High Resolution On-Road Air Pollution Using a Large Taxi-Based Mobile Sensor Network
<p>Map of major study roads in Shanghai—Map credit: OpenStreetMap.</p> "> Figure 2
<p>The mobile devices installed on the rear fins of a taxi.</p> "> Figure 3
<p>Spatial distribution of the speed (<b>a</b>,<b>b</b>) and number of points in each segment (<b>c</b>,<b>d</b>) on different types of roads in Shanghai, and the day and cumulative number of taxis over 12 months (<b>e</b>,<b>f</b>).</p> "> Figure 4
<p>Spatial distribution of the average hourly concentrations of CO (ppb) (<b>a</b>), NO<sub>2</sub> (ppb) (<b>b</b>), and PM<sub>2.5</sub> (μg m<sup>−3</sup>) (<b>c</b>) in Shanghai from January 2020 to December 2020.</p> "> Figure 5
<p>Boxplots for hourly average variation for CO (ppb), NO<sub>2</sub> (ppb), and PM<sub>2.5</sub> (μg m<sup>−3</sup>) in Shanghai from January 2020 to December 2020.</p> "> Figure 6
<p>Daily cycles of the three pollutant concentrations measured by the mobile devices during peak/non-peak hours, weekdays/weekends, in each month in 2020. (<b>a</b>) Diurnal concentration change among different road types and between weekdays (dots) and weekends (triangles), with the dashed red line for peak hours from 05:00 to 08:00 and 16:00 to 19:00. (<b>b</b>) Statistics and overall distribution of four types of road, each box extending from the 25th to the 75th percentile, weekday (unshaded) and weekend (shaded). (<b>c</b>) Diurnal changes over each month; (<b>d</b>) the data statistics and overall distribution and each box extends from the 25th to the 75th percentile.</p> "> Figure 7
<p>Local and background pollutant contributions to CO (<b>a</b>), NO<sub>2</sub> (<b>b</b>), PM<sub>2.5</sub> (<b>c</b>) for different road types (red for background contribution and orange for traffic-related emission contribution). The red dot is the contribution percentage for traffic-related local emissions. The dashed red line indicates the ambient air quality standard of China (after the unit conversion, the 24 h average limitation for NO<sub>2</sub> is 43 ppb, CO is 350 ppb, 35 μg m<sup>−3</sup> for the first level of PM<sub>2.5</sub>, and 70 μg m<sup>−3</sup> for the second level of PM<sub>2.5</sub>).</p> "> Figure 8
<p>(<b>a</b>) Spatial changes of CO, NO<sub>2</sub>, and PM<sub>2.5</sub> concentrations in four phases of the COVID-19 pandemic. (<b>b</b>) Boxplot for pollutant concentration distribution during each period of the COVID-19 pandemic.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Roadway Type Classification
2.2. Description of the Mobile Sensor Network
2.3. Data Analysis
2.4. Sensor Network Quality Assurance and Quality Control Protocol
2.5. Estimation of Local Traffic-Based Contribution to On-Road Pollutant Concentration
3. Results
3.1. Speed Distribution and Roadway Coverage
3.2. Spatiotemporal Analysis
3.2.1. Spatial Analysis of Air Pollutant Concentration
3.2.2. Temporal Analysis
3.3. Traffic-Related Local Pollution Contribution
3.4. Concentration Comparison throughout the Entire COVID-19 Pandemic Period
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wróbel, A.; Rokita, E.; Maenhaut, W. Transport of Traffic-Related Aerosols in Urban Areas. Sci. Total Environ. 2000, 257, 199–211. [Google Scholar] [CrossRef]
- Satterthwaite, D. The Implications of Population Growth and Urbanization for Climate Change. Environ. Urban. 2009, 21, 545–567. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zuo, J.; Jiang, H.; Huang, D.; Rameezdeen, R. Characteristics of Public Concern on Haze in China and Its Relationship with Air Quality in Urban Areas. Sci. Total Environ. 2018, 637, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Power, A.L.; Tennant, R.K.; Jones, R.T.; Tang, Y.; Du, J.; Worsley, A.T.; Love, J. Monitoring Impacts of Urbanisation and Industrialisation on Air Quality in the Anthropocene Using Urban Pond Sediments. Front. Earth Sci. 2018, 6, 131. [Google Scholar] [CrossRef]
- Han, X.; Naeher, L.P. A Review of Traffic-Related Air Pollution Exposure Assessment Studies in the Developing World. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef]
- Hubbell, B.J.; Kaufman, A.; Rivers, L.; Schulte, K.; Hagler, G.; Clougherty, J.; Cascio, W.; Costa, D. Understanding Social and Behavioral Drivers and Impacts of Air Quality Sensor Use. Sci. Total Environ. 2018, 621, 886–894. [Google Scholar] [CrossRef]
- Qiu, G.; Song, R.; He, S. The Aggravation of Urban Air Quality Deterioration Due to Urbanization, Transportation and Economic Development—Panel Models with Marginal Effect Analyses across China. Sci. Total Environ. 2019, 651, 1114–1125. [Google Scholar] [CrossRef]
- Urbanization. United Nations Population Fund. Available online: https://www.unfpa.org/urbanization (accessed on 17 June 2022).
- Ambient(Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 17 June 2022).
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in Urban Air Quality during Urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, H.; Zhou, H. Fine Particle Sensor Based on Multi-Angle Light Scattering and Data Fusion. Sensors 2017, 17, 1033. [Google Scholar] [CrossRef]
- Wu, H.; Gai, Z.; Guo, Y.; Li, Y.; Hao, Y.; Lu, Z.-N. Does Environmental Pollution Inhibit Urbanization in China? A New Perspective through Residents’ Medical and Health Costs. Environ. Res. 2020, 182, 109128. [Google Scholar] [CrossRef] [PubMed]
- Molina, L.T. Introductory Lecture: Air Quality in Megacities. Faraday Discuss. 2021, 226, 9–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Wang, S.; He, X.; Dong, L.; Zhang, N.; Wang, H.; Wang, Z.; Ma, Y.; Wang, L.; et al. Large-Eddy Simulation of Traffic-Related Air Pollution at a Very High Resolution in a Mega-City: Evaluation against Mobile Sensors and Insights for Influencing Factors. Atmos. Chem. Phys. 2021, 21, 2917–2929. [Google Scholar] [CrossRef]
- Matz, C.J.; Egyed, M.; Hocking, R.; Seenundun, S.; Charman, N.; Edmonds, N. Human Health Effects of Traffic-Related Air Pollution (TRAP): A Scoping Review Protocol. Syst. Rev. 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.P.Y.; Lai, P.-C.; Allen, R.; Cheng, W.; Lee, M.; Tsui, A.; Tang, R.; Thach, T.-Q.; Tian, L.; Brauer, M.; et al. Vertical Monitoring of Traffic-Related Air Pollution (TRAP) in Urban Street Canyons of Hong Kong. Sci. Total Environ. 2019, 670, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhang, Z.; Zhu, B.; Kong, R.; Zhang, F.; Tian, J.; Jiang, T. Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways. Sustainability 2020, 12, 4202. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, M.; Zhang, B. The Effects of Urbanization on PM2.5 Concentrations in China’s Yangtze River Economic Belt: New Evidence from Spatial Econometric Analysis. J. Clean. Prod. 2019, 239, 118065. [Google Scholar] [CrossRef]
- Hu, X.; Chen, N.; Wu, N.; Yin, B. The Potential Impacts of Electric Vehicles on Urban Air Quality in Shanghai City. Sustainability 2021, 13, 496. [Google Scholar] [CrossRef]
- Air Pollution in China: Mapping of Concentrations and Sources|PLOS ONE. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135749 (accessed on 17 June 2022).
- Shi, X.; Zhao, C.; Jiang, J.H.; Wang, C.; Yang, X.; Yung, Y.L. Spatial Representativeness of PM2.5 Concentrations Obtained Using Observations From Network Stations. J. Geophys. Res. Atmos. 2018, 123, 3145–3158. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S.; Alfaro-Contreras, R.; Xian, P. Has China Been Exporting Less Particulate Air Pollution over the Past Decade? Geophys. Res. Lett. 2017, 44, 2941–2948. [Google Scholar] [CrossRef]
- Zou, B.; You, J.; Lin, Y.; Duan, X.; Zhao, X.; Fang, X.; Campen, M.J.; Li, S. Air Pollution Intervention and Life-Saving Effect in China. Environ. Int. 2019, 125, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Padilla, L.E.; Ma, G.Q.; Peters, D.; Dupuy-Todd, M.; Forsyth, E.; Stidworthy, A.; Mills, J.; Bell, S.; Hayward, I.; Coppin, G.; et al. New Methods to Derive Street-Scale Spatial Patterns of Air Pollution from Mobile Monitoring. Atmos. Environ. 2022, 270, 118851. [Google Scholar] [CrossRef]
- Van Poppel, M.; Peters, J.; Bleux, N. Methodology for Setup and Data Processing of Mobile Air Quality Measurements to Assess the Spatial Variability of Concentrations in Urban Environments. Environ. Pollut. 2013, 183, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Westerdahl, D.; Wang, X.; Pan, X.; Zhang, K.M. Characterization of On-Road Vehicle Emission Factors and Microenvironmental Air Quality in Beijing, China. Atmos. Environ. 2009, 43, 697–705. [Google Scholar] [CrossRef]
- Wei, P.; Brimblecombe, P.; Yang, F.; Anand, A.; Xing, Y.; Sun, L.; Sun, Y.; Chu, M.; Ning, Z. Determination of Local Traffic Emission and Non-Local Background Source Contribution to on-Road Air Pollution Using Fixed-Route Mobile Air Sensor Network. Environ. Pollut. 2021, 290, 118055. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.T.; Xiang, S.; Li, R.; Zhang, S.; Zhang, K.M.; Si, S.; Wu, X.; Wu, Y. Characterizing Spatial Variations of City-Wide Elevated PM10 and PM2.5 Concentrations Using Taxi-Based Mobile Monitoring. Sci. Total Environ. 2022, 829, 154478. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, A.; Bao, T.; Tian, S. Density and Diversity of OpenStreetMap Road Networks in China. J. Urban Manag. 2015, 4, 135–146. [Google Scholar] [CrossRef]
- Ballatore, A.; Zipf, A. A Conceptual Quality Framework for Volunteered Geographic Information. In Spatial Information Theory; Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 89–107. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. Mining Urban Land-Use Patterns from Volunteered Geographic Information by Means of Genetic Algorithms and Artificial Neural Networks. Int. J. Geogr. Inf. Sci. 2012, 26, 963–982. [Google Scholar] [CrossRef]
- Chu, M.; Brimblecombe, P.; Wei, P.; Liu, C.-H.; Du, X.; Sun, Y.; Yam, Y.S.; Ning, Z. Kerbside NOx and CO Concentrations and Emission Factors of Vehicles on a Busy Road. Atmos. Environ. 2022, 271, 118878. [Google Scholar] [CrossRef]
- Zong, H.; Brimblecombe, P.; Sun, L.; Wei, P.; Ho, K.-F.; Zhang, Q.; Cai, J.; Kan, H.; Chu, M.; Che, W.; et al. Reducing the Influence of Environmental Factors on Performance of a Diffusion-Based Personal Exposure Kit. Sensors 2021, 21, 4637. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.; Westerdahl, D.; Louie, P. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- High Density Ozone Monitoring Using Gas Sensitive Semi-Conductor Sensors in the Lower Fraser Valley, British Columbia|Environmental Science & Technology. Available online: https://pubs.acs.org/doi/10.1021/es404610t (accessed on 17 June 2022).
- Cross, E.S.; Williams, L.R.; Lewis, D.K.; Magoon, G.R.; Onasch, T.B.; Kaminsky, M.L.; Worsnop, D.R.; Jayne, J.T. Use of Electrochemical Sensors for Measurement of Air Pollution: Correcting Interference Response and Validating Measurements. Atmos. Meas. Tech. 2017, 10, 3575–3588. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National Scale Spatiotemporal Land-Use Regression Model for PM2.5, PM10 and NO2 Concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Popoola, O.A.M.; Stewart, G.B.; Mead, M.I.; Jones, R.L. Development of a Baseline-Temperature Correction Methodology for Electrochemical Sensors and Its Implications for Long-Term Stability. Atmos. Environ. 2016, 147, 330–343. [Google Scholar] [CrossRef]
- Taylor, J.R.; Loescher, H.L. Automated Quality Control Methods for Sensor Data: A Novel Observatory Approach. Biogeosciences 2013, 10, 4957–4971. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile Monitoring for Mapping Spatial Variation in Urban Air Quality: Development and Validation of a Methodology Based on an Extensive Dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Y.; Wu, J.; Zhang, X.; Tian, Y.; Wang, Y.; Ding, J.; Yan, W.; Bi, X.; Shi, G.; et al. Evaluation of Regional Background Particulate Matter Concentration Based on Vertical Distribution Characteristics. Atmos. Chem. Phys. 2015, 15, 11165–11177. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Wang, L.; Song, G.; Gao, J.; Yu, L. Application of a Taxi-Based Mobile Atmospheric Monitoring System in Cangzhou, China. Transp. Res. Part D Transp. Environ. 2020, 86, 102449. [Google Scholar] [CrossRef]
- Kumar, A.; Luo, J.; Bennett, G.F. Statistical Evaluation of Lower Flammability Distance (LFD) Using Four Hazardous Release Models. Process Saf. Progress 1993, 12, 1–11. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Dommen, J.; Prévôt, A.S.H.; Richter, R.; Weingartner, E.; Baltensperger, U. A Mobile Pollutant Measurement Laboratory—Measuring Gas Phase and Aerosol Ambient Concentrations with High Spatial and Temporal Resolution. Atmos. Environ. 2002, 36, 5569–5579. [Google Scholar] [CrossRef]
- Brantley, H.L.; Hagler, G.S.W.; Kimbrough, E.S.; Williams, R.W.; Mukerjee, S.; Neas, L.M. Mobile Air Monitoring Data-Processing Strategies and Effects on Spatial Air Pollution Trends. Atmos. Meas. Tech. 2014, 7, 2169–2183. [Google Scholar] [CrossRef]
- Brake and Tire Wear Emissions from On-Road Vehicles in MOVES2014; U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Assessment and Standards Division: Washington, DC, USA, 2014.
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake Wear Particulate Matter Emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and Health Risk of Arsenic and Heavy Metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Y.; Sun, M.; Wu, Z. Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai. Sustainability 2019, 11, 2319. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; de Fatima Andrade, M.; Pavlovic, R.; Garland, R.M.; Massagué, J.; Kong, S.; et al. A Global Observational Analysis to Understand Changes in Air Quality during Exceptionally Low Anthropogenic Emission Conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.J.; Martin, R.V.; Hammer, M.S.; Levelt, P.F.; Veefkind, P.; Lamsal, L.N.; Krotkov, N.A.; Brook, J.R.; McLinden, C.A. Global Fine-Scale Changes in Ambient NO2 during COVID-19 Lockdowns. Nature 2022, 601, 380–387. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Cai, W.; He, H.; Ni, A.; Peng, Z. Impact of the COVID-19 Lockdown on Roadside Traffic-Related Air Pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hua, C.; Kang, Z. Characteristics of Air Pollution and Its Resources During Winter and Summer Seasons of 2014 and 2015 in Shanghai. Meteorol. Mon. 2017, 43, 823–830. [Google Scholar] [CrossRef]
- Xu, J.; Chang, L.; Ma, J.; Mao, Z.; Chen, L.; Cao, Y. Objective Synoptic Weather Classification on PM2.5 Pollution during Autumn and Winter Seasons in Shanghai. Acta Sci. Circumst. 2016, 36, 4303–4314. [Google Scholar] [CrossRef]
- Chen, K.; Wang, M.; Huang, C.; Kinney, P.L.; Anastas, P.T. Air Pollution Reduction and Mortality Benefit during the COVID-19 Outbreak in China. Lancet Planet. Health 2020, 4, e210–e212. [Google Scholar] [CrossRef]
Modules | Technique | Manufacturer | Technical Specification | ||
---|---|---|---|---|---|
Response Time, T50 | Concentration Range Limitation | Linearity | |||
CO module | Dynamic baseline tracking electrochemical sensors | Model PDF-4, Sapiens, Hong Kong, China | T50(s) < 15 | 20 ppm | <±1.0% |
NO2 module | T50(s) < 10 | 5 ppm | <±0.5% | ||
Particulate matter module | Humidity-corrected laser-scattering particle sensors | Module PMSX-003, Plantower Co., Ltd., Beijing | ≤8 (s) | 0.3~10 μm | PM2.5: ±10%@100~1000 μg m−3 ±10 μg m−3@0~100 μg m−3 |
Digital humidity sensor SHT7x (RH/T) | A capacitive polymer sensor and a precision thermistor sensor | SHT-75, Sensirion, Staefa, Switzerland | 8 (s) | RH: 0–100% T: −40 to + 125 °C | Humidity accuracy%RH: ±1.8 Temperature °C: ±0.3 |
GPS module | GPS + GLONASS | - | - | - | - |
Data transmission module | GSM | - | - | - | - |
NMSE | R | |
---|---|---|
Equation | ||
CO | 0.016 | 0.996 |
NO2 | 0.007 | 0.953 |
PM2.5 | 0.021 | 0.948 |
Recommended criteria | <0.5 | >0.8 |
Best agreement | 0 | 1 |
Road Type | Average Monthly Coverage | Average Daily Count | Speed (km h−1) | Total Length (km) | Number of Segments |
---|---|---|---|---|---|
Trunk roads | 95.1% | 9.4 | 46.0 ± 16.0 | 788.8 | 6835 |
Motorways | 80.4% | 1.6 | 64.6 ± 20.2 | 1681.0 | 12,800 |
Primary roads | 87.9% | 8.7 | 39.8 ± 16.7 | 2399.1 | 15,975 |
Secondary roads | 78.4% | 9.6 | 33.9 ± 15.1 | 2563.0 | 15,508 |
Overall | 84.1% | 7.3 | 45.1 ± 20.9 | 7431.9 | 51,118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Brimblecombe, P.; Wei, P.; Duan, Y.; Pan, J.; Liu, Q.; Fu, Q.; Peng, Z.; Xu, S.; Wang, Y.; et al. High Resolution On-Road Air Pollution Using a Large Taxi-Based Mobile Sensor Network. Sensors 2022, 22, 6005. https://doi.org/10.3390/s22166005
Sun Y, Brimblecombe P, Wei P, Duan Y, Pan J, Liu Q, Fu Q, Peng Z, Xu S, Wang Y, et al. High Resolution On-Road Air Pollution Using a Large Taxi-Based Mobile Sensor Network. Sensors. 2022; 22(16):6005. https://doi.org/10.3390/s22166005
Chicago/Turabian StyleSun, Yuxi, Peter Brimblecombe, Peng Wei, Yusen Duan, Jun Pan, Qizhen Liu, Qingyan Fu, Zhiguang Peng, Shuhong Xu, Ying Wang, and et al. 2022. "High Resolution On-Road Air Pollution Using a Large Taxi-Based Mobile Sensor Network" Sensors 22, no. 16: 6005. https://doi.org/10.3390/s22166005
APA StyleSun, Y., Brimblecombe, P., Wei, P., Duan, Y., Pan, J., Liu, Q., Fu, Q., Peng, Z., Xu, S., Wang, Y., & Ning, Z. (2022). High Resolution On-Road Air Pollution Using a Large Taxi-Based Mobile Sensor Network. Sensors, 22(16), 6005. https://doi.org/10.3390/s22166005