Development of Prediction Models for Soil Nitrogen Management Based on Electrical Conductivity and Moisture Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Soil Physical Properties
2.1.1. Soil Texture
2.1.2. Field Capacity
2.1.3. Permanent Wilting Point
2.1.4. Permanent Available Water Capacity
2.2. Determination of Chemical Properties of Selected Soil Types
2.2.1. Soil pH
2.2.2. Total N of soil
2.2.3. Available N in Soil
for blank) × Normality of H2SO4 × 1568 *
2.3. Measurement of Soil Electrical Conductivity
2.3.1. Measurement of EC at Different Levels of Soil Moisture
2.3.2. Measurement of Soil EC at Different Levels of N
2.3.3. Statistical Analysis
3. Results
3.1. Physical Properties of Selected Soil Types
3.1.1. Soil Texture of Selected Soil Samples
3.1.2. Field Capacity, Permanent Wilting Point, and Available Water Capacity
3.2. Chemical Properties of Selected Soil Types
Nitrogen in Soil
3.3. Variation in Electrical Conductivity with Moisture Levels
3.4. Variation in Soil Electrical Conductivity by N Level
3.5. Algorithm for Real Time N Measurement
- (A)
- For different levels of moisture,
- (i).
- For clay loam (46% clay)y = −0.037x2 + 0.362x − 0.306 (R2 = 0.985)
- (ii).
- For sandy loam (61% sand)y = −0.027x2 + 0.308x − 0.264 (R2 = 0.988)
- (iii).
- For sandy loam (41% silt)y = −0.013x 2 + 0.130x − 0.11 (R2 = 0.981)
where (y) is EC of soil and (x) is the moisture level (%) and R is regression coefficient - (B)
- For different levels of N,
- (i).
- For clay loam (46% clay)y = 0.0014x2 − 0.0006x − 0.478 (R2 = 0.983)
- (ii).
- For sandy loam (61% sand)y = 0.006x − 0.322 (R2 = 0.900)
- (iii).
- For sandy loam (41% silt)y = 0.0007x2 + 0.0107x + 0.208 (R2 = 0.99)
where (y) is EC of soil and (x) is level of N and R is the regression coefficient.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Pierce, F.J.; Nowak, P. Aspects of precision agriculture. Adv. Agron. 1999, 67, 1–85. [Google Scholar] [CrossRef]
- Martínez, J.M.; Galantini, J.A.; Duval, M.E. Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. J. Soil Sci. Plant Nutr. 2018, 18, 73–89. [Google Scholar] [CrossRef]
- Lockman, R.B.; Storer, D.A. Soil nitrate and ammonium variation with area and date sampled. Commun. Soil Sci. Plant Anal. 1990, 21, 2219–2226. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Cramer, M.D. Root nitrogen acquisition and assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Kolodziejczyk, M. Effectiveness of nitrogen fertilization and application of microbial preparations in potato cultivation. Turk. J. Agric. For. 2014, 38, 299–310. [Google Scholar] [CrossRef]
- Stanford, G.; Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Martínez, J.M.; Galantini, J.A. A rapid chemical method for estimating potentially mineralizable and particulate organic nitrogen in Mollisols. Commun. Soil Sci. Plant Anal. 2017, 48, 113–123. [Google Scholar] [CrossRef]
- Ros, G.H.; Hanegraaf, M.C.; Hoffland, E.; van Riemsdijk, W.H. Predicting soil N mineralization: Relevance of organic matter fractions and soil properties. Soil Biol. Biochem. 2011, 43, 1714–1722. [Google Scholar] [CrossRef]
- Luce, M.S.; Whalen, J.K.; Ziadi, N.; Zebarth, B.J. Nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils. Adv. Agron. 2011, 112, 55–102. [Google Scholar] [CrossRef]
- Moya, H.; Verdejo, J.; Yáñez, C.; Álvaro, J.E.; Sauvé, S.; Neaman, A. Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile. J. Soil Sci. Plant Nutr. 2017, 17, 205–213. [Google Scholar] [CrossRef]
- Martínez, J.M.; Galantini, J.A.; Duval, M.E.; López, F.M. Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil Tillage Res. 2017, 169, 71–80. [Google Scholar] [CrossRef]
- Gianello, C.; Bremner, J.M. A simple chemical method of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 1986, 17, 195–214. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Cooper, J.M. Evaluation of some indices of potentially mineralizable nitrogen in soil. Soil Sci. Soc. Am. J. 2007, 71, 1233–1239. [Google Scholar] [CrossRef]
- Ramírez, M.V.; Rubilar, R.A.; Montes, C.; Stape, J.L.; Fox, T.R.; Lee Allen, H. Nitrogen availability and mineralization in Pinus radiata stands fertilized mid-rotation at three contrasting sites. J. Soil Sci. Plant Nutr. 2016, 16, 118–136. [Google Scholar] [CrossRef]
- Martínez-Lagos, J.; Salazar, F.; Alfaro, M.; Rosas, M.; Macías, F. Nitrogen mineralization in a silandic andosol fertilized with dairy slurry and urea. J. Soil Sci. Plant Nutr. 2015, 15, 60–75. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Miao, Y.F.; Li, S.Q. Soil organic nitrogen and its contribution to crop production. J. Integr. Agric. 2014, 13, 2061–2080. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 5, 221–268. [Google Scholar] [CrossRef]
- Schomberg, H.H.; Wietholter, S.; Griffin, T.S.; Reeves, D.W.; Cabrera, M.L.; Fisher, D.S.; Endale, D.M.; Novak, J.M.; Balkcom, K.S.; Raper, R.L.; et al. Assessing indices for predicting potential nitrogen mineralization in soils under different management systems. Soil Sci. Soc. Am. J. 2009, 73, 1575–1586. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Zebarth, B.J.; Georgallas, A.; Burton, D.L.; Grant, C.A.; Drury, C.F. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma 2010, 157, 97–108. [Google Scholar] [CrossRef]
- Nyiraneza, J.; Ziadi, N.; Zebarth, B.J.; Sharifi, M.; Burton, D.L.; Drury, C.F.; Bittman, S.; Grant, C.A. Prediction of soil nitrogen supply in corn production using soil chemical and biological indices. Soil Sci. Soc. Am. J. 2012, 76, 925–935. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Principal component analysis for predicting corn biomass and grain yields. Soil Sci. 2004, 169, 215–224. [Google Scholar] [CrossRef]
- Motie, J.B.; Aghkhani, M.H.; Rohani, A.; Lakzian, A. A soft-computing approach to estimate soil electrical conductivity. Biosyst. Eng. 2021, 205, 105–120. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Arnó, J.; Escolà, A.; Martinez-Casasnovas, J.A. Apparent electrical conductivity and multivariate analysis of soil properties to assess soil constraints in orchards affected by previous parcelling. Geoderma 2018, 319, 185–193. [Google Scholar] [CrossRef]
- Hummel, J.W.; Sudduth, K.A.; Hollinger, S.E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput. Electron. Agric. 2001, 32, 149–165. [Google Scholar] [CrossRef]
- Tomkiewicz, D.; Piskier, T. A plant based sensing method for nutrition stress monitoring. Precis. Agric. 2012, 13, 370–383. [Google Scholar] [CrossRef]
- Peets, S.; Mouazen, A.M.; Blackburn, K.; Kuang, B.; Wiebensohn, J. Methods and procedures for automatic collection and management of data acquired from on-the-go sensors with application to on-the-go soil sensors. Comput. Electron. Agric. 2012, 81, 104–112. [Google Scholar] [CrossRef]
- Sinfield, J.V.; Fagerman, D.; Colic, O. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Comput. Electron. Agric. 2010, 70, 1–18. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Viscarra Rossel, R.A.; Hartemink, A.E.; McBratney, A.B. Development of on-the-go proximal soil sensor systems. In Proximal Soil Sensing; Rossel, R.A.V., McBratney, A.B., Minasny, B., Eds.; Springer Science + Business Media B.V.: Berlin, Germany, 2010; pp. 15–28. [Google Scholar] [CrossRef]
- Pei, X.; Sudduth, K.A.; Veum, K.S.; Li, M. Improving in-situ estimation of soil profile properties using a multi-sensor probe. Sensors 2019, 19, 1011. [Google Scholar] [CrossRef] [PubMed]
- Othaman, N.N.C.; Isa, M.M.; Hussin, R.; Ismail, R.C.; Naziri, S.M.; Murad, S.A.Z.; Harun, A.; Ahmad, M.I. Development of Soil Electrical Conductivity (EC) Sensing System in Paddy Field. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1755, p. 12005. [Google Scholar] [CrossRef]
- Lukas, V.; Neudert, L.; Novák, J.; Kren, J. Estimation of Soil Physico-chemical Properties by On-the-go Measurement of Soil Electrical Conductivity. Agric. Conspec. Sci. 2018, 83, 93–98. [Google Scholar]
- Paz, A.M.; Castanheira, N.; Farzamian, M.; Paz, M.C.; Gonçalves, M.C.; Santos, F.A.M.; Triantafilis, J. Prediction of soil salinity and sodicity using electromagnetic conductivity imaging. Geoderma 2020, 361, 114086. [Google Scholar] [CrossRef]
- Hummel, J.W.; Gaultney, L.D.; Sudduth, K.A. Soil property sensing for site-specific crop management. Comput. Electron. Agric. 1996, 14, 121–136. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Hummel, J.W.; Birrell, S.J. Sensors for site-specific management. In The State of Site Specific Management for Agriculture; Wiley: Hoboken, NJ, USA, 1997; pp. 183–210. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef]
- Chighladze, G.; Kaleita, A.; Birrell, S. Sensitivity of capacitance soil moisture sensors to nitrate ions in soil solution. Soil Sci. Soc. Am. J. 2010, 74, 1987–1995. [Google Scholar] [CrossRef]
- Medeiros, W.N.; Valente, D.S.M.; Queiroz, D.M.D.; Pinto, F.D.A.D.C.; Assis, I.R.D. Apparent soil electrical conductivity in two different soil types. Rev. Cienc. Agron. 2018, 49, 43–52. [Google Scholar] [CrossRef]
- Valente, D.S.M.; Queiroz, D.M.D.; Pinto, F.D.A.D.C.; Santos, N.T.; Santos, F.L. The relationship between apparent soil electrical conductivity and soil properties. Rev. Cienc. Agron. 2012, 43, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Farooque, A.A.; Zaman, Q.U.; Schumann, A.W.; Madani, A.; Percival, D.C. Delineating management zones for site specific fertilization in wild blueberry fields. Appl. Eng. Agric. 2012, 28, 57–70. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef]
- Morari, F.; Castrignanò, A.; Pagliarin, C. Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Comput. Electron. Agric. 2009, 68, 97–107. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Amin Mohd Soom, M.; Anuar, A.R.; Aimrun, W. Relationship between apparent electrical conductivity and soil physical properties in a Malaysian paddy field. Arch. Agron. Soil Sci. 2012, 58, 155–168. [Google Scholar] [CrossRef]
- Wang, Z.; Timlin, D.; Kojima, Y.; Luo, C.; Chen, Y.; Li, S.; Fleisher, D.; Tully, K.; Reddy, V.R.; Horton, R. A piecewise analysis model for electrical conductivity calculation from time domain reflectometry waveforms. Comput. Electron. Agric. 2021, 182, 106012. [Google Scholar] [CrossRef]
- Molin, J.P.; Faulin, G.D.C. Spatial and temporal variability of soil electrical conductivity related to soil moisture. Sci. Agric. 2013, 70, 1–5. [Google Scholar] [CrossRef]
- Serrano, J.M.; Shahidian, S.; Marques da Silva, J. Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture. Precis. Agric. 2017, 18, 245–263. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Jung, W.K.; Kitchen, N.R.; Sudduth, K.A.; Kremer, R.J.; Motavalli, P.P. Relationship of apparent soil electrical conductivity to claypan soil properties. Soil Sci. Soc. Am. J. 2005, 69, 883–892. [Google Scholar] [CrossRef]
- Terrón, J.M.; Marques da Silva, J.R.; Moral, F.J.; García-Ferrer, A. Soil apparent electrical conductivity and geographically weighted regression for mapping soil. Precis. Agric. 2011, 12, 750–761. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Scudiero, E. Field-scale apparent soil electrical conductivity. Soil Sci. Soc. Am. J. 2020, 84, 1405–1441. [Google Scholar] [CrossRef]
- Nocco, M.A.; Ruark, M.D.; Kucharik, C.J. Apparent electrical conductivity predicts physical properties of coarse soils. Geoderma 2019, 335, 1–11. [Google Scholar] [CrossRef]
- Grisso, R.D.; Alley, M.M.; Holshouser, D.L.; Thomason, W.E. Precision Farming Tools. Soil Electrical Conductivity; Publications, Virginia Cooperative Extension (VCE); Publication 442-508; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2005; Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/51377/442-508.pdf?sequence=1&isAllowed=y (accessed on 17 December 2021).
- Zhang, R.; Wienhold, B.J. The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutr. Cycl. Agroecosystems 2002, 63, 251–254. [Google Scholar] [CrossRef]
- Queiroz, D.M.; Sousa, E.D.; Lee, W.S.; Schueller, J.K. Development and testing of a low-cost portable apparent soil electrical conductivity sensor using a beaglebone black. Appl. Eng. Agric. 2020, 36, 341–355. [Google Scholar] [CrossRef]
- Hanssens, D.; Delefortrie, S.; Bobe, C.; Hermans, T.; De Smedt, P. Improving the reliability of soil EC-mapping: Robust apparent electrical conductivity (rECa) estimation in ground-based frequency domain electromagnetics. Geoderma 2019, 337, 1155–1163. [Google Scholar] [CrossRef]
- Dos Santos Sousa, E.D.T.; de Queiroz, D.M.; de Freitas Coelho, A.L.; Valente, D.S.M. Development of signal analysis algorithm for apparent soil electrical conductivity sensor. Biosyst. Eng. 2021, 211, 183–191. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, H.; Wang, W.; Sun, D. Prediction Model of Soil Electrical Conductivity Based on ELM Optimized by Bald Eagle Search Algorithm. Electronics 2021, 25, 50–56. [Google Scholar] [CrossRef]
- Coppola, A.; Smettem, K.; Ajeel, A.; Saeed, A.; Dragonetti, G.; Comegna, A.; Lamaddalena, N.; Vacca, A. Calibration of an electromagnetic induction sensor with time-domain reflectometry data to monitor rootzone electrical conductivity under saline water irrigation. Eur. J. Soil Sci. 2016, 67, 737–748. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, Y.; Fu, Z.; Dong, Y.; Zheng, Y.; Yan, H.; Li, X. Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization. J. Clean. Prod. 2019, 230, 365–377. [Google Scholar] [CrossRef]
- Yang, B.; Cetin, B.; Zhang, Y.; Luo, C.; Ceylan, H.; Horton, R.; Kim, S.; Mahedi, M. Effects of concrete grinding residue (CGR) on selected sandy loam properties. J. Clean. Prod. 2019, 240, 118057–118066. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Z.; Kordbacheh, F.; Li, S.; Cetin, B.; Ceylan, H.; Horton, R. A greenhouse study of concrete grinding residue influences on seedling emergence and early growth of selected prairie species. Water Air Soil Pollut. 2020, 231, 253–262. [Google Scholar] [CrossRef]
- Sanches, G.M.; Magalhães, P.S.; Remacre, A.Z.; Franco, H.C. Potential of apparent soil electrical conductivity to describe the soil pH and improve lime application in a clayey soil. Soil Tillage Res. 2018, 175, 217–225. [Google Scholar] [CrossRef]
- Ekwue, E.I.; Bartholomew, J. Electrical conductivity of some soils in Trinidad as affected by density, water and peat content. Biosyst. Eng. 2011, 108, 95–103. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Johnson, C.K.; Mortensen, D.A.; Wienhold, B.J.; Shanahan, J.F.; Doran, J. Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agron. J. 2003, 95, 303–315. [Google Scholar] [CrossRef]
- Moral, F.J.; Terrón, J.M.; Da Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput. Electron. Agric. 2001, 31, 239–264. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Singh, D.P.; Chhonkar, P.K.; Dwivedi, D.S. Manual on Soil, Plant and Water Analysis; Westville Publishing House: New Delhi, India, 2005; 200p. [Google Scholar]
- Kirkham, M.B. Chapter 10: Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. In Principles of Soil and Plant Water Relations; Kirkham, M.B., Ed.; Elsevier Inc.: Boston, MA, USA, 2014; pp. 153–170. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Accurate determination of moisture content of organic soils using the oven drying method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis. Part 3 Chemical Methods; Bartels, J.M., Ed.; SSSA-ASA: Madison, WI, USA, 1996; Volume 3, pp. 475–490. [Google Scholar]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Seifi, M.R.; Alimardani, R.; Sharifi, A. How can soil electrical conductivity measurements control soil pollution? Res. J. Environ. Earth Sci. 2010, 2, 235–238. [Google Scholar]
- Anonymous. Cornell University. Soil and Water Management. PO 12.1-3. Northeast Region Certified Crop Adviser (NRCCA) Study Resources. 2021. Available online: https://nrcca.cals.cornell.edu/soil/CA2/CA0212.1-3.php (accessed on 27 September 2021).
- Shittu, K.A.; Oyedele, D.J.; Babatunde, K.M. The effects of moisture content at tillage on soil strength in maize production. Egypt. J. Basic Appl. Sci. 2017, 4, 139–142. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. A Practical Manual of Analytical Methods for Soil and Plant Samples from Agronomy Field Experiments; Division of Agronomy, Indian Agricultural Research Institute: New Delhi, India, 2013; 57p. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Pascual, M.; Rufat, J.; Arbonés, A.; Escolà, A.; Rosell, J.R.; Martinez-Casasnovas, J.A.; Josep, M.; Villar, M.; Vilarrasa, M. Use of soil EC a measurement for evaluating soil spatial variability for nitrogen management in super-intensive olive oil tree orchards. In Proceedings of the Efficient Use of Different Sources of Nitrogen in Agriculture–From Theory to Practice, Skara, Sweden, 27–29 June 2016; p. 335. [Google Scholar]
- Leggo, P.J.; Ledésert, B. The stimulation of nitrification in an organically enriched soil by zeolitic tuff and its effect on plant growing. Ann. Agrar. Sci. 2009, 7, 9–16. [Google Scholar]
- Baldi, E.; Quartieri, M.; Muzzi, E.; Noferini, M.; Toselli, M. Use of in situ soil solution electric conductivity to evaluate mineral N in commercial orchards: Preliminary results. Horticulturae 2020, 6, 39. [Google Scholar] [CrossRef]
- Miyamoto, T.; Kameyama, K.; Iwata, Y. Monitoring electrical conductivity and nitrate concentrations in an Andisol field using time domain reflectometry. Jpn. Agric. Res. Q. 2015, 49, 261–267. [Google Scholar] [CrossRef]
- De Neve, S.; Van de Steene, J.; Hartmann, R.; Hofman, G. Using time domain reflectometry for monitoring mineralization of nitrogen from soil organic matter. Eur. J. Soil Sci. 2000, 51, 295–304. [Google Scholar] [CrossRef]
- Nissen, H.H.; Moldrup, P.; Henriksen, K. Time domain reflectometry measurements of nitrate transport in manure-amended soil. Soil Sci. Soc. Am. J. 1998, 62, 99–109. [Google Scholar] [CrossRef]
- Williams, B.G.; Hoey, D. The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils. Soil Res. 1987, 25, 21–27. [Google Scholar] [CrossRef]
- Molin, J.P.; Castro, C.N.D. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. Sci. Agric. 2008, 65, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Faulin, G.D.C.; Molin, J.P. Amplitude of moisture values and their influence on the measurement of soil electrical conductivity (Amplitude dos valores da umidade e sua influência na mensuração da condutividade elétrica do solo). In Proceedings of the Brazilian Congress of Precision Agriculture (Congresso Brasileiro de Agricultura de Precisão), Piracicaba, SP, Brazil, 18–19 July 2006; Available online: https://www.agriculturadeprecisao.org.br/trabalhos-em-congresso/ (accessed on 23 December 2021).
- Pedrera-Parrilla, A.; Van De Vijver, E.; Van Meirvenne, M.; Espejo-Pérez, A.J.; Giráldez, J.V.; Vanderlinden, K. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: Significance for clay and soil water content mapping. Precis. Agric. 2016, 17, 531–545. [Google Scholar] [CrossRef]
- Lesch, S.M.; Corwin, D.L.; Robinson, D.A. Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils. Comput. Electron. Agric. 2005, 46, 351–378. [Google Scholar] [CrossRef]
- Aimrun, W.; Amin, M.S.M.; Ahmad, D.; Hanafi, M.M.; Chan, C.S. Spatial variability of bulk soil electrical conductivity in a Malaysian paddy field: Key to soil management. Paddy Water Environ. 2007, 5, 113–121. [Google Scholar] [CrossRef]
- Carroll, Z.L.; Oliver, M.A. Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 2005, 128, 354–374. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Comput. Electron. Agric. 2005, 46, 135–152. [Google Scholar] [CrossRef]
- Cambouris, A.N.; Nolin, M.C.; Zebarth, B.J.; Laverdière, M.R. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. Am. J. Potato Res. 2006, 83, 381–395. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M.; Oster, J.D.; Kaffka, S.R. Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma 2006, 131, 369–387. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Wang, Z.; Liang, Z.; Wang, M.; Liu, M.; Suarez, D.L. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 2017, 194, 48–57. [Google Scholar] [CrossRef]
Variables | Levels | Parameter Measured |
---|---|---|
Soil texture | Clay loam (maximum clay percentage) | Electrical conductivity |
Sandy loam (maximum silt percentage) | ||
Sandy loam (maximum sand percentage) | ||
Soil moisture, percent (dry basis) | 0 (dry soil) | Electrical conductivity |
13 | ||
15 | ||
17 | ||
22 | ||
N Level, kg ha−1 | 0 (no addition of N in soil) | Electrical conductivity |
50 | ||
100 | ||
150 | ||
200 |
Percentage of Sand Silt and Clay (%) | ||||
---|---|---|---|---|
Soil Type | Clay | Silt | Sand | Selected Based on |
1 | 27.12 | 20.0 | 52.88 | - |
2 | 21.12 | 21.12 | 57.76 | - |
3 | 9.12 | 30.0 | 60.88 | Sand content |
4 | 45.84 | 18.0 | 36.16 | Clay content |
5 | 0.16 | 41.32 | 58.52 | Silt content |
Soil Properties | Clay Loam (46% Clay) | Sandy Loam (41% Silt) | Sandy Loam (61% Sand) |
---|---|---|---|
Field capacity (%) | 23.63 | 13.96 | 18.21 |
Permanent wilting point (%) | 12.23 | 5.66 | 7.28 |
Available water capacity (%) | 11.4 | 8.3 | 10.93 |
Type of Soil | Clay Loam (46% Clay) | Sandy Loam (41% Silt) | Sandy Loam (61% Sand) |
---|---|---|---|
Total N (%) | 0.01 | 0.04 | 0.07 |
Available N (kg ha−1) | 94.1 | 37.1 | 112.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzakhaninafchi, H.; Mani, I.; Hasan, M.; Nafchi, A.M.; Parray, R.A.; Kumar, D. Development of Prediction Models for Soil Nitrogen Management Based on Electrical Conductivity and Moisture Content. Sensors 2022, 22, 6728. https://doi.org/10.3390/s22186728
Mirzakhaninafchi H, Mani I, Hasan M, Nafchi AM, Parray RA, Kumar D. Development of Prediction Models for Soil Nitrogen Management Based on Electrical Conductivity and Moisture Content. Sensors. 2022; 22(18):6728. https://doi.org/10.3390/s22186728
Chicago/Turabian StyleMirzakhaninafchi, Hasan, Indra Mani, Murtaza Hasan, Ali Mirzakhani Nafchi, Roaf Ahmad Parray, and Dinesh Kumar. 2022. "Development of Prediction Models for Soil Nitrogen Management Based on Electrical Conductivity and Moisture Content" Sensors 22, no. 18: 6728. https://doi.org/10.3390/s22186728
APA StyleMirzakhaninafchi, H., Mani, I., Hasan, M., Nafchi, A. M., Parray, R. A., & Kumar, D. (2022). Development of Prediction Models for Soil Nitrogen Management Based on Electrical Conductivity and Moisture Content. Sensors, 22(18), 6728. https://doi.org/10.3390/s22186728