In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles
<p>The properties of DLU2-NPs. A schematic diagram of DLU2-NPs (<b>a</b>) and DLU2 molecule (<b>b</b>). The particle diameter (<b>c</b>) and the zeta potential (<b>d</b>) of DLU2-NPs in PBS.</p> "> Figure 2
<p>ASCs labeling by DLU2-NPs. A schematic diagram of ASCs labeling by DLU2-NPs (<b>a</b>). The confocal microscope images of ASCs labeled with DLU2-NPs (<b>b</b>–<b>g</b>).</p> "> Figure 3
<p>Cytotoxicity of DLU2-NPs to ASCs and the proliferation rate of ASCs labeled with DLU2-NPs. The cytotoxicity of DLU2-NPs (640-, 320-, 160-, 80-, 40-fold-diluted solution of DLU2-NPs) to ASCs (<b>a</b>), and the proliferation rate of ASCs labeled with DLU2-NPs (640-, 320-fold dilute solution of DLU2-NPs) (<b>b</b>). * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>In vitro fluorescence and MR imaging of ASCs labeled with DLU2-NPs. In vitro fluorescence images of ASCs (3 × 10<sup>6</sup> cells) labeled with various concentrations of DLU2-NPs (640, 320, 160-dilute solution), excitation: 460–620 nm, emission: 520–710 nm (<b>a</b>–<b>d</b>). In vitro MR imaging of ASCs labeled with DLU2-NPs (<b>e</b>–<b>h</b>).</p> "> Figure 5
<p>In vivo fluorescence and MR imaging of ASCs labeled with DLU2-NPs. In vivo fluorescence images of ASCs (3 × 10<sup>6</sup> cells) labeled with DLU2-NPs (320-dilute solution) after subcutaneous transplantation onto the back of a mouse, excitation: 500–620 nm, emission: 520–710 nm (<b>a</b>–<b>d</b>). In vivo MR images of labeled ASCs, the transversal images of non-labeled ASCs (<b>e</b>,<b>f</b>), labeled ASCs (<b>g</b>,<b>h</b>), the sagittal images (<b>i</b>,<b>j</b>,<b>k,l</b>), T1-weighted image (<b>e</b>,<b>g</b>,<b>i,j</b>), T2-weighted images (<b>f</b>,<b>h</b>,<b>k,l</b>). (<b>j</b>,<b>l</b>) are enlarged images of (<b>i</b>,<b>k</b>). Yellow arrows and dotted circles indicate the locations where ASCs were transplanted.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Isolation and Culture of ASCs
2.4. Preparation of DLU2-NPs
2.5. Measurement of Particle Size and Zeta Potential of DLU2-NPs
2.6. Confocal Microscopy Observation of Labeled ASCs
2.7. Cytotoxicity of DLU2-NPs to ASCs
2.8. Proliferation test of ASCs Labeled with DLU2-NPs
2.9. In Vitro Fluorescence and MR Imaging of ASCs Labeled with DLU2-NPs
2.10. In Vivo Fluorescence and MR Imaging of ASCs Labeled with DLU2-NPs
2.11. Statistical Analyses
3. Results and Discussion
3.1. Properties of DLU2-NPs
3.2. ASCs labeling by DLU2-NPs
3.3. Cytotoxicity of DLU2-NPs to ASCs and the Proliferation Rate of ASCs Labeled with DLU2-NPs
3.4. In Vitro Fluorescence and MR Imaging of ASCs Labeled with DLU2-NPs
3.5. In Vivo Fluorescence and MR Imaging of Transplanted ASCs Labeled with DLU2-NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamm, C.; Westphal, B.; Kleine, H.-D.; Petzsch, M.; Kittner, C.; Klinge, H.; Schümichen, C.; Nienaber, C.A.; Freund, M.; Steinhoff, G.S. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003, 361, 45–46. [Google Scholar] [CrossRef]
- Theise, N.D.; Badve, S.; Saxena, R.; Henegariu, O.; Sell, S.; Crawford, J.M.; Krause, D.S. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 2000, 31, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Osaki, M.; Kato, T.; Okochi, H.; Ochiya, T. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J. Gastroenterol. Hepatol. 2009, 24, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Noguchi, H.; Oishi, K.; Takagi, S.; Hamaguchi, M.; Hamajima, N.; Hayashi, S. Cell transplantation of adipose tissue-derived stem cells in combination with heparin attenuated acute liver failure in mice. Cell Transplant. 2009, 18, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.B.; Fonsato, V.; Bruno, S.; Grange, C.; Gilbo, N.; Romagnoli, R.; Tetta, C.; Camussi, G. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 2013, 57, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-C.; Shi, X.-L.; Ren, H.-Z.; Yuan, X.-W.; Ding, Y.-T. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J. Gastroenterol. 2014, 20, 14884–14894. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Bi, C.-S.; Wu, R.-X.; Yin, Y.; Zhang, X.-Y.; Lan, P.-H.; Chen, F.-M. Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: In vitro and in vivo studies. Cell Tissue Res. 2016, 366, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Rustad, K.C.; Gurtner, G.C. Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle) 2012, 1, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giunti, D.; Parodi, B.; Usai, C.; Vergani, L.; Casazza, S.; Bruzzone, S.; Mancardi, G.; Uccelli, A. Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 2012, 30, 2044–2053. [Google Scholar] [CrossRef]
- Key, J.; Leary, J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. [Google Scholar]
- Hahn, M.A.; Singh, A.K.; Sharma, P.; Brown, S.C.; Moudgil, B.M. Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem. 2011, 399, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.; Lee, J.H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 2008, 41, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Seleverstov, O.; Zabirnyk, O.; Zscharnack, M.; Bulavina, L.; Nowicki, M.; Heinrich, J.-M.; Yezhelyev, M.; Emmrich, F.; O’Regan, R.; Bader, A. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett. 2006, 6, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Stilwell, J.L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P.A.; Gray, J.W.; Alivisatos, A.P.; Che, F.F. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 2006, 6, 800–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; He, J.; Wang, P.-N.; Chen, J.-Y.; Lu, Z.-J.; Lu, D.-R.; Guo, J.; Wang, C.-C.; Yang, W.-L. Time-dependent photoluminescence blue shift of the quantum dots in living cells: Effect of oxidation by singlet oxygen. J. Am. Chem. Soc. 2006, 128, 13396–13401. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-C.; Wang, F.F.; Lin, C.-F.; Chen, Y.-J.; Hung, S.-C.; Wang, Y.-J. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 2006, 27, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Commun. 2004, 314, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.S.; Han, H.-S.; Niemeyer, E.; Huang, Y.; Kamoun, W.S.; Martin, J.D.; Bhaumik, J.; Chen, Y.; Roberge, S.; Cui, C.; et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl. Acad. Sci. USA 2005, 112, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yukawa, H.; Kagami, Y.; Watanabe, M.; Oishi, K.; Miyamoto, Y.; Okamoto, Y.; Tokeshi, M.; Kaji, N.; Noguchi, H.; Ono, K.; et al. Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 2010, 31, 4094–4103. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Suzuki, K.; Kano, Y.; Yamada, T.; Kaji, N.; Ishikawa, T.; Baba, Y. Induced pluripotent stem cell labeling using quantum dots. Cell Med. 2013, 6, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Yukawa, H.; Baba, Y. In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal. Chem. 2017, 89, 2671–2681. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Mizufune, S.; Mamori, C.; Kagami, Y.; Oishi, K.; Kaji, N.; Okamoto, Y.; Takeshi, M.; Noguchi, H.; Baba, Y.; et al. Quantum dots for labeling adipose tissue-derived stem cells. Cell Transplant. 2009, 18, 591–599. [Google Scholar] [CrossRef]
- Trekker, J.; Leten, C.; Struys, T.; Lazenka, V.V.; Argibay, B.; Micholt, L.; Lambrichts, I.; Roy, W.V.; Lagae, L.; Himmelreich, U. Sensitive in vivo cell detection using size-optimized superparamagnetic nanoparticles. Biomaterials 2014, 35, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Kadayakkara, D.K.; Bar-Shir, A.; Gilad, A.A.; McMahon, M.T.; Bulte, J.W.M. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis. Models Mech. 2015, 8, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Berman, S.M.C.; Walczak, P.; Bulte, J.W.M. Tracking stem cells using magnetic nanoparticles. Nanomed. Nanobiotechnol. 2011, 3, 343–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulte, J.W.M. In vivo MRI cell tracking: Clinical studies. AJR Am. J. Roentgenol. 2009, 193, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.; Rummeny, E.J.; Daldrup, H.E.; Balzer, T.; Tombach, B.; Berns, T.; Peters, P.E. Clinical results with Resovist: A phase 2 clinical trial. Radiology 1995, 195, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.S.; Stark, D.D.; Hahn, P.F.; Bousquet, J.C.; Introcasso, J.; Wittenberg, J.; Brady, T.J.; Ferrucci, J.T., Jr. Ferrite particles: A superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. Radiology 1987, 162, 217–222. [Google Scholar] [CrossRef]
- Ferrucci, J.T.; Stark, D.D. Iron oxide-enhanced MR imaging of the liver and spleen: Review of the first 5 years. AJR Am. J. Roentgenol. 1990, 155, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auer, V.J.; Bucher, J.; Schremmer-Danninger, E.; Paulmurugan, R.; Maechler, P.; Reiser, M.F.; Stangl, M.J.; Berger, F. Non-invasive imaging of ferucarbotran labeled INS-1E cells and rodent islets in vitro and in transplanted diabetic rats. Curr. Pharm. Biotechnol. 2011, 12, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Koshidaka, Y.; Noguchi, H.; Oishi, K.; Saito, H.; Yukawa, H.; Kaji, N.; Ikeya, T.; Suzuki, S.; Iwata, H.; et al. Observation of positively charged magnetic nanoparticles inside HepG2 spheroids using electron microscopy. Cell Med. 2013, 5, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogihara, Y.; Yukawa, H.; Onoshima, D.; Baba, Y. Transduction function of a magnetic nanoparticle TMADM for stem-cell imaging with quantum dots. Anal. Sci. 2017, 33, 143–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonawane, N.D.; Szoka, F.C., Jr.; Verkman, A.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 2003, 278, 44826–44831. [Google Scholar] [CrossRef] [Green Version]
Dilution factor | Lipid (mg/mL) | QDs525 (nM) | QDs605 (nM) | QDs705 (nM) | ATDM (μg/mL) | |
---|---|---|---|---|---|---|
Stock Solution | 10 | 100 | 100 | 100 | 500 | |
1 | 640 | 0.016 | 0.16 | 0.16 | 0.16 | 0.78 |
2 | 320 | 0.031 | 0.31 | 0.31 | 0.31 | 1.6 |
3 | 160 | 0.063 | 0.63 | 0.63 | 0.63 | 3.1 |
4 | 80 | 0.13 | 1.3 | 1.3 | 1.3 | 6.3 |
5 | 40 | 0.25 | 2.5 | 2.5 | 2.5 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, S.; Yukawa, H.; Yamada, K.; Murata, Y.; Jo, J.-i.; Yamamoto, M.; Sugawara-Narutaki, A.; Tabata, Y.; Baba, Y. In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. Sensors 2022, 22, 5705. https://doi.org/10.3390/s22155705
Yamada S, Yukawa H, Yamada K, Murata Y, Jo J-i, Yamamoto M, Sugawara-Narutaki A, Tabata Y, Baba Y. In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. Sensors. 2022; 22(15):5705. https://doi.org/10.3390/s22155705
Chicago/Turabian StyleYamada, Shota, Hiroshi Yukawa, Kaori Yamada, Yuki Murata, Jun-ichiro Jo, Masaya Yamamoto, Ayae Sugawara-Narutaki, Yasuhiko Tabata, and Yoshinobu Baba. 2022. "In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles" Sensors 22, no. 15: 5705. https://doi.org/10.3390/s22155705
APA StyleYamada, S., Yukawa, H., Yamada, K., Murata, Y., Jo, J. -i., Yamamoto, M., Sugawara-Narutaki, A., Tabata, Y., & Baba, Y. (2022). In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. Sensors, 22(15), 5705. https://doi.org/10.3390/s22155705