Extending Non-Ambiguity Range of Dual-Comb Ranging for a Mobile Target Based on FPGA
<p>Experimental setup of the dual-comb ranging system. Blue solid line with arrow represents optical path, blue dotted line represents the moving range of the target mirror, black dotted line represents the electrical connection, while circle and double arrow represent orthogonal polarization states. The repetition frequencies of comb1 and comb2 are 56 MHz and 56.001 MHz. HWP: half-wave plate; QWP: quarter-wave plate; PBS: polarization beam splitter; Ref, Target: TIR retroreflector prism; BS: beam splitter; PD: photodetector; BPF: band-pass filter.</p> "> Figure 2
<p>Schematic of the measurement procedure: (<b>a</b>) Input signals of two channels. R peaks represent reference interferograms (orange) and M peaks represent measurement interferograms (green). The local enlarged figure of R1 and M1 shows the broadened signals which are detected by photodetectors and digitized by ADC. The black dotted line represents the envelope of the interferograms which is Gaussian shape. The delayed time <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </semantics></math> between paired R peaks and M peaks is changing as target mirror moving away. (<b>b</b>) Relationship between measured distance and measuring time when target mirror moving away at the same speed.</p> "> Figure 3
<p>Abnormal situations appear due to the timing jitter in the combs when the target mirror is crossing dead zones. The blue dotted frames indicate there are abnormal situations appear. The black dotted line represents where the M peaks are supposed to be and the solid red line represents where the M peaks are actually. Solid orange lines and solid green lines represent interferograms without timing jitter.</p> "> Figure 4
<p>The algorithm that determines positive integer <span class="html-italic">n</span>. Input data are from channel 0 and channel 1. RMR: two adjacent R peaks with one M peak between them. <math display="inline"><semantics> <msub> <mi>D</mi> <mi>cs</mi> </msub> </semantics></math>: measured distance within <math display="inline"><semantics> <msub> <mi>L</mi> <mi>NAR</mi> </msub> </semantics></math> at current state.<math display="inline"><semantics> <msub> <mi>D</mi> <mi>ls</mi> </msub> </semantics></math>: measured distance within <math display="inline"><semantics> <msub> <mi>L</mi> <mi>NAR</mi> </msub> </semantics></math> at last state. <math display="inline"><semantics> <msub> <mi>V</mi> <mi>adj</mi> </msub> </semantics></math>: is the difference between <math display="inline"><semantics> <msub> <mi>D</mi> <mi>cs</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>D</mi> <mi>ls</mi> </msub> </semantics></math>.</p> "> Figure 5
<p>Block diagram of signal processing unit implemented on FPGA board. The signal processing unit consists of four sub-modules. The function of the find-peaks module is finding the reference interferograms from channel 0 and the measurement interferograms from 1. The output-peak module is responsible for giving the necessary values to finish calculating the absolute distance. The calculate-distance module performs the final calculation of absolute distance.</p> "> Figure 6
<p>Effectiveness of the proposed signal processing unit. The target mirror is moving at the same speed. (<b>a</b>) Value of positive integer <span class="html-italic">n</span> which counts for the number of the non-ambiguity range. In the code, the positive integer <span class="html-italic">n</span> was denoted as <span class="html-italic">n</span>. (<b>b</b>)The distance between the paired R peaks and m peaks which are stored in RAM. This value was denoted as <span class="html-italic">D</span> in the code.</p> "> Figure 7
<p>The blue line represents the results of measurements in the whole process when the target mirror moved back and forth at about 8.125 mm/s for about 30 cm. The absolute distance that the red dotted line represents is the non-ambiguity range <math display="inline"><semantics> <msub> <mi>L</mi> <mi>NAR</mi> </msub> </semantics></math>, which is 2676.718375 mm in our DCR system.</p> "> Figure 8
<p>The precision of the experimental results. (<b>a</b>) The relationship between the ranging precision and distance. The red dot line represents the non−ambiguity range <math display="inline"><semantics> <msub> <mi>L</mi> <mi>NAR</mi> </msub> </semantics></math>. (<b>b</b>) The Allan deviation when the target mirror was fixed near the <math display="inline"><semantics> <msub> <mi>L</mi> <mi>NAR</mi> </msub> </semantics></math> at different averaging times. The Allan deviation is about 3.89 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m at averaging time of 1 ms and about 0.37 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m at averaging time of 100 ms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- clk: system clock whose frequency is 125 MHz;
- 2.
- rst_n: asynchronous reset signal for the whole system;
- 3.
- adc_clk: clock of ADC whose frequency is 100 MHz;
- 4.
- adc_data_ch0: digital signal from ADC of channel 0;
- 5.
- adc_data_ch1: digital signal from ADC of channel 1;
- 6.
- configuration: general configuration information, e.g., the repetition frequencies of two combs.
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosse, H.; Wilkening, G. Developments at PTB in Nanometrology for Support of the Semiconductor Industry. Meas. Sci. Technol. 2005, 16, 2155–2166. [Google Scholar] [CrossRef]
- Lim, H.C.; Bang, H. Adaptive Control for Satellite Formation Flying under Thrust Misalignment. Acta Astronaut. 2009, 65, 112–122. [Google Scholar] [CrossRef]
- Fortier, T.; Baumann, E. 20 Years of Developments in Optical Frequency Comb Technology and Applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond Optical Frequency Combs. Rev. Mod. Phys. 2003, 75, 325–342. [Google Scholar] [CrossRef]
- Udem, T.; Holzwarth, R.; Hänsch, T. Optical Frequency Metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Giorgetta, F.R.; Coddington, I.; Baumann, E.; Swann, W.C.; Newbury, N.R. Fast High-Resolution Spectroscopy of Dynamic Continuous-Wave Laser Sources. Nat. Photonics 2010, 4, 853–857. [Google Scholar] [CrossRef]
- Jost, J.D.; Hall, J.L.; Ye, J. Continuously Tunable, Precise, Single Frequency Optical Signal Generator. Opt. Express 2002, 10, 515–520. [Google Scholar] [CrossRef]
- Spencer, D.T.; Drake, T.; Briles, T.C.; Stone, J.; Sinclair, L.C.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B.R.; Bluestone, A.; et al. An Optical-Frequency Synthesizer Using Integrated Photonics. Nature 2018, 557, 81–85. [Google Scholar] [CrossRef]
- Ideguchi, T.; Poisson, A.; Guelachvili, G.; Picqué, N.; Hänsch, T.W. Adaptive Real-Time Dual-Comb Spectroscopy. Nat. Commun. 2014, 5, 3375. [Google Scholar] [CrossRef]
- Ycas, G.; Giorgetta, F.R.; Baumann, E.; Coddington, I.; Herman, D.; Diddams, S.A.; Newbury, N.R. High-Coherence Mid-Infrared Dual-Comb Spectroscopy Spanning 2.6 to 5.2 Mm. Nat. Photonics 2018, 12, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Picqué, N.; Hänsch, T.W. Frequency Comb Spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Q.; Li, X.; Wang, X.; Wang, X.; Ni, K. Improving Resolution of Dual-Comb Gas Detection Using Periodic Spectrum Alignment Method. Sensors 2021, 21, 903. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, Y.; Ma, Q.; Zhou, Q.; Li, X.; Ren, W.; Ni, K. A Coherent-Averaged Dual-Comb Spectrometer Based on Environment-Shared Fiber Lasers and Digital Error Correction. Opt. Laser Technol. 2022, 156, 108498. [Google Scholar] [CrossRef]
- Diddams, S.A.; Udem, T.; Bergquist, J.C.; Curtis, E.A.; Drullinger, R.E.; Hollberg, L.; Itano, W.M.; Lee, W.D.; Oates, C.W.; Vogel, K.R.; et al. An Optical Clock Based on a Single Trapped 199 Hg + Ion. Science 2001, 293, 825–828. [Google Scholar] [CrossRef]
- Papp, S.B.; Beha, K.; Del’Haye, P.; Quinlan, F.; Lee, H.; Vahala, K.J.; Diddams, S.A. Microresonator Frequency Comb Optical Clock. Optica 2014, 1, 10. [Google Scholar] [CrossRef]
- Marra, G.; Margolis, H.S.; Lea, S.N.; Gill, P. High-Stability Microwave Frequency Transfer by Propagation of an Optical Frequency Comb over 50 Km of Optical Fiber. Opt. Lett. 2010, 35, 1025–1027. [Google Scholar] [CrossRef]
- Marra, G.; Slavík, R.; Margolis, H.S.; Lea, S.N.; Petropoulos, P.; Richardson, D.J.; Gill, P. High-Resolution Microwave Frequency Transfer over an 86-Km-Long Optical Fiber Network Using a Mode-Locked Laser. Opt. Lett. 2011, 36, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.S.; Kim, S.W. Distance Measurements Using Mode-Locked Lasers: A Review. Nanomanufacturing Metrol. 2018, 1, 131–147. [Google Scholar] [CrossRef]
- Schiller, S. Spectrometry with Frequency Combs. Opt. Lett. 2002, 27, 766–768. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and Precise Absolute Distance Measurements at Long Range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Zhou, S.; Le, V.; Xiong, S.; Yang, Y.; Wu, G. Dual-Comb Spectroscopy Resolved Three-Degree-of-Freedom Sensing. Photonics Res. 2020, 9, 243–251. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, G. Dual-Comb Ranging. Engineering 2018, 4, 772–778. [Google Scholar] [CrossRef]
- Han, S.; Kim, Y.J.; Kim, S.W. Parallel Determination of Absolute Distances to Multiple Targets by Time-of-Flight Measurement Using Femtosecond Light Pulses. Opt. Express 2015, 23, 25874–25882. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.A.; Newbury, N.R.; Coddington, I. Sub-Micron Absolute Distance Measurements in Sub-Millisecond Times with Dual Free-Running Femtosecond Er Fiber-Lasers. Opt. Express 2011, 19, 18501–18509. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Martin, B.; Feneyrou, P.; Dolfi, D.; Martin, A. Performance and Limitations of Dual-Comb Based Ranging Systems. Opt. Express 2022, 30, 4005–4016. [Google Scholar] [CrossRef]
- Nürnberg, J.; Willenberg, B.; Phillips, C.R.; Keller, U. Dual-Comb Ranging with Frequency Combs from Single Cavity Free-Running Laser Oscillators. Opt. Express 2021, 29, 24910–24918. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, S.W.; Kim, Y.J. Absolute Distance Measurement by Dual-Comb Interferometry with Adjustable Synthetic Wavelength. Meas. Sci. Technol. 2013, 24, 045201. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Yang, J.; Hu, G. Fast Distance Measurement with a Long Ambiguity Range Using a Free-Running Dual-Comb Fiber Laser. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2020; p. 2. [Google Scholar]
- Zhang, H.; Wei, H.; Wu, X.; Yang, H.; Li, Y. Absolute Distance Measurement by Dual-Comb Nonlinear Asynchronous Optical Sampling. Opt. Express 2014, 22, 6597–6604. [Google Scholar] [CrossRef]
- Li, T.; Zhao, X.; Chen, J.; Yang, J.; Li, Q.; Li, Y.; Zheng, Z. Absolute Distance Measurement with a Long Ambiguity Range Using a Tri-Comb Mode-Locked Fiber Laser. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Zhao, X.; Qu, X.; Zhang, F.; Zhao, Y.; Tang, G. Absolute Distance Measurement by Multi-Heterodyne Interferometry Using an Electro-Optic Triple Comb. Opt. Lett. 2018, 43, 807–810. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.; Newbury, N. Coherent Dual-Comb Spectroscopy at High Signal-to-Noise Ratio. Phys. Rev. A 2010, 82, 043817. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-Comb Spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, Q.; Cao, H.; Song, Y. Peak Detection Based on FPGA Using Quasi-Newton Optimization Method for Femtosecond Laser Ranging. IEEE Access 2020, 8, 47776–47786. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, Q.; Shen, L.; Ni, K.; Zeng, X.; Li, Y. Experimental Optimization of the Repetition Rate Difference in Dual-Comb Ranging System. Appl. Phys. Express 2014, 7, 106602. [Google Scholar] [CrossRef]
- Shi, H.; Song, Y.; Liang, F.; Xu, L.; Hu, M.; Wang, C. Effect of Timing Jitter on Time-of-Flight Distance Measurements Using Dual Femtosecond Lasers. Opt. Soc. Am. 2015, 23, 14057–14069. [Google Scholar] [CrossRef]
- Ni, K.; Dong, H.; Zhou, Q.; Xu, M.; Li, X.; Wu, G. Interference Peak Detection Based on FPGA for Real-Time Absolute Distance Ranging with Dual-Comb Lasers. In Proceedings of the International Conference on Optical Instruments and Technology, Beijing, China, 8–10 May 2015. [Google Scholar] [CrossRef]
- Yu, H.; Ni, K.; Zhou, Q.; Li, X.; Wang, X.; Wu, G. Digital Error Correction of Dual-Comb Interferometer without External Optical Referencing Information. Opt. Express 2019, 27, 29425–29438. [Google Scholar] [CrossRef]
- Paschotta, R.; Schlatter, A.; Zeller, S.; Telle, H.; Keller, U. Optical Phase Noise and Carrier-Envelope Offset Noise of Mode-Locked Lasers. Appl. Phys. B Lasers Opt. 2006, 82, 265–273. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Q.; Li, X.; Wang, X.; Ni, K. Mode-Resolved Dual-Comb Spectroscopy Using Error Correction Based on Single Optical Intermedium. Opt. Express 2021, 29, 6271–6281. [Google Scholar] [CrossRef]
- Yu, H.; Qian, Z.; Li, X.; Wang, X.; Ni, K. Phase-Stable Repetition Rate Multiplication of Dual-Comb Spectroscopy Based on a Cascaded Mach–Zehnder Interferometer. Opt. Lett. 2021, 46, 3243–3246. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, C.; Yang, Y.; Wu, G.; Wu, G. Multi-Pulse Sampling Dual-Comb Ranging Method. Opt. Express 2020, 28, 4058–4066. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Yu, H.; Wang, Y.; Li, Y.; Liu, X.; Zhang, P.; Zhou, Q.; Ni, K. Extending Non-Ambiguity Range of Dual-Comb Ranging for a Mobile Target Based on FPGA. Sensors 2022, 22, 6830. https://doi.org/10.3390/s22186830
Liu R, Yu H, Wang Y, Li Y, Liu X, Zhang P, Zhou Q, Ni K. Extending Non-Ambiguity Range of Dual-Comb Ranging for a Mobile Target Based on FPGA. Sensors. 2022; 22(18):6830. https://doi.org/10.3390/s22186830
Chicago/Turabian StyleLiu, Ruoyu, Haoyang Yu, Yue Wang, Yu Li, Xinda Liu, Pengpeng Zhang, Qian Zhou, and Kai Ni. 2022. "Extending Non-Ambiguity Range of Dual-Comb Ranging for a Mobile Target Based on FPGA" Sensors 22, no. 18: 6830. https://doi.org/10.3390/s22186830
APA StyleLiu, R., Yu, H., Wang, Y., Li, Y., Liu, X., Zhang, P., Zhou, Q., & Ni, K. (2022). Extending Non-Ambiguity Range of Dual-Comb Ranging for a Mobile Target Based on FPGA. Sensors, 22(18), 6830. https://doi.org/10.3390/s22186830