Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review
<p>Increasing the sample temperature to enhance the LIBS signal. (<b>a</b>) Three characteristic lines of Cu element; (<b>b</b>) two characteristic lines of Cu element.</p> "> Figure 2
<p>Enhancement of LIBS signal by nanoparticles. The process of sample making and experimental equipment for nano-particle enhancement.</p> "> Figure 3
<p>The experimental device of enrichment technology.</p> "> Figure 4
<p>The double-pulse-enhanced LIBS signal device. (<b>a</b>) ODP-LIBS; (<b>b</b>) CDP-LIBS.</p> "> Figure 5
<p>A device for combining LIBS with laser-induced fluorescence.</p> "> Figure 6
<p>The spatial constraint-enhanced LIBS signal device. (<b>a</b>) V-shaped, (<b>b</b>) cylindrical shape, (<b>c</b>) hemispherical shape, (<b>d</b>) conical shape.</p> "> Figure 7
<p>The magnetic field constraint-enhanced LIBS signal device. (<b>a</b>) Detection of Pb element; (<b>b</b>) detection of Al element.</p> ">
Abstract
:1. Introduction
2. Instrument and Principle of LIBS
3. Sample Pretreatment Enhanced LIBS for Heavy Metal Detection
3.1. Physical Pretreatment of Samples
Enhanced Methods | Sample | Elements | Evaluation Indicators | LOD | Ref. |
---|---|---|---|---|---|
Drying, grinding, and tablet pressing of samples | Pork | Pb | Intensity (64–2038 a.u.); R2 (0.200–0.960). | 5.130 mg/kg | [47] |
Increasing the sample temperature | Cu target | Cu | Intensity (improved 4 times); electron temperature (9000–11,500 K); electron density (0.69–0.75 × 1017 cm−3). | Improved | [48] |
Soil | Pb | Improved intensity electron temperature electron density. | 3.800 mg/kg | [49] | |
Nanoparticle | Rice | Cd | Intensity (improved 20 times). | 0.170 mg/kg | [50] |
Fruits and vegetables | Cd | Intensity (improved 2 times). | 0.002 mg/kg | [51] | |
Water | Cu, Pb, Cr | Cu: Intensity (improved 9 times); Pb: Intensity (improved 23 times); Cr: Intensity (improved 26 times). | Cu: 0.005 mg/L, Pb: 0.002 mg/L, Cr: 0.009 mg/L | [52] | |
Enrichment technology | Water | Zn | R2 (0.999). | 4.108 mg/L | [53] |
Water | Cr | R2 (0.992). | 0.520 mg/L | [54] | |
Soil | Cr, Cr (Ⅳ) | Cr: R2 (0.991), RSD (7.69%); Cr (Ⅳ): R2 (0.993), RSD (12.98%). | Cr: 19.340 mg/kg, Cr (Ⅳ): 35.180 mg/kg | [55] | |
Water | Pb, Cd, Ni | Pb: RSD (5.98%); Cd: RSD (4.25%); Ni: RSD (5.27%). | Pb: 0.001 mg/L, Cd: 0.003 mg/L, Ni: 0.002 mg/L | [56] | |
Water | As, Na | As: Intensity (improved 7 times); Na: Intensity (improved 7 times). | As: 224 mg/L, Na: 18 mg/L | [57] | |
Repeating sample preparation | Water | Cu, Pb, Cd, Cr | Cu: Intensity (2000–4500 a.u.); Pb: Intensity (300–1400 a.u.); Cd: Intensity (500–1600 a.u.); Cr: Intensity (700–2900 a.u.). | Cu: 0.030 mg/L, Pb: 0.040 mg/L, Cd: 0.030 mg/L, Cr: 0.060 mg/L | [58] |
Ultrasonic-assisted extraction technology | Rice | Pb, Cd | Pb: R2 (0.995), RSD (4.24%); Cd: R2 (0.998), RSD (2.01%). | Pb: 0.003 mg/kg, Cd: 0.044 mg/kg | [59] |
Dry ashing | Leaves | Sr | R2 (0.990). | Improved | [60] |
3.2. Nanoparticle
3.3. Enrichment Technology
3.4. Other Sample Processing Methods
4. Adding Laser Pulses Enhanced LIBS for Heavy Metal Detection
4.1. DP-LIBS
Enhanced Methods | Sample | Elements | Evaluation Indicators | LOD | Ref. |
---|---|---|---|---|---|
Orthogonal DP-LIBS | Soil | Mn | Intensity (improved 2 times). | Improved | [71] |
Soil | Cr | Electron temperature (improved 730 K); electron density (improved 1.8 × 1016 cm−3). | 20 mg/kg | [72] | |
Fertilizers | Cr | Intensity (5000–11,000 a.u.); R (0.870–0.950). | 28 mg/kg | [70] | |
Coptis | Cu, Pb | Cu: Intensity (5779–12,749 a.u.), R2 (0.974–0.993); Pb: Intensity (4703–15,838 a.u.), R2 (0.929–0.993). | Cu:1.910 mg/kg, Pb: 3.030 mg/kg | [73] | |
Collinear DP-LIBS | Sewage | Cu | Intensity (2750–4450 a.u.); R2 (0.993–0.999). | 9.870 mg/L | [74] |
Soil | Trace elements | Intensity (improved 5 times). | Improved | [75] | |
Soil | Major elements | Intensity (improved); R2 (improved). | Improved | [4] | |
LIBS-LIF | Soil | Sb | R2 (0.991); RMSECV (3.592 mg/kg). | 0.221 mg/kg | [76] |
Rhododendron leaves | Pb | R2 (0.997). | 1.500 mg/kg | [77] | |
Discharge-assisted LIBS | Water | Cr, Cu, Pb | Cr: Intensity (improved); Cu: Intensity (improved); Pb: Intensity (improved). | Cr: 1.190 mg/L, Cu: 2.640 mg/L, Pb: 3.860 mg/L | [78] |
4.2. LIBS-LIF
4.3. Other Methods of Optimizing LIBS Systems
5. Adding Auxiliary Devices Enhanced LIBS for Heavy Metal Detection
5.1. Spatial Constraint
Enhanced Methods | Sample | Elements | Evaluation Indicators | LOD | Ref. |
---|---|---|---|---|---|
Cylinder spatial constraint | Soil | As | Intensity (improved 3–5 times). | Improved | [92] |
Soil | Pb | R2 (0.983); RSD (4.98%); RMSECV (0.45%). | 8.850 mg/kg | [93] | |
Hemispherical spatial constraint | Soil | Cd, Cu, Ni, Pb, Zn | Cd: Intensity (improved 2–3 times); Cu: Intensity (improved 2–3 times); Ni: R2 (0.992); Pb: R2 (0.996); Zn: Intensity (improved 2–3 times). | Cd: 4.580 mg/kg, Cu: 3.210 mg/kg, Ni: 6.240 mg/kg, Pb: 4.540 mg/kg, Zn: 2.600 mg/kg | [94] |
V-shaped spatial constraint | Soil | Cd | Intensity (206–510 a.u.); R2 (0.972). | 0.123 mg/kg | [95] |
Conical spatial constraint | Soil | Cr | Intensity (improved 0.07–0.15 times); RSD (<10%); R2 (0.991–0.998). | 18.850 mg/kg | [96] |
Magnetic field | Pb target | Pb | Intensity (improved ~2.8–~4.2 times). | Improved | [97] |
Soil | Cr | Intensity (improved 8 times). | 7.700 mg/kg | [98] | |
Soil | Cu, Pb | Cu: Intensity (improved ~7.7 times), electron temperature (improved), electron density (improved); Pb: Intensity (improved ~7.7 times), electron temperature (improved), electron density (improved). | Cu: 4.100 mg/kg, Pb: 1.400 mg/kg | [99] | |
MA-LIBS | Soil | Cd | Intensity (improved 9–27 times). | 2.160 mg/kg | [100] |
5.2. Magnetic Field Assist
5.3. Other Auxiliary Device
6. Conclusions and Future Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Jull, H.; Kunnemeyer, R.; Schaare, P. Nutrient quantification in fresh and dried mixtures of ryegrass and clover leaves using laser-induced breakdown spectroscopy. Precis. Agric. 2018, 19, 823–839. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Zhao, Y.-R.; Liu, F.; He, Y. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil. Sci. Rep. 2016, 6, 27574. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-Q.; Zhao, Y.-R.; Liu, F.; He, Y. Laser-Induced Breakdown Spectroscopy for Simultaneous Quantitative Analysis of Multi-Elements in Soil. Spectrosc. Spectr. Anal. 2017, 37, 2879–2884. [Google Scholar] [CrossRef]
- He, Y.; Liu, X.; Lv, Y.; Liu, F.; Peng, J.; Shen, T.; Zhao, Y.; Tang, Y.; Luo, S. Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors 2018, 18, 1526. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, K.M.; Yan, X.T. A first simulation of soil-laser interaction investigation for soil characteristic analysis. Geoderma 2019, 337, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Feng, X.; Liu, F.; Peng, J.; He, Y. Rapid Identification of Genetically Modified Maize Using Laser-Induced Breakdown Spectroscopy. Food Bioprocess Technol. 2019, 12, 347–357. [Google Scholar] [CrossRef]
- Sha, W.; Li, J.; Xiao, W.; Ling, P.; Lu, C. Quantitative Analysis of Elements in Fertilizer Using Laser-Induced Breakdown Spectroscopy Coupled with Support Vector Regression Model. Sensors 2019, 19, 3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehan, I.; Gondal, M.A.; Rehan, K. Determination of lead content in drilling fueled soil using laser induced spectral analysis and its cross validation using ICP/OES method. Talanta 2018, 182, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Chuprov, A.E. Application of Laser Emission Spectrometry (LIBS) for Identification of Materials within Spent Fuel Cooling Ponds Using LIBSProbe with a Submersible Remote Probe. Fotonika 2019, 13, 202–205. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, Y.; He, Y.; He, D. Response surface methodology for optimizing LIBS testing parameters: A case to conduct the elemental contents analysis in soil. Chemom. Intell. Lab. Syst. 2019, 195, 103891. [Google Scholar] [CrossRef]
- Ahmed, N.; Liaqat, U.; Rafique, M.; Baig, M.A.; Tawfik, W. Detection of toxicity in some oral antidiabetic drugs using LIBS and LA-TOF-MS. Microchem. J. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Zheng, P.; Zheng, S.; Mao, X.; Zhao, H.; Liu, R. Characterization of the Chinese Traditional Medicine Artemisia annua by Laser-Induced Breakdown Spectroscopy (LIBS) with 532 nm and 1064 nm Excitation. Anal. Lett. 2020, 53, 922–936. [Google Scholar] [CrossRef]
- Wang, Z.; Deguchi, Y.; Shiou, F.; Tanaka, S.; Cui, M.; Rong, K.; Yan, J. Feasibility Investigation for Online Elemental Monitoring of Iron and Steel Manufacturing Processes using Laser-Induced Breakdown Spectroscopy. Isij Int. 2020, 60, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.H.; Hao, Z.Q.; Huang, L.; Liu, M.H.; Chen, T.B.; Chen, J.Y.; Zhang, L.Y.; Zhou, H.M.; Yao, M.Y. Comparative identification of citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy. Appl. Phys. B-Lasers Opt. 2020, 126, 43. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, X.; Zhang, L.; Ren, L. Application of Scikit and Keras Libraries for the Classification of Iron Ore Data Acquired by Laser-Induced Breakdown Spectroscopy (LIBS). Sensors 2020, 20, 1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, R.; Liu, K.; Tang, Z.; Hao, Z.; Li, X.; Zeng, X. Determination of micronutrient elements in soil using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence. J. Anal. At. Spectrom. 2021, 36, 614–621. [Google Scholar] [CrossRef]
- Stefas, D.; Gyftokostas, N.; Kourelias, P.; Nanou, E.; Tananaki, C.; Kanelis, D.; Liolios, V.; Kokkinos, V.; Bouras, C.; Couris, S. Honey discrimination based on the bee feeding by Laser Induced Breakdown Spectroscopy. Food Control 2022, 134, 108770. [Google Scholar] [CrossRef]
- Li, A.; Wang, L.; Guo, S.; Liu, R. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy. Chin. Opt. 2017, 5, 619–640. [Google Scholar] [CrossRef]
- Xu, X.; Li, A.; Wang, X.; Ding, C.; Qiu, S.; He, Y.; Lu, T.; He, F.; Zou, B.; Liu, R. The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2020, 35, 984–992. [Google Scholar] [CrossRef]
- Cui, H.; Tang, Y.; Ma, S.; Ma, Y.; Zhang, D.; Hu, Z.; Wang, Z.; Guo, L. Influence of laser wavelength on self-absorption effect in laser-induced breakdown spectroscopy. Optik 2020, 204, 164144. [Google Scholar] [CrossRef]
- Wang, W.; Sun, L.; Zhang, P.; Zheng, L.; Qi, L. Reducing self-absorption effect by double-pulse combination in laser-induced breakdown spectroscopy. Microchem. J. 2022, 172, 106964. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, T.; Liu, F.; He, Y. Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics. Sensors 2018, 18, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Ling, P.; Sha, W.; Jiang, Y.; Cui, Z. Univariate and Multivariate Analysis of Phosphorus Element in Fertilizers Using Laser-Induced Breakdown Spectroscopy. Sensors 2019, 19, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erler, A.; Riebe, D.; Beitz, T.; Loehmannsroeben, H.-G.; Gebbers, R. Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR). Sensors 2020, 20, 418. [Google Scholar] [CrossRef] [Green Version]
- Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Nikitin, E.A.; Gudkov, S.V.; Pershin, S.M. Improving Calibration Strategy for LIBS Heavy Metals Analysis in Agriculture Applications. Photonics 2021, 8, 563. [Google Scholar] [CrossRef]
- Aras, N.; Yalcin, S. Investigating silicon wafer based substrates for dried-droplet analysis by Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B-At. Spectrosc. 2019, 152, 84–92. [Google Scholar] [CrossRef]
- Zhou, X.-Q.; Li, R.-H.; Dong, B.; He, X.-Y.; Chen, Y.-Q. Analysis of Aluminum Alloy by High Repetition Rate Laser Ablation Spark-Induced Breakdown Spectroscopy. Spectrosc. Spectr. Anal. 2018, 38, 1577–1581. [Google Scholar] [CrossRef]
- Meneses-Nava, M.A.; Pichardo, J.; Rodriguez, M.; Rosas-Roman, I.; Maldonado, J.L. Detection enhancement at parts per billion level of aluminum in water droplets by a combination of acoustic levitation and nanoparticle enhanced laser induced breakdown spectroscopy. Spectrochim. Acta Part B-At. Spectrosc. 2021, 184, 160280. [Google Scholar] [CrossRef]
- Ren, L.; Hao, X.-J.; Yang, Y.-W.; Sun, Y.-K. Time Evolution Characteristics of Laser-Induced Breakdown Spectroscopy under Combined Action of Cavity Confinement and Nanoparticles. Spectrosc. Spectr. Anal. 2020, 40, 1012–1017. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, Z.; Li, R.; Chen, Y. Improving the analytical sensitivity of orthogonal double-pulse laser-induced breakdown spectroscopy with target-enhancement. Spectrochim. Acta Part B-At. Spectrosc. 2021, 181, 106221. [Google Scholar] [CrossRef]
- Nakagawa, M.; Matsuura, Y. Analysis of Trace Metals in Human Hair by Laser-Induced Breakdown Spectroscopy with a Compact Microchip Laser. Sensors 2021, 21, 3752. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Bi, L. Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology. Optik 2021, 243, 167025. [Google Scholar] [CrossRef]
- Fu, X.L.; Zhao, C.J.; Ma, S.X.; Tian, H.W.; Dong, D.M.; Li, G.L. Determining available potassium in soil by laser-induced breakdown spectroscopy combined with cation exchange membrane adsorption. J. Anal. At. Spectrom. 2020, 35, 2697–2703. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Zhao, Y.-R.; He, Y. Application of Response Surface Methodology for Optimizing Test Parameters of Laser-Induced Plasma in Soil. Spectrosc. Spectr. Anal. 2019, 39, 577–583. [Google Scholar] [CrossRef]
- Baele, J.M.; Bouzahzah, H.; Papier, S.; Decree, S.; Verheyden, S.; Burlet, C.; Pirard, E.; Franceschi, G.; Dejonghe, L. Trace-element imaging at macroscopic scale in a Belgian sphalerite-galena ore using Laser-Induced Breakdown Spectroscopy (LIBS). Geol. Belg. 2021, 24, 125–136. [Google Scholar] [CrossRef]
- Guo, K.; Chen, A.; Xu, W.; Zhang, D.; Jin, M. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. Aip Adv. 2019, 9, 065214. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zhao, Y.; Yu, K. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops. Comput. Electron. Agric. 2022, 197, 106986. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Q.; Lin, Y.; Lu, Y.; Li, Y.; Lin, H. Quantitative determination of phosphorus in seafood using laser-induced breakdown spectroscopy combined with machine learning. Spectrochim. Acta Part B-At. Spectrosc. 2021, 175, 106027. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Pan, C.; Du, X. Identifying Ancient Ceramics Using Laser-Induced Breakdown Spectroscopy Combined with a Back Propagation Neural Network. Appl. Spectrosc. 2019, 73, 1201–1207. [Google Scholar] [CrossRef]
- Sun, D.; Yang, F.; Su, M.; Han, W.; Dong, C. Quantitative analysis of Cu in Traditional Chinese medicinal materials using laser-induced breakdown spectroscopy. Microw. Opt. Technol. Lett. 2022, 1–8. [Google Scholar] [CrossRef]
- Peng, J.; He, Y.; Jiang, J.; Zhao, Z.; Zhou, F.; Liu, F. High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laser-induced breakdown spectroscopy and chemometric methods. Food Chem. 2019, 295, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.F.; Guo, J.; Wang, Q.Y.; Chen, A.M.; Jin, M.X. Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy. Plasma Sci. Technol. 2020, 22, 8–14. [Google Scholar] [CrossRef]
- Tang, H.J.; Hao, X.J.; Hu, X.T. Research on spectral characteristics of laser-induced plasma by combining Au-nanoparticles and magnetic field confinement on Cu. Optik 2018, 171, 625–631. [Google Scholar] [CrossRef]
- Maji, S.; Kumar, S.; Sundararajan, K. Enhanced laser induced breakdown spectroscopy signal intensity in colloids: An application for estimation of Cu and Cr in aqueous solution. Spectrochim. Acta Part B-At. Spectrosc. 2021, 175, 106010. [Google Scholar] [CrossRef]
- Yao, H.B.; Asamoah, E.; Wei, P.Y.; Cong, J.W.; Zhang, L.; Quaisie, J.K.; Asamoah, A.; Ayepah, K.; Zhu, W.H. Investigation into the Effect of Increasing Target Temperature and the Size of Cavity Confinements on Laser-Induced Plasmas. Metals 2020, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, S.Y.; Jiang, Y.F.; Chen, A.M.; Jin, M.X. Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures. Acta Phys. Sin. 2019, 68, 065201. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.H.; Liu, M.H.; Chen, T.B.; Huang, L.; Yao, M.Y. Improvement of LIBS Accuracy in Detecting Pb in Pork by Physical Pretreatment of Samples. Spectrosc. Spectr. Anal. 2017, 37, 2580–2584. [Google Scholar] [CrossRef]
- Wang, Y.; Qiuyun, W.; Anmin, C.; Mingxing, J. Influence of sample temperature on nanosecond laser-induced Cu plasma spectra. Optik 2021, 230, 166338. [Google Scholar] [CrossRef]
- Umar, Z.A.; Liaqat, U.; Ahmed, R.; Baig, M.A. Detection of lead in soil implying sample heating and laser-induced breakdown spectroscopy. Appl. Opt. 2021, 60, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.M.; Lu, J.Q.; Xu, F. Determination of cadmium in rice using nanoparticle-enhanced laser-induced breakdown spectroscopy combined with film preparation. J. Anal. At. Spectrom. 2020, 35, 2990–2996. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhao, C.J.; Du, X.F.; Dong, D.M. Detecting and Mapping Harmful Chemicals in Fruit and Vegetables Using Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. Sci. Rep. 2019, 9, 906. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.Q.; He, F.; Lin, Q.Y.; Tian, Y.H.; Zhang, T.L.; Xu, B.P.; Qi, X.Y.; Duan, Y.X. Synchronous detection of heavy metal ions in aqueous solution by gold nanoparticle surface-enhanced laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2021, 36, 2639–2648. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, N.J.; Wang, C.L.; Lu, C.P.; Liu, L.T.; Chen, D.; Ma, M.J.; Zhang, Y.J.; Liu, J.G.; Liu, W.Q. Measurement of trace heavy metal zine in water by laser induced breakdown spectroscopy. Laser Optoelectron. Prog. 2012, 49, 141–145. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.J.; Ma, M.J.; Wang, C.L.; Yu, Y.; Meng, D.S.; Liu, J.; Liu, W. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy. Laser Technol. 2013, 37, 808–811. [Google Scholar] [CrossRef]
- Fu, X.L.; Ma, S.X.; Li, G.L.; Guo, L.B.; Dong, D.M. Rapid detection of chromium in different valence states in soil using resin selective enrichment coupled with laser-induced breakdown spectroscopy: From laboratory test to portable instruments. Spectrochim. Acta Part B-At. Spectrosc. 2020, 167, 105817. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Ma, M.; Fang, L.; Yu, Y.; Meng, D.; Gu, Y.; Jia, Y.; Liu, J.; Liu, W. Study on Detection Sensitivity of Heavy Metal in Water Based on LIBS Combined with Electrode Enrichment Method. Spectrosc. Spectr. Anal. 2017, 37, 884–888. [Google Scholar] [CrossRef]
- Wu, J.; Chang, L.; Liu, L.; Lin, Z. Laser-induced breakdown spectroscopy for determination of metals in solution with filter paper. Appl. Laser 2010, 30, 340–343. [Google Scholar] [CrossRef]
- Yang, X.Y.; Li, X.Y.; Cui, Z.F.; Yao, G.X.; Zhou, Z.X.; Li, K.G. Improving the Sensitivity of Surface-Enhanced Laser-Induced Breakdown Spectroscopy by Repeating Sample Preparation. Front. Phys. 2020, 8, 194. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, R.; Zhang, W.; Yi, R.; Tang, S.; Guo, L.; Hao, Z.; Li, X.; Lu, Y.; Zeng, X. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chem. 2019, 272, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, M.C.; de Morais, C.P.; Silva, T.V.; Senesi, G.S.; Santos, D.; Neto, J.A.G.; Ferreira, E.C. Dry Ashing for Signal Enhancement in Laser-Induced Breakdown Spectroscopy (LIBS). Anal. Lett. 2021, 54, 2009–2021. [Google Scholar] [CrossRef]
- Guo, J.; Wang, T.; Shao, J.; Chen, A.; Jin, M. Emission enhancement of laser-induced breakdown spectroscopy by increasing sample temperature combined with spatial confinement. J. Anal. At. Spectrom. 2018, 33, 2116–2123. [Google Scholar] [CrossRef]
- Ren, L.; Hao, X.J.; Tang, H.J.; Sun, Y.K. Spectral characteristics of laser-induced plasma under the combination of Au-nanoparticles and cavity confinement. Results Phys. 2019, 15, 102798. [Google Scholar] [CrossRef]
- Poggialini, F.; Campanella, B.; Legnaioli, S.; Pagnotta, S.; Palleschi, V. Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy. Spectrochim. Acta Part B-At. Spectrosc. 2020, 167, 105845. [Google Scholar] [CrossRef]
- Liu, J.C.; Hou, Z.Y.; Li, T.Q.; Fu, Y.T.; Wang, Z. A comparative study of nanoparticle-enhanced laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2020, 35, 2274–2281. [Google Scholar] [CrossRef]
- Zheng, P.C.; Zhao, H.D.; Wang, J.M.; Liu, R.N.; Ding, N.; Mao, X.F.; Lai, C.H. Detection and separation of Fe(ii) and Fe(iii) in aqueous solution by laser-induced breakdown spectroscopy coupled with chelating resin enrichment and pH value adjustment. J. Anal. At. Spectrom. 2020, 35, 3032–3038. [Google Scholar] [CrossRef]
- Tian, H.W.; Jiao, L.Z.; Dong, D.M. Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment. Sci. Rep. 2019, 9, 10443. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.C.; Deguchi, Y.; Wang, Z.Z.; Fujita, Y.; Liu, R.W.; Shiou, F.J.; Zhao, S.D. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B-At. Spectrosc. 2018, 142, 14–22. [Google Scholar] [CrossRef]
- Li, J.M.; Xu, M.L.; Ma, Q.X.; Zhao, N.; Li, X.Y.; Zhang, Q.M.; Guo, L.; Lu, Y.F. Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Talanta 2019, 194, 697–702. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, R.H.; Chen, Y.Q. Sensitive alloy elemental analysis under minimal sample ablation with target-enhanced orthogonal double-pulse laser-induced breakdown spectroscopy using a dielectric target. Spectrochim. Acta Part B-At. Spectrosc. 2021, 186, 106321. [Google Scholar] [CrossRef]
- Nicolodelli, G.; Senesi, G.S.; Ranulfi, A.C.; Marangoni, B.S.; Watanabe, A.; De Melo Benites, V.; De Oliveira, P.P.A.; Villas-Boas, P.; Milori, D.M.B.P. Double-pulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples. Microchem. J. 2017, 133, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Gao, X.; Shao, Y.; Song, X.W.; Zhao, Z.M.; Hao, Z.Q.; Lin, J.Q. Analyses of heavy metals by soil using dual-pulsed laser induced breakdown spectroscopy. Acta Phys. Sin. 2013, 62, 357–362. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, N.J.; Fang, L.; Meng, D.S.; Gu, Y.H.; Wang, Y.Y.; Jia, Y.; Ma, M.J.; Liu, J.G.; Liu, W.Q. Comparative Study on Laser Induced Breakdown Spectroscopy Based on Single Pulse and Re-Heating Orthogonal Dual Pulse. Spectrosc. Spectr. Anal. 2017, 37, 588–593. [Google Scholar] [CrossRef]
- Zheng, P.C.; Li, X.J.; Wang, J.M.; Zheng, S.; Zhao, H.D. Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy. Acta Phys. Sin. 2019, 68, 198–205. [Google Scholar] [CrossRef]
- Hu, Z.; Qiao, Z.; Lei, D.; Wang, Y.; Zheng, H.; Li, F. Analysis of Cu in liquid jet using double pulse laser induced breakdown spectroscopy. Chin. J. Quantum Electron. 2014, 31, 99–106. [Google Scholar]
- Nicolodelli, G.; Senesi, G.S.; Romano, R.A.; De Oliveira Perazzoli, I.L.; Milori, D.M.B.P. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils. Spectrochim. Acta Part B: At. Spectrosc. 2015, 111, 23–29. [Google Scholar] [CrossRef]
- Gao, P.Y.; Yang, P.; Zhou, R.; Ma, S.X.; Zhang, W.; Hao, Z.Q.; Tang, S.S.; Li, X.Y.; Zeng, X.Y. Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Appl. Opt. 2018, 57, 8942–8946. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.W.; Tang, Z.Y.; Li, Q.Z.; Zhou, R.; Lv, J.X.; Zhang, W.; Zhan, K.P.; Li, X.Y.; Zeng, X.Y. Lead of detection in rhododendron leaves using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence. Sci. Total Environ. 2020, 738, 139402. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Ge, T.; Liu, Y.T.; Jiang, L.Y.; Chen, A.M.; Han, J.H.; Jin, M.X. Highly sensitive analysis of trace elements in aqueous solutions using surface-enhanced and discharge-assisted laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2022, 37, 233–239. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, C.; Wang, H.; Xu, Z.; Yang, Y.; Wu, Y.; Wang, Q. Relationships of mineral elements in rice plant based on collinear double pulses laser-induced breakdown spectroscopy. Optik 2020, 218, 164979. [Google Scholar] [CrossRef]
- Li, J.M.; Liu, X.C.; Li, X.Y.; Ma, Q.X.; Zhao, N.; Zhang, Q.M.; Guo, L.; Lu, Y.F. Investigation of excitation interference in laser-induced breakdown spectroscopy assisted with laser-induced fluorescence for chromium determination in low-alloy steels. Opt. Lasers Eng. 2020, 124, 105834. [Google Scholar] [CrossRef]
- Li, J.M.; Chu, Y.B.; Zhao, N.; Zhou, R.; Yi, R.X.; Guo, L.B.; Li, J.Y.; Li, X.Y.; Zeng, X.Y.; Lu, Y.F. Detection of Trace Elements in Active Luminescent Glass Using Laser-induced Breakdown Spectroscopy Combined with Laser-induced Fluorescence. Chin. J. Anal. Chem. 2016, 44, 1042–1046. [Google Scholar] [CrossRef]
- Yi, R.X.; Li, J.M.; Yang, X.Y.; Zhou, R.; Yu, H.W.; Hao, Z.Q.; Guo, L.B.; Li, X.Y.; Zeng, X.Y.; Lu, Y.F. Spectral Interference Elimination in Soil Analysis Using Laser-Induced Breakdown Spectroscopy Assisted by Laser-Induced Fluorescence. Anal. Chem. 2017, 89, 2334–2337. [Google Scholar] [CrossRef]
- Wang, J.; Di, F.; Xiaolong, L.; Xinzhong, L.; Dongbin, Q. Effect of laser energy on laser-induced plasma confined by a hemispherical cavity. Spectrochim. Acta Part B: At. Spectrosc. 2021, 175, 106015. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Shao, J.F.; Wang, T.F.; Guo, J.; Zhang, D.; Chen, A.M.; Jin, M.X. Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement. Plasma Sci. Technol. 2018, 20, 085503. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Z.; Song, G.J.; Sun, J.; Li, X.; Wei, Y.H. Research on Radiation Intensity of Nanosecond Pulse Laser-Induced Soil Plasma. Spectrosc. Spectr. Anal. 2012, 32, 37–40. [Google Scholar] [CrossRef]
- Zhu, Z.F.; Li, B.; Gao, Q.; Li, Z.S. Multiple Discharges-Enhanced Laser-Induced Breakdown Spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 2633–2637. [Google Scholar] [CrossRef]
- Guo, L.B.; Li, C.M.; Hu, W.; Zhou, Y.S.; Zhang, B.Y.; Cai, Z.X.; Zeng, X.Y.; Lu, Y.F. Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl. Phys. Lett. 2011, 98, 131501. [Google Scholar] [CrossRef] [Green Version]
- Rehan, I.; Gondal, M.A.; Rehan, K.; Sultana, S.; Dastageer, M.A.; Al-Adel, F.F. LIBS for the detection of lead in ready to use henna paste and nutrients in fresh henna leaves and cultivated soils. Talanta 2019, 199, 203–211. [Google Scholar] [CrossRef]
- Dan, Y.; Sun, Y.; Feng, Z.; Dai, Y.; Chen, A.; Jin, M. Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy. Chin. Opt. 2021, 14, 336–343. [Google Scholar] [CrossRef]
- Qin, S.; Li, M.; Dai, Y.; Gao, X.; Song, C.; Lin, J. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine. Spectrosc. Spectr. Anal. 2022, 42, 582–586. [Google Scholar] [CrossRef]
- Shao, J.F.; Guo, J.; Wang, Q.Y.; Chen, A.M.; Jin, M.X. Spatial confinement effect on CN emission from nanosecond laser-induced PMMA plasma in air. Optik 2020, 207, 164448. [Google Scholar] [CrossRef]
- Popov, A.M. Enhancement of LIBS signal by spatially confining the laser-induced plasma. J. Anal. At. Spectrom. 2008, 24, 602–604. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, X.; Chen, A.; Lin, J. Effect of spatial confinement on Pb measurements in soil by femtosecond laser-induced breakdown spectroscopy. Appl. Phys. B 2020, 126, 7. [Google Scholar] [CrossRef]
- Meng, D.S.; Zhao, N.J.; Ma, M.J.; Wang, Y.; Hu, L.; Yu, Y.; Fang, L.; Liu, W.Q. Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement. Plasma Sci. Technol. 2015, 17, 632–637. [Google Scholar] [CrossRef]
- Fu, X.; Li, G.; Tian, H.; Dong, D. Detection of cadmium in soils using laser-induced breakdown spectroscopy combined with spatial confinement and resin enrichment. RSC Adv. 2018, 8, 39635–39640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Yao, M.; Chen, T.; Li, W.; Zheng, M.; Xu, X.; Tu, J.; Liu, M. Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma. Spectrosc. Spectr. Anal. 2013, 33, 3120–3123. [Google Scholar] [CrossRef]
- Akhtar, M.; Jabbar, A.; Ahmed, N.; Mehmood, S.; Umar, Z.A.; Ahmed, R.; Baig, M.A. Magnetic field-induced signal enhancement in laser-produced lead plasma. Laser Part. Beams 2019, 37, 67–78. [Google Scholar] [CrossRef]
- Akhtar, M.; Jabbar, A.; Mehmood, S.; Ahmed, N.; Ahmed, R.; Baig, M.A. Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 143–151. [Google Scholar] [CrossRef]
- Akhtar, M.; Jabbar, A.; Ahmed, N.; Mahmood, S.; Umar, Z.A.; Ahmed, R.; Baig, M.A. Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field. Appl. Phys. B 2019, 125, 110. [Google Scholar] [CrossRef]
- Hu, H.Q.; Xu, X.H.; Huang, L.; Yao, M.Y.; Chen, T.B.; Liu, M.H.; Wang, C.H. Study on the Enhancement Intensity of Cd in Rice with Microwave-Assisted Laser-Induced Breakdown Spectroscopy. Spectrosc. Spectr. Anal. 2016, 36, 1180–1185. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Li, Q.; Song, C.; Lin, J.Q. Spectral Enhancement of Laser-Induced Breakdown Spectroscopy in External Magnetic Field. Plasma Sci. Technol. 2015, 17, 919–922. [Google Scholar] [CrossRef] [Green Version]
- Atif, H.; Haroon, A.; Tehreem, I.; Mavra, I.; Muhammad, S.R.; Qandeel, R. Improving the spectral intensity of aluminum plasma by applied-magnetic field in laser-induced breakdown spectroscopy. Optik 2022, 251, 168220. [Google Scholar] [CrossRef]
- Akhtar, M.; Jabbar, A.; Mahmood, S.; Umar, Z.A.; Ahmed, R.; Baig, M.A. Analysis of Soil by Magnetic Field Assisted Calibration-Free Laser Induced Breakdown Spectroscopy (CF-LIBS) and Laser Ablation—Time-of-Flight Mass Spectrometry (LA-TOF-MS). Anal. Lett. 2019, 52, 2312–2328. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Ren, J.; Du, M.; Zhao, Y.; Yu, K. Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors 2022, 22, 5679. https://doi.org/10.3390/s22155679
Yang Z, Ren J, Du M, Zhao Y, Yu K. Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors. 2022; 22(15):5679. https://doi.org/10.3390/s22155679
Chicago/Turabian StyleYang, Zihan, Jie Ren, Mengyun Du, Yanru Zhao, and Keqiang Yu. 2022. "Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review" Sensors 22, no. 15: 5679. https://doi.org/10.3390/s22155679
APA StyleYang, Z., Ren, J., Du, M., Zhao, Y., & Yu, K. (2022). Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors, 22(15), 5679. https://doi.org/10.3390/s22155679