Non-Intrusive Load Monitoring
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaselimi, M.; Protopapadakis, E.; Voulodimos, A.; Doulamis, N.; Doulamis, A. Towards Trustworthy Energy Disaggregation: A Review of Challenges, Methods, and Perspectives for Non-Intrusive Load Monitoring. Sensors 2022, 22, 5872. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Shao, S.; Wang, X.; Zhu, Z.; Hu, F. Deep Learning-Based Non-Intrusive Commercial Load Monitoring. Sensors 2022, 22, 5250. [Google Scholar] [CrossRef] [PubMed]
- Hur, C.H.; Lee, H.E.; Kim, Y.J.; Kang, S.G. Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring. Sensors 2022, 22, 5838. [Google Scholar] [CrossRef] [PubMed]
- Massidda, L.; Marrocu, M. A Bayesian Approach to Unsupervised, Non-Intrusive Load Disaggregation. Sensors 2022, 22, 4481. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Hong, Y.; Shi, Q.; Gao, S.; Huang, X. Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method. Sensors 2021, 21, 7272. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, S.; Kaselimi, M.; Doulamis, A.; Doulamis, N. ELECTRIcity: An Efficient Transformer for Non-Intrusive Load Monitoring. Sensors 2022, 22, 2926. [Google Scholar] [CrossRef] [PubMed]
- Nalmpantis, C.; Virtsionis Gkalinikis, N.; Vrakas, D. Neural Fourier energy disaggregation. Sensors 2022, 22, 473. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, M.; Sheikh, S.R.; Naseer, N.; Din, Z.M.U.; Rehman, H.Z.U.; Naved, M. Non-Intrusive Load Monitoring of Buildings Using Spectral Clustering. Sensors 2021, 22, 4036. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Tao, S.; Fan, H.; Li, X.; Sun, Y.; Sun, J. Non-intrusive load monitoring for residential appliances with ultra-sparse sample and real-time computation. Sensors 2021, 21, 5366. [Google Scholar] [CrossRef] [PubMed]
- Kerk, S.G.; Hassan, N.U.; Yuen, C. Smart Distribution Boards (Smart DB), Non-Intrusive Load Monitoring (NILM) for Load Device Appliance Signature Identification and Smart Sockets for Grid Demand Management. Sensors 2020, 20, 2900. [Google Scholar] [CrossRef] [PubMed]
- Zoha, A.; Gluhak, A.; Imran, M.A.; Rajasegarar, S. Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 2012, 12, 16838–16866. [Google Scholar] [CrossRef] [PubMed]
- Bonfigli, R.; Felicetti, A.; Principi, E.; Fagiani, M.; Squartini, S.; Piazza, F. Denoising autoencoders for non-intrusive load monitoring: Improvements and comparative evaluation. Energy Build. 2018, 158, 1461–1474. [Google Scholar] [CrossRef]
- Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2015, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Workshop on Data Mining Applications in Sustainability (SIGKDD); Citeseer: San Diego, CA, USA, 2011; Volume 25, pp. 59–62. [Google Scholar]
- Murray, D.; Stankovic, L.; Stankovic, V. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Sci. Data 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Batra, N.; Parson, O.; Berges, M.; Singh, A.; Rogers, A. A comparison of non-intrusive load monitoring methods for commercial and residential buildings. arXiv 2014, arXiv:1408.6595. [Google Scholar]
- Wilhelm, S.; Jakob, D.; Kasbauer, J.; Ahrens, D. GeLaP: German Labeled Dataset for Power Consumption. In Proceedings of Sixth International Congress on Information and Communication Technology; Springer: Singapore, 2022; pp. 21–33. [Google Scholar]
Dataset Used | Problem Scale | Machine Learning | Algorithmic Solution | |
---|---|---|---|---|
[1] | AMPds [12], UK-DALE [13], REDD [14], Refi [15] | Small | X | |
[2] | COMBED [16] | Large | X | |
[3] | UK-DALE [13], REDD [14] | Medium | X | |
[4] | AMPds [12] | Medium | X | |
[5] | REDD [14] | Small | X | |
[6] | UK-DALE [13], REDD [14], Refi [15] | Small | X | |
[7] | UK-DALE [13], REDD [14], Refi [15] | Small | X | |
[8] | Refi [15] | Small | X | |
[9] | UK-DALE [13] | Small | X | |
[10] | GeLaP [17] | Small | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortuna, L.; Buscarino, A. Non-Intrusive Load Monitoring. Sensors 2022, 22, 6675. https://doi.org/10.3390/s22176675
Fortuna L, Buscarino A. Non-Intrusive Load Monitoring. Sensors. 2022; 22(17):6675. https://doi.org/10.3390/s22176675
Chicago/Turabian StyleFortuna, Luigi, and Arturo Buscarino. 2022. "Non-Intrusive Load Monitoring" Sensors 22, no. 17: 6675. https://doi.org/10.3390/s22176675
APA StyleFortuna, L., & Buscarino, A. (2022). Non-Intrusive Load Monitoring. Sensors, 22(17), 6675. https://doi.org/10.3390/s22176675