Izadi, S.; Ahmadi, M.; Nikbazm, R. Network traffic classification using convolutional neural network and ant-lion optimization. Comput. Electr. Eng. 2022, 101, 108024. [Google Scholar] [CrossRef]
- Xia, J.; Yang, D.; Zhou, H.; Chen, Y.; Zhang, H.; Liu, T.; Heidari, A.A.; Chen, H.; Pan, Z. Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Comput. Biol. Med. 2022, 141, 105137. [Google Scholar] [CrossRef]
- Liu, J.; Wei, J.; Heidari, A.A.; Kuang, F.; Zhang, S.; Gui, W.; Chen, H.; Pan, Z. Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis. Comput. Biol. Med. 2022, 144, 105356. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Yu, H.; Wang, M.; Chen, H. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms. Math. Comput. Simul. 2021, 188, 291–318. [Google Scholar] [CrossRef]
- Gülcü, Ş. Training of the feed forward artificial neural networks using dragonfly algorithm. Appl. Soft Comput. 2022, 124, 109023. [Google Scholar] [CrossRef]
- Loparo, K.A. Bearings Vibration Data Set. Case Western Reserve University. Available online: http://csegroups.case.edu/bearingdatacenter/pages/download-data-file (accessed on 1 February 2005).
- Yu, M.; Fang, M.; Ge, X.; Qiao, B. Feature extraction of mixed faults of intershaft bearing based on homologous information and Hjorth parameters. Measurement 2022, 196, 111253. [Google Scholar] [CrossRef]
ID | Lower | Upper | Dimension | Type | ID | Lower | Upper | Dimension | Type |
---|---|---|---|---|---|---|---|---|---|
F1 | −100 | 100 | 5 | Unimodel | F13 | −50 | 50 | 5 | Multimodal |
F2 | −10 | 10 | 5 | Unimodel | F14 | −65.536 | 65.536 | 2 | Multimodal |
F3 | −100 | 100 | 5 | Unimodel | F15 | −5 | 5 | 4 | Multimodal |
F4 | −100 | 100 | 5 | Unimodel | F16 | −5 | 5 | 2 | Multimodal |
F5 | −30 | 30 | 5 | Unimodel | F17 | [−5; 0] | [10; 15] | 2 | Multimodal |
F6 | −100 | 100 | 5 | Unimodel | F18 | −2 | 2 | 2 | Multimodal |
F7 | −1.28 | 1.28 | 5 | Unimodel | F19 | 0 | 1 | 3 | Multimodal |
F8 | −500 | 500 | 5 | Multimodal | F20 | 0 | 1 | 6 | Multimodal |
F9 | −5.12 | 5.12 | 5 | Multimodal | F21 | 0 | 10 | 4 | Multimodal |
F10 | −32 | 32 | 5 | Multimodal | F22 | 0 | 10 | 4 | Multimodal |
F11 | −600 | 600 | 5 | Multimodal | F23 | 0 | 10 | 4 | Multimodal |
F12 | −50 | 50 | 5 | Multimodal | — | — | — | — | — |
F. | IGOA k1 = k2 = 0.5 | IGOA k1 = k2 = 1.2 | IGOA k1 = k2 = 1.5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg. | STD | Time | SR | Avg. | STD | Time | SR | Avg. | STD | Time | SR | |
F1 | 8.248E−01 | 3.624E−01 | 16.21 | 0 | 1.068E−11 | 1.350E−11 | 15.77 | 100 | 4.947E−16 | 7.003E−16 | 15.54 | 100 |
F2 | 1.056E+00 | 1.627E+00 | 18.72 | 0 | 7.758E−01 | 1.356E+00 | 15.01 | 0 | 7.995E−07 | 8.764E−10 | 15.50 | 100 |
F3 | 1.465E+00 | 8.431E−01 | 17.38 | 0 | 4.338E−04 | 1.800E−03 | 16.88 | 90 | 4.455E−08 | 2.235E−07 | 16.06 | 100 |
F4 | 5.841E−01 | 1.394E−01 | 18.96 | 0 | 2.316E−06 | 1.369E−06 | 18.06 | 100 | 1.396E−06 | 7.471E−06 | 15.88 | 100 |
F5 | 2.049E+03 | 3.859E+03 | 18.60 | 0 | 1.574E+03 | 3.352E+03 | 17.93 | 0 | 1.770E+03 | 3.272E+03 | 15.67 | 0 |
F6 | 6.136E−01 | 2.859E−01 | 18.03 | 0 | 9.769E−12 | 1.423E−11 | 20.16 | 100 | 6.219E−16 | 1.008E−15 | 15.74 | 100 |
F7 | 7.981E−02 | 1.434E−01 | 17.88 | 0 | 4.300E−02 | 7.270E−02 | 15.16 | 0 | 4.490E−02 | 5.330E−02 | 15.25 | 0 |
F8 | −1.66E+03 | 1.893E+02 | 17.90 | 100 | −1.58E+03 | 2.036E+02 | 15.00 | 100 | −1.44E+03 | 1.983E+02 | 15.63 | 100 |
F9 | 8.235E+00 | 5.621E+00 | 19.49 | 0 | 8.253E+00 | 5.781E+00 | 15.30 | 0 | 6.055E+00 | 3.893E+00 | 15.69 | 0 |
F10 | 1.621E+00 | 6.062E−01 | 15.77 | 0 | 8.167E−01 | 8.885E−01 | 17.25 | 20 | 7.253E−01 | 8.899E−01 | 15.73 | 23.3 |
F11 | 6.152E−01 | 1.902E−01 | 18.01 | 0 | 2.115E−01 | 1.224E−01 | 15.38 | 0 | 2.108E−01 | 1.139 E−01 | 17.70 | 0 |
F12 | 3.788E−01 | 4.061E−01 | 16.59 | 0 | 5.490E−02 | 1.340E−01 | 17.28 | 46.6 | 6.980E−02 | 1.691E−01 | 21.36 | 26.6 |
F13 | 5.490E−02 | 2.290E−02 | 16.18 | 0 | 1.900E−03 | 4.800E−03 | 15.88 | 66.6 | 3.000E−03 | 4.900E−03 | 18.13 | 60 |
F14 | 9.980E−01 | 2.934E−06 | 6.10 | 0 | 1.262E+00 | 6.348E−01 | 5.87 | 0 | 1.659E+00 | 8.767E−01 | 6.19 | 0 |
F15 | 7.400E−03 | 1.310E−02 | 10.83 | 0 | 7.200E−03 | 1.350E−02 | 10.66 | 0 | 8.100E−03 | 8.900E−03 | 12.42 | 0 |
F16 | −1.03E+00 | 9.892E−06 | 5.27 | 100 | −1.03E+00 | 4.554E−16 | 6.01 | 100 | −1.03E+00 | 4.701E−16 | 6.55 | 100 |
F17 | 3.980E−01 | 2.373E−04 | 6.39 | 0 | 4.043E−01 | 2.440E−02 | 5.95 | 0 | 4.107E−01 | 3.320E−02 | 6.34 | 0 |
F18 | 3.0000 | 2.434E−05 | 6.64 | 0 | 3.0000 | 8.137E−15 | 6.57 | 0 | 3.0000 | 5.405E−15 | 6.51 | 0 |
F19 | −3.8626 | 1.000E−03 | 11.62 | 100 | −3.8614 | 1.419E−01 | 11.41 | 100 | −3.8615 | 3.100E−03 | 11.79 | 100 |
F20 | −3.2703 | 7.130E−02 | 20.61 | 100 | −3.2849 | 6.03E−02 | 17.47 | 100 | −3.2695 | 6.58E−02 | 19.79 | 100 |
F21 | −6.6352 | 3.2622 | 11.77 | 100 | −5.7289 | 3.0406 | 11.62 | 100 | −5.7311 | 3.5128 | 11.76 | 100 |
F22 | −6.8842 | 3.8590 | 11.94 | 100 | −6.9900 | 3.1897 | 11.32 | 100 | −6.8191 | 3.7311 | 11.28 | 100 |
F23 | −7.1422 | 3.7591 | 12.34 | 100 | −7.5938 | 3.7429 | 11.46 | 100 | −5.7662 | 3.9768 | 14.52 | 100 |
F. | IGOA k1 = k2 = 0.8 | GOA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg. | Best. | Worst. | STD. | Time. | SR. | Avg. | Best. | Worst. | STD. | Time. | SR. | |
F1 | 7.71E−05 | 1.05E−07 | 5.68E−04 | 1.58E−04 | 16.0 | 80 | 1.47E−04 | 1.86E−07 | 1.70E−03 | 4.33E−04 | 15.4 | 76.6 |
F2 | 6.00E−04 | 4.68E−04 | 1.89E−02 | 5.80E−02 | 15.3 | 0 | 8.19E−01 | 2.80E−03 | 5.23E+00 | 1.42E+00 | 15.8 | 0 |
F3 | 3.50E−03 | 1.79E−06 | 1.70E−02 | 4.10E−03 | 16.2 | 40 | 2.50E+00 | 4.49E−02 | 6.02E+00 | 2.02E+00 | 15.2 | 30 |
F4 | 1.90E−03 | 3.55E−04 | 4.43E−02 | 1.00E−02 | 16.4 | 0 | 3.70E−03 | 3.55E−04 | 2.34E−02 | 6.10E−02 | 15.4 | 0 |
F5 | 8.62E+02 | 9.00E−03 | 9.31E+03 | 1.88E+03 | 16.5 | 0 | 7.51E+03 | 1.97E+00 | 8.97E+04 | 2.31E+04 | 15.5 | 0 |
F6 | 1.22E−04 | 1.93E−07 | 1.60E−03 | 1.10E−03 | 18.0 | 80 | 4.15E−05 | 3.32E−07 | 8.30E−04 | 1.53E−04 | 15.2 | 93.3 |
F7 | 3.60E−02 | 7.88E−04 | 3.35E−01 | 7.29E−02 | 16.3 | 0 | 7.43E−02 | 8.90E−04 | 5.12E−01 | 1.31E−01 | 15.1 | 0 |
F8 | −1.65E+03 | −2.0E+03 | −1.28E+03 | 2.03E+02 | 16.9 | 100 | −1.50E+03 | −2.0E+03 | −1.14E+03 | 2.40E+02 | 15.3 | 100 |
F9 | 6.69E+00 | 1.45E+00 | 2.00E+01 | 4.16E+00 | 16.0 | 0 | 7.28E+00 | 1.14E+00 | 1.89E+01 | 4.77E+00 | 15.1 | 0 |
F10 | 6.30E−01 | 1.30E−03 | 2.40E+00 | 8.63E−01 | 16.3 | 0 | 9.31E−01 | 3.64E−04 | 3.57E+00 | 9.70E−01 | 15.1 | 0 |
F11 | 1.57E−01 | 5.53E−02 | 4.61E−01 | 1.11E−01 | 18.5 | 0 | 2.41E−01 | 4.67E−02 | 4.63E−01 | 1.26E−01 | 15.6 | 0 |
F12 | 6.82E−03 | 2.29E−07 | 1.22E−01 | 2.56E−01 | 16.9 | 40 | 1.41E−01 | 8.31E−07 | 1.02E+00 | 2.63E−01 | 16.0 | 20 |
F13 | 3.33E−03 | 1.86E−07 | 1.52E−02 | 5.30E−03 | 17.9 | 40 | 5.10E−03 | 3.68E−06 | 2.13E−02 | 6.70E−03 | 16.0 | 36.6 |
F14 | 1.09E+00 | 9.98E−01 | 3.96E+00 | 5.42E−01 | 6.5 | 0 | 1.55E+00 | 9.98E−01 | 6.90E+00 | 1.24E+00 | 6.1 | 0 |
F15 | 1.12E−02 | 3.37E−04 | 5.92E−02 | 1.31E−02 | 6.2 | 0 | 1.30E−02 | 4.28E−04 | 6.52E−02 | 1.36E−02 | 10.6 | 0 |
F16 | −1.03E+0 | −1.03E+0 | −1.031E+0 | 1.32E−11 | 6.2 | 100 | −1.0E+00 | −1.0E+0 | −1.03E+00 | 5.01E−11 | 5.4 | 100 |
F17 | 3.97E−01 | 3.97E−01 | 3.97E−01 | 7.05E−10 | 5.9 | 0 | 4.04E−01 | 3.97E−01 | 4.94E−01 | 2.44E−02 | 5.7 | 0 |
F18 | 3.0000 | 3.0000 | 3.0000 | 1.22E−09 | 5.8 | 0 | 3.0000 | 3.0000 | 3.0000 | 5.43E−10 | 5.4 | 0 |
F19 | −3.8627 | −3.8628 | −3.8623 | 1.37E−04 | 11.1 | 100 | −3.8614 | −3.8628 | −3.8229 | 7.30E−03 | 10.8 | 100 |
F20 | −3.2698 | −3.3220 | −3.1507 | 6.97E−02 | 17.7 | 100 | −3.2691 | −3.3220 | −3.1743 | 6.05E−02 | 16.1 | 100 |
F21 | −6.0565 | −1.01E+01 | −2.6305 | 3.2166 | 14.6 | 100 | −5.4781 | −1.01E+01 | −2.6305 | 3.2608 | 10.8 | 100 |
F22 | −8.2806 | −1.05E+01 | −1.8595 | 3.5643 | 12.7 | 100 | −7.2992 | −1.04E+01 | −2.7519 | 3.6401 | 10.9 | 100 |
F23 | −8.2545 | −1.05E+01 | −2.4217 | 3.3801 | 11.6 | 100 | −8.1794 | −1.05E+01 | −2.4217 | 3.4411 | 10.1 | 100 |
F. | Maxiter = 100 | Maxiter = 200 | Maxiter = 300 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IGOA | GOA | IGOA | GOA | IGOA | GOA | |||||||
Avg. | SR. | Avg. | SR. | Avg. | SR. | Avg. | SR. | Avg. | SR. | Avg. | SR. | |
F1 | 1.700E−03 | 0 | 2.600E−03 | 0 | 9.000E−07 | 100 | 3.885E−07 | 100 | 3.524E−07 | 100 | 1.042E−087 | 100 |
F2 | 1.142E+00 | 0 | 2.547E+00 | 0 | 7.715E−01 | 0 | 1.916E+00 | 0 | 9.618E−01 | 0 | 1.913E+00 | 0 |
F3 | 1.180E−02 | 0 | 1.450E−02 | 0 | 5.978E−04 | 46.67 | 2.000E−03 | 0 | 1.590E−05 | 100 | 9.841E−05 | 96.67 |
F4 | 2.320E−02 | 0 | 4.490E−02 | 0 | 6.343E−04 | 0 | 6.681E−04 | 0 | 2.908E−04 | 0 | 2.659E−04 | 0 |
F5 | 8.360E+02 | 0 | 2.141E+03 | 0 | 8.757E+02 | 0 | 1.109E+03 | 0 | 3.757E+02 | 0 | 1.462E+03 | 0 |
F6 | 2.700E−03 | 20 | 2.100E−03 | 20 | 7.975E−07 | 100 | 8.021E−07 | 100 | 2.574E−07 | 100 | 1.806E−07 | 100 |
F7 | 3.940E−02 | 0 | 1.654E−01 | 0 | 2.180E−02 | 0 | 7.180E−02 | 0 | 3.700E−02 | 0 | 8.920E−02 | 0 |
F8 | −1.59E+003 | 100 | −1.50E+03 | 100 | −1.67E+03 | 100 | −1.61E+03 | 100 | −1.59E+03 | 100 | −1.53E+03 | 100 |
F9 | 6.783E+00 | 0 | 10.22E+00 | 0 | 5.999E+00 | 0 | 10.8E+00 | 0 | 5.923E+00 | 0 | 6.379E+00 | 0 |
F10 | 6.841E−01 | 0 | 1.068E+00 | 0 | 7.283E−01 | 0 | 1.06E+00 | 0 | 1.701E−01 | 0 | 6.653E−01 | 0 |
F11 | 2.308E−01 | 0 | 1.80E−01 | 0 | 1.788E−011 | 0 | 1.78E−01 | 0 | 1.914E−01 | 0 | 1.752E−01 | 0 |
F12 | 1.340E−01 | 0 | 1.951E−01 | 0 | 1.360E−02 | 16.67 | 2.800E−02 | 0 | 5.200E−03 | 56.67 | 1.740E−02 | 43.33 |
F13 | 1.600E−03 | 13.44 | 4.700E−03 | 0 | 3.100E−03 | 43.33 | 3.500E−03 | 36.67 | 2.90E−03 | 63.33 | 4.200E−03 | 40 |
F14 | 1.295E+00 | 0 | 1.29E+00 | 0 | 9.980E−01 | 0 | 9.980E−01 | 0 | 9.980E−01 | 0 | 9.980E−01 | 0 |
F15 | 2.000E−03 | 0 | 2.300E−03 | 0 | 2.800E−03 | 0 | 6.200E−03 | 0 | 2.900E−03 | 0 | 5.000E−03 | 0 |
Avg.T | 10.96s | 11.03s | 21.29s | 21.01s | 32.02s | 31.68s |
F. | Population = 30 | Population = 100 | Population = 200 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IGOA | GOA | IGOA | GOA | IGOA | GOA | |||||||
Avg. | SR. | Avg. | SR. | Avg. | SR. | Avg. | SR. | Avg. | SR. | Avg. | SR. | |
F1 | 6.641E−05 | 80 | 9.246E−05 | 80 | 1.755E−04 | 50 | 2.710E−04 | 70 | 3.000E−03 | 0 | 1.600E−03 | 0 |
F2 | 1.021E+00 | 0 | 1.045E+00 | 0 | 8.316E−01 | 0 | 1.604E+00 | 0 | 5.372E−01 | 0 | 1.941E+00 | 0 |
F3 | 9.100E−03 | 0 | 2.030E−02 | 0 | 3.000E−03 | 0 | 5.900E−03 | 0 | 4.300E−03 | 0 | 4.300E−03 | 0 |
F4 | 3.100E−03 | 0 | 3.600E−03 | 0 | 1.040E−02 | 0 | 7.200E−03 | 0 | 3.840E−02 | 0 | 2.820E−02 | 0 |
F5 | 1.059E+03 | 0 | 9.489E+02 | 0 | 1.289E+02 | 0 | 4.123E+02 | 0 | 1.694E+02 | 0 | 6.788E+01 | 0 |
F6 | 1.064E−04 | 90 | 1.052E−04 | 90 | 8.011E−05 | 90 | 3.240E−04 | 50 | 1.300E−03 | 0 | 3.300E−03 | 0 |
F7 | 3.180E−02 | 0 | 5.750E−02 | 0 | 2.460E−02 | 0 | 2.860E−02 | 0 | 1.100E−03 | 0 | 5.600E−03 | 0 |
F8 | −1.43E+03 | 100 | −1.43E+03 | 100 | −1.70E+03 | 100 | −1.66E+03 | 0 | −1.64E+03 | 100 | −1.50E+03 | 100 |
F9 | 1.211E+01 | 0 | 1.452E+01 | 0 | 4.323E+00 | 0 | 7.984E+00 | 0 | 4.599E+00 | 0 | 4.705E+00 | 0 |
F10 | 7.577E−01 | 0 | 1.431E+00 | 0 | 4.363E−01 | 0 | 4.799E−01 | 0 | 5.496E−01 | 0 | 9.241E−01 | 0 |
F11 | 2.665E−01 | 0 | 3.428E−01 | 0 | 1.683E−01 | 0 | 2.279E−01 | 0 | 1.886E−01 | 0 | 1.936E−01 | 0 |
F12 | 2.300E−02 | 20 | 6.650E−02 | 10 | 7.908E−04 | 40 | 1.900E−03 | 20 | 3.100E−04 | 33.33 | 1.600E−03 | 30 |
F13 | 4.500E−03 | 53.33 | 5.000E−03 | 50 | 1.100E−03 | 33.33 | 5.900E−03 | 30 | 2.200E−03 | 20 | 6.200E−03 | 0 |
F14 | 1.295E+00 | 0 | 1.395E+00 | 0 | 9.980E−01 | 0 | 9.980E−01 | 0 | 1.097E+00 | 0 | 1.295E+00 | 0 |
F15 | 1.540E−02 | 0 | 1.550E−02 | 0 | 6.800E−03 | 0 | 6.900E−03 | 0 | 0.0054E−03 | 0 | 3.300E−03 | 0 |
Avg.T | 6.03s | 6.20s | 61.79s | 60.66s | 254.41s | 253.91s |
Index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF1 | IMF2 | IMF3 | IMF1 | IMF2 | IMF3 | |
COR | 0.25964 | 0.43251 | 0.39650 | 0.77542 | 0.25966 | 0.43225 | 0.86390 | 0.25966 | 0.43238 | 0.86391 |
MI | 0.80834 | 1.02542 | 0.28548 | 0.88980 | 0.69371 | 1.06834 | 2.37064 | 0.74940 | 1.13667 | 2.61562 |
Kurt | 2.91748 | 2.92008 | 1.68794 | 2.06884 | 2.91778 | 2.91497 | 2.91509 | 2.91797 | 2.91691 | 2.91567 |
EC | 0.06798 | 0.18881 | 0.14698 | 0.59621 | 0.06715 | 0.18655 | 0.74628 | 0.06716 | 0.18656 | 0.74627 |
EE | 0.18277 | 0.31475 | 0.28183 | 0.30833 | 0.18137 | 0.31323 | 0.21839 | 0.18138 | 0.31323 | 0.21840 |
EEMI | 0.14774 | 0.32275 | 0.08045 | 0.27435 | 0.12581 | 0.33463 | 0.51773 | 0.13593 | 0.35604 | 0.57127 |
CF | 200 Hz | 100.3 Hz | 54.93 Hz | 49.8 Hz | 200 Hz | 100.3 Hz | 49.8 Hz | 200 Hz | 100.3 Hz | 49.8 Hz |
RMSE | 6.63254372362072E−17 | 6.10663958406721E−17 | 5.52830577450765E−17 | |||||||
ELR | 1.26756751554804E−2 | 6.11789560325569E−4 | 6.07251242923508E−4 |
Index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | |
Cor | 0.05406 | 0.04420 | 0.81011 | 0.53668 | 0.22806 | 0.05491 | 0.04438 | 0.81015 | 0.53678 | 0.22820 |
MI | 1.050E−4 | 5.276E−4 | 0.84841 | 1.19674 | 0.53840 | 2.5624E−3 | 1.484E−3 | 0.84715 | 1.21227 | 0.55248 |
Kurt | 3.14098 | 3.76649 | 1.52020 | 1.50596 | 1.52899 | 3.11645 | 3.60330 | 1.52116 | 1.50587 | 1.52822 |
EC | 0.00290 | 0.00188 | 0.65602 | 0.28751 | 0.05166 | 0.00299 | 0.00190 | 0.65601 | 0.28749 | 0.05158 |
EE | 0.01698 | 0.01180 | 0.27655 | 0.35838 | 0.15308 | 0.01740 | 0.01195 | 0.27655 | 0.35838 | 0.15292 |
EEMI | 1.784E−6 | 6.228E−6 | 0.23463 | 0.42889 | 0.08241 | 4.460E−5 | 1.774E−5 | 0.23428 | 0.43445 | 0.08448 |
CF | 472.2 Hz | 310.1 Hz | 75.2 Hz | 24.9 Hz | 15.14 Hz | 472.2 Hz | 310.1 Hz | 75.2 Hz | 24.9 Hz | 15.14 Hz |
RMSE | 1.63490379207628E−16 | 1.60185216006952E−16 | ||||||||
ELR | 1.40291463966830 E−3 | 1.38564962092271E−3 |
Bearing Model | Rolling Element Diameter | Number of Rolling Element | Bearing Pitch Diameter | Contact Angle |
---|---|---|---|---|
SKF6205 | 7.938 mm | 9 | 39 mm | 0 |
Fr | Fi | Fo | Fb |
---|---|---|---|
29.95 | 162.1852 | 107.3648 | 141.1693 |
Index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 | |
Kurt | 7.986 | 16.944 | 6.350 | 2.6619 | 2.8834 | 2.1094 | 4.0275 | 3.4262 | 6.3318 | 6.3307 |
CF | 3445 Hz | 2801 Hz | 1400 Hz | 539.1 Hz | 269.5 Hz | 164.1 Hz | 58.59 Hz | 29.3 Hz | 5.85 Hz | 5.85 Hz |
RMSE | 8.73523111467058e−17 | |||||||||
ELR | −0.122195409491517 | |||||||||
Index | IGOA (,) | |||||||||
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | — | |
Kurt | 7.478 | 12.507 | 6.240 | 3.6839 | 2.796 | 2.220 | 4.640 | 2.1756 | 5.5451 | — |
CF | 3445 Hz | 2906 Hz | 1400 Hz | 539.1 Hz | 269.5 Hz | 164.1 Hz | 58.59 Hz | 29.3 Hz | 23.44 Hz | — |
RMSE | 8.75022651069671e−17 | |||||||||
ELR | −0.000118428965832907 |
Index | ||||||||
---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | |
Kurt | 3.0203 | 10.443 | 3.3474 | 3.8239 | 2.5435 | 9.8020 | 8.7031 | 1.8026 |
CF | 3369 Hz | 1436 Hz | 627 Hz | 509.8 Hz | 164.1 Hz | 70.31 Hz | 29.3 Hz | 5.85 Hz |
RMSE | 1.67122144577936e−17 | |||||||
ELR | −0.000896154006018536 | |||||||
Index | IGOA (,) | |||||||
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | |
Kurt | 2.9835 | 9.3753 | 3.4777 | 6.3255 | 2.8033 | 3.5137 | 6.4838 | 1.7957 |
CF | 3369 Hz | 1436 Hz | 627 Hz | 509.8 Hz | 164.1 Hz | 117.2 Hz | 29.3 Hz | 5.85 Hz |
RMSE | 1.67116896663240e−17 | |||||||
ELR | −0.00042497562128863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Xiong, Z.; Bai, H.; Xing, L.; Jia, Y.; Yuan, X. Parameter-Adaptive TVF-EMD Feature Extraction Method Based on Improved GOA. Sensors 2022, 22, 7195. https://doi.org/10.3390/s22197195
Zhou C, Xiong Z, Bai H, Xing L, Jia Y, Yuan X. Parameter-Adaptive TVF-EMD Feature Extraction Method Based on Improved GOA. Sensors. 2022; 22(19):7195. https://doi.org/10.3390/s22197195
Chicago/Turabian StyleZhou, Chengjiang, Zenghui Xiong, Haicheng Bai, Ling Xing, Yunhua Jia, and Xuyi Yuan. 2022. "Parameter-Adaptive TVF-EMD Feature Extraction Method Based on Improved GOA" Sensors 22, no. 19: 7195. https://doi.org/10.3390/s22197195
APA StyleZhou, C., Xiong, Z., Bai, H., Xing, L., Jia, Y., & Yuan, X. (2022). Parameter-Adaptive TVF-EMD Feature Extraction Method Based on Improved GOA. Sensors, 22(19), 7195. https://doi.org/10.3390/s22197195