A Personalized User Authentication System Based on EEG Signals
<p>System illustration of the two different phases of the classifier. First, there is a training phase where the server computes the optimal classification algorithm, and then there is a usage phase (test phase) where the system grants or denies access to the user based on this classifier.</p> "> Figure 2
<p>Cumulative distribution plot of accuracy distribution in subject classification.</p> "> Figure 3
<p>Classification performance. The violin and the box plots describe the distribution of sensitivity and specificity across the 15 subjects, while from the scatterplot, it is obvious that one subject was an outlier indicating that our results would be much better by excluding this subject.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. EEG Data Acquisition
2.3. Preprocessing and Feature Extraction
2.4. Classification Procedure
2.5. Evaluation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashby, C.; Bhatia, A.; Tenore, F.; Vogelstein, J. Low-Cost Electroencephalogram (EEG) Based Authentication. In Proceedings of the 2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 442–445. [Google Scholar]
- Chuang, J.; Nguyen, H.; Wang, C.; Johnson, B. I Think, Therefore I Am: Usability and Security of Authentication Using Brainwaves. In Proceedings of the Financial Cryptography and Data Security; Adams, A.A., Brenner, M., Smith, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–16. [Google Scholar]
- Gui, Q.; Jin, Z.; Xu, W. Exploring EEG-Based Biometrics for User Identification and Authentication. In Proceedings of the 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 13 December 2014; pp. 1–6. [Google Scholar]
- Jayarathne, I.; Cohen, M.; Amarakeerthi, S. BrainID: Development of an EEG-Based Biometric Authentication System. In Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13–15 October 2016; pp. 1–6. [Google Scholar]
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. A New Multi-Level Approach to EEG Based Human Authentication Using Eye Blinking. Pattern Recognit. Lett. 2016, 82, 216–225. [Google Scholar] [CrossRef]
- Nguyen, B.; Nguyen, D.; Ma, W.; Tran, D. Investigating the Possibility of Applying EEG Lossy Compression to EEG-Based User Authentication. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 79–85. [Google Scholar]
- Pham, T.; Ma, W.; Tran, D.; Nguyen, P.; Phung, D. EEG-Based User Authentication Using Artifacts. In Proceedings of the International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, Bilbao, Spain, 25–27 June 2014; de la Puerta, J.G., Ferreira, I.G., Bringas, P.G., Klett, F., Abraham, A., de Carvalho, A.C.P.L.F., Herrero, Á., Baruque, B., Quintián, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 343–353. [Google Scholar]
- Phothisonothai, M. An Investigation of Using SSVEP for EEG-Based User Authentication System. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015; pp. 923–926. [Google Scholar]
- Wong, R.-Z.; Choo, Y.-H.; Muda, A.K. Task Sensitivity in Continuous Electroencephalogram Person Authentication. Int. J. Adv. Comput. Sci. Appl. IJACSA 2020, 11. [Google Scholar] [CrossRef]
- Wu, Q.; Zeng, Y.; Zhang, C.; Tong, L.; Yan, B. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals. Sensors 2018, 18, 335. [Google Scholar] [CrossRef] [PubMed]
- Yeom, S.-K.; Suk, H.-I.; Lee, S.-W. Person Authentication from Neural Activity of Face-Specific Visual Self-Representation. Pattern Recognit. 2013, 46, 1159–1169. [Google Scholar] [CrossRef]
- Yu, T.; Wei, C.-S.; Chiang, K.-J.; Nakanishi, M.; Jung, T.-P. EEG-Based User Authentication Using a Convolutional Neural Network. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 1011–1014. [Google Scholar]
- Pham, T.; Ma, W.; Tran, D.; Nguyen, P.; Phung, D. EEG-Based User Authentication in Multilevel Security Systems. In Proceedings of the Advanced Data Mining and Applications, Hangzhou, China, 14–16 December 2013; Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 513–523. [Google Scholar]
- Valsaraj, A.; Madala, I.; Garg, N.; Patil, M.; Baths, V. Motor Imagery Based Multimodal Biometric User Authentication System Using EEG. In Proceedings of the 2020 International Conference on Cyberworlds (CW), Caen, France, 29 September–1 October 2020; pp. 272–279. [Google Scholar]
- Szu, H.; Hsu, C.; Szu, C.; Wang, S. Live Biometric Authenticity Check. In Proceedings of the Independent Component Analyses, Wavelets, and Neural Networks, Orlando, FL, USA, 22–25 April 2003; Volume 5102. [Google Scholar] [CrossRef]
- He, Z.; Wang, W.; Dong, J.; Tan, T. Temporal Sparse Adversarial Attack on Sequence-Based Gait Recognition. arXiv 2021, arXiv:2002.09674v3. [Google Scholar] [CrossRef]
- Stallings, W.; Brown, L. Computer Security: Principles and Practice, 4th ed.; Pearson: New York, NY, USA, 2018; ISBN 978-0-13-479410-5. [Google Scholar]
- Wang, M.; Abbass, H.A.; Hu, J. Continuous authentication using EEG and face images for trusted autonomous systems. In Proceedings of the 2016 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December 2016; pp. 368–375. [Google Scholar]
- Pham, T.; Ma, W.; Tran, D.; Nguyen, P.; Phung, D. Multi-Factor EEG-Based User Authentication. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 4029–4034. [Google Scholar]
- Poulos, M.; Rangoussi, M.; Alexandris, N. Neural Network Based Person Identification Using EEG Features. In Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA, 15–19 March 1999; Volume 2, pp. 1117–1120. [Google Scholar]
- Paranjape, R.B.; Mahovsky, J.; Benedicenti, L.; Koles’, Z. The Electroencephalogram as a Biometric. In Proceedings of the Canadian Conference on Electrical and Computer Engineering 2001, Toronto, ON, Canada, 13–16 May 2001; Volume 2, pp. 1363–1366. [Google Scholar]
- Thomas, K.P.; Vinod, A.P. EEG-Based Biometric Authentication Using Gamma Band Power During Rest State. Circuits Syst. Signal. Process. 2018, 37, 277–289. [Google Scholar] [CrossRef]
- Poulos, M.; Rangoussi, M.; Chrissikopoulos, V.; Evangelou, A. Person Identification Based on Parametric Processing of the EEG. In Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357), Pafos, Cyprus, 5–8 September 1999; Volume 1, pp. 283–286. [Google Scholar]
- Poulos, M.; Rangoussi, M.; Alexandris, N.; Evangelou, A. Person Identification from the EEG Using Nonlinear Signal Classification. Methods Inf. Med. 2002, 41, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Hema, C.R.; Osman, A.A. Single Trial Analysis on EEG Signatures to Identify Individuals. In Proceedings of the 2010 6th International Colloquium on Signal Processing & its Applications, Malacca City, Malaysia, 21–23 May 2010; pp. 1–3. [Google Scholar]
- Mu, Z.; Hu, J. Research of EEG Identification Computing Based on AR Model. In Proceedings of the 2009 International Conference on Future BioMedical Information Engineering (FBIE), Sanya, China, 13–14 December 2009; pp. 366–368. [Google Scholar]
- Damaševičius, R.; Maskeliūnas, R.; Kazanavičius, E.; Woźniak, M. Combining Cryptography with EEG Biometrics. Comput. Intell. Neurosci. 2018, 2018, e1867548. [Google Scholar] [CrossRef] [PubMed]
- Ozdenizci, O.; Wang, Y.; Koike-Akino, T.; Erdogmus, D. Adversarial Deep Learning in EEG Biometrics. IEEE Signal Process. Lett. 2019, 26, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alyasseri, Z.A.A.; Alomari, O.A.; Makhadmeh, S.N.; Mirjalili, S.; Al-Betar, M.A.; Abdullah, S.; Abasi, A.K. EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer. IEEE Access 2022, 10, 10500–10513. [Google Scholar] [CrossRef]
- Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 847–855. [Google Scholar]
- Klados, M.A.; Frantzidis, C.; Vivas, A.B.; Papadelis, C.; Lithari, C.; Pappas, C.; Bamidis, P.D. A Framework Combining Delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to Study Emotional Processing. Comput. Intell. Neurosci. 2009, 2009, e549419. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.A.; Makeig, S.; Kreutz-Delgado, K.; Rao, B.D. Newton Method for the ICA Mixture Model. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 1805–1808. [Google Scholar]
- Klados, M.A.; Papadelis, C.L.; Bamidis, P.D. REG-ICA: A New Hybrid Method for EOG Artifact Rejection. In Proceedings of the 2009 9th International Conference on Information Technology and Applications in Biomedicine, Larnaka, Cyprus, 4–7 November 2009; pp. 1–4. [Google Scholar]
- Klados, M.A.; Papadelis, C.; Braun, C.; Bamidis, P.D. REG-ICA: A Hybrid Methodology Combining Blind Source Separation and Regression Techniques for the Rejection of Ocular Artifacts. Biomed. Signal. Process. Control 2011, 6, 291–300. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Mu, Z.; Hu, J.; Min, J. EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes. Entropy 2016, 18, 432. [Google Scholar] [CrossRef]
- Liew, S.-H.; Choo, Y.-H.; Low, Y.F.; Yusoh, Z.I.M.; Yap, T.-B.; Muda, A.K. Comparing Features Extraction Methods for Person Authentication Using EEG Signals. In Pattern Analysis, Intelligent Security and the Internet of Things; Springer: Cham, Switzerland, 2015; pp. 225–235. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Mao, X.; Hu, C.; Liu, P. Review on EEG-Based Authentication Technology. Comput. Intell. Neurosci. 2021, 2021, e5229576. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Yao, W.X.; Huang, Y. EEG-based biometric identification with deep learning. In Proceedings of the 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 609–612. [Google Scholar] [CrossRef]
- Puengdang, S.; Tuarob, S.; Sattabongkot, T.; Sakboonyarat, B. EEG-Based Person Authentication Method Using Deep Learning with Visual Stimulation. In Proceedings of the 2019 11th International Conference on Knowledge and Smart Technology (KST), Phuket, Thailand, 23–26 January 2019; pp. 6–10. [Google Scholar] [CrossRef]
GRANT ACCESS | DENY ACCESS | Sensitivity | Specificity | ||||||
---|---|---|---|---|---|---|---|---|---|
SUBJECT | GRANT | DENY | GRANT | DENY | TAR | FAR | TRR | FRR | Accuracy |
SS01 | 500 | 0 | 0 | 500 | 1 | 0 | 1 | 0 | 100% |
SS02 | 436 | 64 | 16 | 484 | 0.872 | 0.032 | 0.968 | 0.128 | 92% |
SS03 | 493 | 7 | 25 | 475 | 0.986 | 0.05 | 0.95 | 0.014 | 97% |
SS04 | 420 | 80 | 49 | 451 | 0.84 | 0.098 | 0.902 | 0.16 | 87% |
SS05 | 474 | 26 | 7 | 493 | 0.948 | 0.014 | 0.986 | 0.052 | 97% |
SS06 | 450 | 50 | 8 | 492 | 0.9 | 0.016 | 0.984 | 0.1 | 94% |
SS07 | 475 | 25 | 9 | 491 | 0.95 | 0.018 | 0.982 | 0.05 | 97% |
SS08 | 476 | 24 | 14 | 486 | 0.952 | 0.028 | 0.972 | 0.048 | 96% |
SS09 | 469 | 31 | 8 | 492 | 0.938 | 0.016 | 0.984 | 0.062 | 96% |
SS10 | 482 | 18 | 7 | 493 | 0.964 | 0.014 | 0.986 | 0.036 | 98% |
SS11 | 466 | 34 | 9 | 491 | 0.932 | 0.018 | 0.982 | 0.068 | 96% |
SS12 | 472 | 28 | 6 | 494 | 0.944 | 0.012 | 0.988 | 0.056 | 97% |
SS13 | 465 | 35 | 8 | 492 | 0.93 | 0.016 | 0.984 | 0.07 | 96% |
SS14 | 478 | 22 | 0 | 500 | 0.956 | 0 | 1 | 0.044 | 98% |
SS15 | 451 | 49 | 8 | 492 | 0.902 | 0.016 | 0.984 | 0.098 | 94% |
Paper | No. of Subjects | No. of EEG Channels | Features | Accuracy |
---|---|---|---|---|
[19] | 40 | 8 | AR linear parameters and PSD components (1–30 Hz) | 97.10% |
[38] | 10 | 2 (Fp1 & Fp2) | Fuzzy entropy and Fisher distance | 87.30% |
[12] | 8 | 9 | Low-frequency SSVEP components | 96.78% |
[39] | 10 | 10 | Wavelet Packet Decomposition and Correlation-based features | 95% |
[3] | 32 | 1 | Wavelet based (time-frequency) features: (1) mean (2) standard deviation (3) entropy for the wavelets of the five frequency bands | 94.04% |
[14] | 25 | 4 | AR linear parameters, PSD components | 98.28% |
[1] | 5 | 14 | (1) AR coefficients (2) PSD components (3) total power (4) interhemispheric power differences (5) interhemispheric linear complexity | 97.69% |
[11] | 10 | 18 + 5 subject-specific channels | The difference between the averaged signals in response to self-face | 86.10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiadis, C.; Kostaridou, V.-D.; Veloudis, S.; Kazis, D.; Klados, M.A. A Personalized User Authentication System Based on EEG Signals. Sensors 2022, 22, 6929. https://doi.org/10.3390/s22186929
Stergiadis C, Kostaridou V-D, Veloudis S, Kazis D, Klados MA. A Personalized User Authentication System Based on EEG Signals. Sensors. 2022; 22(18):6929. https://doi.org/10.3390/s22186929
Chicago/Turabian StyleStergiadis, Christos, Vasiliki-Despoina Kostaridou, Simos Veloudis, Dimitrios Kazis, and Manousos A. Klados. 2022. "A Personalized User Authentication System Based on EEG Signals" Sensors 22, no. 18: 6929. https://doi.org/10.3390/s22186929
APA StyleStergiadis, C., Kostaridou, V. -D., Veloudis, S., Kazis, D., & Klados, M. A. (2022). A Personalized User Authentication System Based on EEG Signals. Sensors, 22(18), 6929. https://doi.org/10.3390/s22186929