Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images
<p>Illustration of original slices. (<b>A</b>–<b>E</b>) represent slices with motion artifacts. (<b>F</b>–<b>J</b>) represent slices without motion artifacts.</p> "> Figure 2
<p>A schematic description of slice-level networks based on region and label consistency. Edges which are described by the straight lines are generated when the slices belonging to the same region label share the same quality label. Otherwise, the two slices are considered to be independent to each other.</p> "> Figure 3
<p>Pipeline of Motion Artifacts Detection Method based on topological properties.</p> "> Figure 4
<p>Corresponding graphs generated based on pixel-level graph construction. (<b>A</b>–<b>E</b>) represent head CT images with motion artifacts. (<b>F</b>–<b>J</b>) represent head CT images without artifacts.</p> "> Figure 5
<p>Different network topological properties from a part of data sets, (<b>A</b>) depicts the average clustering coefficient, (<b>B</b>) depicts average degree, respectively. It is worth noting that both the average clustering coefficient and the average degree of the CT images with artifacts are larger than those of the CT images without artifacts, respectively.</p> "> Figure 6
<p>The constructed graphs using slice-level graph construction method. (<b>A</b>) is the hybrid graph which consists of head CT slices with motion artifacts and head CT slices without artifacts, (<b>B</b>) contains head CT slices without artifacts alone, (<b>C</b>) contains head CT slices with artifacts alone.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Basic Assumptions
2.1.1. Dataset
2.1.2. Assumptions
2.2. Complex Network-Based Graph Construction
2.2.1. Pixel-Level Graph Construction Based on the Complex Network Theory
2.2.2. Slice-Level Graph Construction Based on the Complex Network Theory
2.3. Basic Network Topological Properties
2.4. Motion Artifacts Detection Method Based on Complex Networks (MADM-CN)
2.4.1. Feature Extraction and Selection Based on the Complex Networks
2.4.2. Classification
2.4.3. Motion Artifacts Detection and Evaluation
3. Results
3.1. Graph Construction
3.2. Performance Metrics
3.3. Experimental Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boas, F.E.; Fleischmann, D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012, 4, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 2007, 31, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spin-Neto, R.; Kruse, C.; Hermann, L.; Kirkevang, L.; Wenzel, A. Impact of motion artefacts and motion-artefact correction on diagnostic accuracy of apical periodontitis in CBCT images: Images: An ex vivo study in human cadavers. Int. Endod. J. 2020, 53, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Rosen, B.; Vallières, M.; Chotchutipan, T.; Naqa, I.E. Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys. Imaging Radiat. Oncol. 2019, 10, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, C. Secure XML publishing without information leakage in the presence of data inference. In Proceedings of the 30th VLDB Conference, Toronto, ON, Canada, 29 August–3 September 2004; pp. 96–107. [Google Scholar]
- Yang, X.; Wang, B.; Li, C. Cost-based variable-length-gram selection for string collections to support approximate queries efficiently. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 353–364. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, W.L. Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 2020, 14, 1–159. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Graham, M.S.; Drobnjak, I.; Zhang, H. A supervised learning approach for diffusion MRI quality control with minimal training data. Neuroimage 2018, 178, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, M.; MacLaren, J.; Herbst, M. Motion artifacts in MRI: A complex problem with many partial solutions. J. Magn. Reson. Imaging 2015, 42, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.; Sjogreen, C.; Gay, S.S.; Nguyen, C.; Cardenas, C.E. Development and dosimetric assessment of an automatic dental artifact classification tool to guide artifact management techniques in a fully automated treatment planning workflow. Comput. Med. Imaging Graph. 2021, 90, 101907. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, J.; Brown, C.J.; Miller, S.P.; Booth, B.G.; Chau, V.; Grunau, R.E.; Zwicker, J.G.; Hamarneh, G. Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage. 2017, 146, 1038–1049. [Google Scholar] [CrossRef]
- Welch, M.L.; McIntosh, C.; Traverso, A.; Wee, L.; Purdie, T.G.; Dekker, A.; Haibe-Kains, B.; Jaffray, D.A. External validation and transfer learning of convolutional neural networks for computed tomography dental artifact classification. Phys. Med. Biol. 2019, 65, 035017. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Costa, L.D.F.; Oliveira, O.N.; Travieso, G.; Rodrigues, F.A.; Villas Boas, P.R.; Antiqueira, L.; Viana, M.P.; Rocha, L. Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Adv. Phys. 2011, 60, 329–412. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Garlaschelli, D.; Battiston, S.; Castri, M.; Servedio, V.D.; Caldarelli, G. The scale-free topology of market investments. Phys. A Stat. Mech. Appl. 2005, 350, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, S. UNICELLSYS—Understanding the cell’s functional organization. J. Biotechnol. 2010, 150, 545. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network analysis in the social sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef] [Green Version]
- Min, S.; Chang, K.-H.; Kim, K.; Lee, Y.-S. Feature of topological properties in an earthquake network. Phys. A Stat. Mech. Appl. 2016, 442, 268–275. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Dynamical evolution of clustering in complex network of earthquakes. Eur. Phys. J. B 2007, 59, 93–97. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Wang, L.; Zhu, H.; Liu, Z. Statistical analysis of complex weighted network for seismicity. Phys. A Stat. Mech. Appl. 2020, 563, 125468. [Google Scholar] [CrossRef]
- He, X.; Shah, S.B.H.; Wei, B.; Liu, Z. Comparison and analysis of network construction methods for seismicity based on complex networks. Complexity 2021, 2021, 6691880. [Google Scholar] [CrossRef]
- Locatello, F.; Bauer, S.; Lucic, M.; Gelly, S.; Schlkopf, B.; Bachem, O. Challenging common assumptions in the unsupervised learning of disentangled representations. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Ger, R.B.; Craft, D.F.; Mackin, D.S.; Zhou, S.; Layman, R.R.; Jones, A.K.; Elhalawani, H.; Fuller, C.D.; Howell, R.M.; Li, H.; et al. Practical guidelines for handling head and neck computed tomography artifacts for quantitative image analysis. Comput. Med. Imaging Graph. 2018, 69, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Stoeve, M.; Aubreville, M.; Oetter, N.; Knipfer, C.; Neumann, H.; Stelzle, F.; Maier, A. Motion artifact detection in confocal laser endomicroscopy images. In Bildverarbeitung für Die Medizin 2018; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef] [Green Version]
- Wallner, J.; Mischak, I.; Egger, J. Computed tomography data collection of the complete human mandible and valid clinical ground truth models. Sci. Data 2019, 6, 190003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.F.; Keat, N. Artifacts in CT: Recognition and avoidance. RadioGraphics 2004, 24, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Scheinost, D.; Tokoglu, F.; Hampson, M.; Hoffman, R.; Constable, R.T. Data-driven analysis of functional connectivity reveals a potential auditory verbal hallucination network. Schizophr. Bull. 2019, 45, 415–424. [Google Scholar] [CrossRef] [Green Version]
- De Crop, A.; Casselman, J.; Van Hoof, T.; Dierens, M.; Vereecke, E.; Bossu, N.; Pamplona, J.; D’Herde, K.; Thierens, H.; Bacher, K. Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: Does it make a difference? Neuroradiology 2015, 57, 841–849. [Google Scholar] [CrossRef] [PubMed]
Slice ID | Region Label | Quality Label |
---|---|---|
a | 1 | 0 |
b | 2 | 1 |
c | 1 | 0 |
d | 3 | 1 |
e | 2 | 1 |
f | 1 | 0 |
Notation | Implication |
---|---|
V | The set of vertices |
E | The set of edges |
Average Degree | The sum from the graph’s number of edges divided by its number of vertices. |
Average Clustering Coefficient | The degree of clustering of constructed network |
Dataset | N | Average Clustering Coefficient | Average Path Length | Average Degree | |E| |
---|---|---|---|---|---|
Hybrid CT images | 600 | 0.994 | 1.127 | 12.039 | 2082 |
CT images without artifacts alone | 300 | 0.988 | 1.357 | 8.817 | 821 |
CT images with artifacts alone | 300 | 0.998 | 1.006 | 14.186 | 1981 |
Predicted | |||
---|---|---|---|
1 | 0 | ||
True | 1 | True Positive (TP) | False Negative (FN) |
False | 0 | False Positive (FP) | True Negative (TN) |
Classification | Features | Level | Sensitivity | Accuracy | Specificity | AUC |
---|---|---|---|---|---|---|
MADM-CN + SVM | Physical + Topological | hybrid | 97% | 98% | 96% | 0.9668 |
MADM-CN + RF | Physical + Topological | hybrid | 95% | 97% | 98% | 0.9591 |
CNN | Physical | Pixel | 86.67% | 76.67% | 66.67% | 0.722 |
RF | Physical | Pixel | 85% | 88% | 89% | 0.9366 |
SVM | Physical | Pixel | 80% | 88% | 93% | 0.8819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wen, T.; Sun, W.; Liu, Z.; Song, X.; He, X.; Zhang, S.; Wu, Z. Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images. Sensors 2022, 22, 5666. https://doi.org/10.3390/s22155666
Liu Y, Wen T, Sun W, Liu Z, Song X, He X, Zhang S, Wu Z. Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images. Sensors. 2022; 22(15):5666. https://doi.org/10.3390/s22155666
Chicago/Turabian StyleLiu, Yiwen, Tao Wen, Wei Sun, Zhenyu Liu, Xiaoying Song, Xuan He, Shuo Zhang, and Zhenning Wu. 2022. "Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images" Sensors 22, no. 15: 5666. https://doi.org/10.3390/s22155666
APA StyleLiu, Y., Wen, T., Sun, W., Liu, Z., Song, X., He, X., Zhang, S., & Wu, Z. (2022). Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images. Sensors, 22(15), 5666. https://doi.org/10.3390/s22155666