Modulation Awareness Method for Dual-Hop Cooperative Transmissions over Frequency-Selective Channels
<p>The three-terminal cooperative system under consideration.</p> "> Figure 2
<p><math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <msub> <mi>F</mi> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfenced> </mfenced> </semantics></math> for BPSK and QPSK modulations.</p> "> Figure 3
<p><math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <msub> <mi>F</mi> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfenced> </mfenced> </semantics></math> for 16 − QAM and 16 − PSK modulations.</p> "> Figure 4
<p><math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <msub> <mi>F</mi> <mn>3</mn> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfenced> </mfenced> </semantics></math> for 8 − PSK and 16 − PSK modulations.</p> "> Figure 5
<p><math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <msub> <mi>F</mi> <mn>4</mn> </msub> <mfenced separators="" open="(" close=")"> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfenced> </mfenced> </semantics></math> for QPSK and 64 − QAM modulations.</p> "> Figure 6
<p>The architecture of a cross-correlation function when there are spikes.</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>c</mi> <mi>c</mi> <mfenced separators="" open="(" close=")"> <mi>α</mi> <mo>|</mo> <mi>α</mi> </mfenced> </mrow> </semantics></math> for the modulation group of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 8
<p><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>c</mi> <mi>c</mi> <mfenced separators="" open="(" close=")"> <mi>α</mi> <mo>|</mo> <mi>α</mi> </mfenced> </mrow> </semantics></math> for the modulation group of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 9
<p><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>c</mi> <mi>c</mi> <mfenced separators="" open="(" close=")"> <mi>α</mi> <mo>|</mo> <mi>α</mi> </mfenced> </mrow> </semantics></math> for the modulation group of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>3</mn> </msub> </semantics></math>.</p> "> Figure 10
<p><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>c</mi> <mi>c</mi> <mfenced separators="" open="(" close=")"> <mi>α</mi> <mo>|</mo> <mi>α</mi> </mfenced> </mrow> </semantics></math> for the modulation group of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>4</mn> </msub> </semantics></math>.</p> "> Figure 11
<p><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>c</mi> <mi>c</mi> <mfenced separators="" open="(" close=")"> <mi>α</mi> <mo>=</mo> <mi>BPSK</mi> <mo>|</mo> <mi>α</mi> <mo>=</mo> <mi>BPSK</mi> </mfenced> </mrow> </semantics></math> for the modulation group of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 12
<p><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>c</mi> <mi>c</mi> <mfenced separators="" open="(" close=")"> <mi>α</mi> <mo>=</mo> <mi>QPSK</mi> <mo>|</mo> <mi>α</mi> <mo>=</mo> <mi>QPSK</mi> </mfenced> </mrow> </semantics></math> for the modulation group of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 13
<p>PDF of the Rayleigh RV, <span class="html-italic">e</span>.</p> "> Figure 14
<p>Awareness performance comparison with the modulation set <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>4</mn> </msub> </semantics></math>. Dashed lines represent the proposed method, sold lines are used for the method of [<a href="#B10-sensors-22-05441" class="html-bibr">10</a>], and dot-dashed are used for the method of [<a href="#B25-sensors-22-05441" class="html-bibr">25</a>]. Star, square, hexagram, and circle markers refer to 8-PSK, BPSK, 64 − QAM, and QPSK modulations, respectively.</p> ">
Abstract
:1. Introduction
- We develop a new AMA method for amplify-and-forward (AF) dual-hop cooperative systems over frequency-selective fading channels. Although adaptive modulation has been widely investigated in the literature (e.g., [26,27,28,29]), no work has been dedicated to performing modulation awareness for these systems over wireless selective channels. This confirms the novelty of this work. It is important to highlight the fact that AF cooperative systems are superior to DF cooperative systems in terms of capacity and processing.
- This study makes use of the temporal redundancy present in the structure of received signals to create correlation functions that include spikes for one set of modulations but not for others.
- With the assistance of this attribute, a multiple-layer AMA technique is constructed on the notion of false-alarms.
- The suggested method does not require any information about the channel coefficients or the strength of the noise.
- The suggested method runs over any kind of wireless channels including frequency-flat and frequency-selective channels.
- The suggested method provides a simplified processing requirement.
- The suggested method does not required any pilot symbols to start the awareness process. This makes it appropriate for use in both military and civilian contexts.
2. System Model
3. Cross-Correlation Functions for Different Modulation Schemes
- We employ the widely held premise in the literature that data symbols are unrelated to each other [30,31]. We write
- The information symbols have no relationship with the noise values:
- The noise values are unrelated to one another:
- The parameters of the channel are initialized at random, and they remain constant throughout the frame.
4. Proposed Method
- In reality, the observation duration is constrained, which prompts the question of how to calculate the cross-correction functions.
- Given the preceding fact, an estimating error of , , outcomes a non-zero level when should remain zero. This has a negative impact on the conclusion of whether or not statistical peaks of exist. Due to this, judgment criteria have to be established in situations where a non-ideal predictor is present, even if previous information of the estimate error statistics is not available.
- It is also assumed that channel information and noise power are unknown. This assumption constitutes an extra obstacle in the way of successfully completing the spike detection task.
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huynh-The, T.; Nguyen, T.V.; Pham, Q.V.; da Costa, D.B.; Kim, D.S. MIMO-OFDM Modulation Classification Using Three-Dimensional Convolutional Network. IEEE Trans. Veh. Technol. 2022, 71, 6738–6743. [Google Scholar] [CrossRef]
- Perenda, E.; Rajendran, S.; Bovet, G.; Pollin, S.; Zheleva, M. Evolutionary Optimization of Residual Neural Network Architectures for Modulation Classification. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 542–556. [Google Scholar] [CrossRef]
- Kim, S.H.; Moon, C.B.; Kim, J.W.; Kim, D.S. A Hybrid Deep Learning Model for Automatic Modulation Classification. IEEE Wirel. Commun. Lett. 2022, 11, 313–317. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, J.; Zhao, W. An Adaptive Demodulation Band Segmentation Method to Optimize Spectral Boundary and Its Application for Wheelset-Bearing Fault Detection. IEEE Trans. Instrum. Meas. 2022, 71, 3514510. [Google Scholar] [CrossRef]
- Sharma, V.; Arya, R.K.; Kumar, S. Efficient Channel Prediction Technique Using AMC and Deep Learning Algorithm for 5G (NR) mMTC Devices. IEEE Access 2022, 10, 45053–45060. [Google Scholar] [CrossRef]
- Bobrov, E.; Kropotov, D.; Lu, H.; Zaev, D. Massive MIMO Adaptive Modulation and Coding Using Online Deep Learning Algorithm. IEEE Commun. Lett. 2022, 26, 818–822. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H. Turbo Modulation Identification Algorithm for OFDM Software-Defined Radios. IEEE Commun. Lett. 2021, 25, 1707–1711. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H. Code-Aided Modulation Classification Algorithm for Multiuser Uplink SC-FDMA Systems. IEEE Wirel. Commun. Lett. 2021, 10, 1023–1027. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H. Soft-Information Assisted Modulation Recognition for Reconfigurable Radios. IEEE Wirel. Commun. Lett. 2021, 10, 745–749. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H.; Alshebeili, S.A.; Dobre, O.A. Blind Modulation Identification Algorithm For Two-Path Successive Relaying Systems. IEEE Wirel. Commun. Lett. 2021, 10, 2369–2373. [Google Scholar] [CrossRef]
- Xing, Z.; Gao, Y. A Modulation Classification Algorithm for Multipath Signals Based on Cepstrum. IEEE Trans. Instrum. Meas. 2020, 69, 4742–4752. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, S.; Majhi, S. Blind Modulation Classification for Asynchronous OFDM Systems Over Unknown Signal Parameters and Channel Statistics. IEEE Trans. Veh. Technol. 2020, 69, 5281–5292. [Google Scholar] [CrossRef]
- Serbes, A.; Cukur, H.; Qaraqe, K. Probabilities of False Alarm and Detection for the First-Order Cyclostationarity Test: Application to Modulation Classification. IEEE Commun. Lett. 2020, 24, 57–61. [Google Scholar] [CrossRef]
- Câmara, T.V.R.O.; Lima, A.D.L.; Lima, B.M.M.; Fontes, A.I.R.; Martins, A.D.M.; Silveira, L.F.Q. Automatic Modulation Classification Architectures Based on Cyclostationary Features in Impulsive Environments. IEEE Access 2019, 7, 138512–138527. [Google Scholar] [CrossRef]
- Hu, C.; Li, Q.; Zhang, Q.; Qin, J. Security Optimization for an AF MIMO Two-Way Relay-Assisted Cognitive Radio Nonorthogonal Multiple Access Networks with SWIPT. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1481–1496. [Google Scholar] [CrossRef]
- Wang, X.; Shu, F.; Shi, W.; Liang, X.; Dong, R.; Li, J.; Wang, J. Beamforming Design for IRS-Aided Decode-and-Forward Relay Wireless Network. IEEE Trans. Green Commun. Netw. 2022, 6, 198–207. [Google Scholar] [CrossRef]
- Ma, J.; Huang, C.; Li, Q. Energy Efficiency of Full- and Half-Duplex Decode-and-Forward Relay Channels. IEEE Internet Things J. 2022, 9, 9730–9748. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022; early access. [Google Scholar] [CrossRef]
- Wicaksana, H.; Ting, S.; Ho, C.; Chin, W.; Guan, Y. AF Two-Path Half Duplex Relaying with Inter-Relay Self Interference Cancellation: Diversity Analysis and its Improvement. IEEE Trans. Wirel. Commun. 2009, 8, 4720–4729. [Google Scholar] [CrossRef]
- Luo, C.; Gong, Y.; Zheng, F. Full Interference Cancellation for Two-Path Relay Cooperative Networks. IEEE Trans. Veh. Technol. 2011, 60, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Marey, M.; Mostafa, H. Iterative Channel Estimation Algorithm For Downlink MC-CDMA Systems With Two-Path Successive Relaying Transmission. IEEE Commun. Lett. 2019, 23, 668–671. [Google Scholar] [CrossRef]
- Mostafa, H.; Marey, M.; Ahmed, M.; Dobre, O.A. Simplified Maximum-likelihood Detectors for Full-rate Alternate-relaying Cooperative Systems. IET Commun. 2013, 7, 1899–1906. [Google Scholar] [CrossRef]
- Mostafa, H.; Marey, M.; Ahmed, M.H.; Dobre, O.A. Decoding Techniques for Alternate-Relaying Cooperative Systems. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 236. [Google Scholar] [CrossRef] [Green Version]
- Marey, M.; Mostafa, H.; Dobre, O.A.; Ahmed, M. Data Detection Algorithms for BICM Alternate-Relaying Cooperative Systems with Multiple-Antenna Destination. IEEE Trans. Veh. Technol. 2016, 65, 3802–3807. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H.; Alshebeili, S.A.; Dobre, O.A. Iterative Modulation Classification Algorithm for Two-Path Successive Relaying Systems. IEEE Wirel. Commun. Lett. 2021, 10, 2017–2021. [Google Scholar] [CrossRef]
- Zheng, Z.; Sangaiah, A.K.; Wang, T. Adaptive Communication Protocols in Flying Ad Hoc Network. IEEE Commun. Mag. 2018, 56, 136–142. [Google Scholar] [CrossRef]
- Li, J.; Peng, Z.; Xiao, B. Smartphone-assisted Smooth Live Video Broadcast on Wearable Cameras. In Proceedings of the 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, China, 20–21 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.N.; Gu, T.; Zhang, H.; Yuan, H.; Kwong, S.; Zhang, J. A Distributed Swarm Optimizer With Adaptive Communication for Large-Scale Optimization. IEEE Trans. Cybern. 2020, 50, 3393–3408. [Google Scholar] [CrossRef]
- Gao, S.; Peng, Z.; Xiao, B.; Xiao, Q.; Song, Y. SCoP: Smartphone Energy Saving by Merging Push Services in Fog Computing. In Proceedings of the 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), Vilanova i la Geltru, Spain, 14–16 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Marey, M.; Steendam, H. The Effect of Narrowband Interference on Frequency Ambiguity Resolution for OFDM. In Proceedings of the IEEE Vehicular Technology Conference, Melbourne, Australia, 7–10 May 2006; pp. 1–5. [Google Scholar] [CrossRef]
- Marey, M.; Dobre, O.A.; Inkol, R. Cyclostationarity-Based Blind Classification of STBCs for Cognitive Radio Systems. In Proceedings of the IEEE International Conference on Communications, Ottawa, ON, Canada, 10–15 June 2012; pp. 1–6. [Google Scholar]
- Marey, M.; Mostafa, H. STBC Identification for Multi-User Uplink SC-FDMA Asynchronous Transmissions Exploiting Iterative Soft Information Feedback of Error Correcting Codes. IEEE Access 2022, 10, 21336–21346. [Google Scholar] [CrossRef]
- Marey, M.; Mostafa, H. Power of Error Correcting Codes for SFBC-OFDM Classification Over Unknown Channels. IEEE Access 2022, 10, 35643–35652. [Google Scholar] [CrossRef]
- Bedeer, E.; Marey, M.; Dobre, O.; Baddour, K. Adaptive Bit Allocation for OFDM Cognitive Radio Systems with Imperfect Channel Estimation. In Proceedings of the 2012 IEEE Radio and Wireless Symposium, San Francisco, CA, USA, 25–28 June 2012; pp. 359–362. [Google Scholar] [CrossRef] [Green Version]
BPSK | QPSK | 8-PSK | 16-PSK | 16-QAM | 64 − QAM | |
---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 | −0.68 | −0.619 | |
1 | 1 | 1 | 0 | 2.2 | 1.91 | |
1 | 1 | 0 | 0 | 0 | 0 |
K = 2000 | K = 6000 | ||||||||
BPSK | QPSK | 8-PSK | 64 − QAM | BPSK | QPSK | 8-PSK | 64 − QAM | ||
BPSK | 0.652 | 0.213 | 0.056 | 0.079 | BPSK | 0.852 | 0.113 | 0.026 | 0.079 |
QPSK | 0.21 | 0.585 | 0.156 | 0.049 | QPSK | 0.184 | 0.721 | 0.056 | 0.039 |
8-PSK | 0.058 | 0.28 | 0.551 | 0.111 | 8-PSK | 0.038 | 0.225 | 0.721 | 0.016 |
64 − QAM | 0.017 | 0.013 | 0.04 | 0.93 | 64 − QAM | 0.01 | 0.01 | 0.02 | 0.96 |
K = 10,000 | K = 12,000 | ||||||||
BPSK | QPSK | 8-PSK | 64 − QAM | BPSK | QPSK | 8-PSK | 64 − QAM | ||
BPSK | 0.99 | 0.007 | 0.002 | 0.001 | BPSK | 1 | 0 | 0 | 0 |
QPSK | 0.009 | 0.980 | 0.003 | 0.008 | QPSK | 0.001 | 0.999 | 0 | 0 |
8-PSK | 0.007 | 0.002 | 0.983 | 0.008 | 8-PSK | 0 | 0.002 | 0.996 | 0.002 |
64 − QAM | 0.009 | 0.002 | 0.002 | 0.987 | 64 − QAM | 0.002 | 0.003 | 0.004 | 0.991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marey, M.; Mostafa, H. Modulation Awareness Method for Dual-Hop Cooperative Transmissions over Frequency-Selective Channels. Sensors 2022, 22, 5441. https://doi.org/10.3390/s22145441
Marey M, Mostafa H. Modulation Awareness Method for Dual-Hop Cooperative Transmissions over Frequency-Selective Channels. Sensors. 2022; 22(14):5441. https://doi.org/10.3390/s22145441
Chicago/Turabian StyleMarey, Mohamed, and Hala Mostafa. 2022. "Modulation Awareness Method for Dual-Hop Cooperative Transmissions over Frequency-Selective Channels" Sensors 22, no. 14: 5441. https://doi.org/10.3390/s22145441
APA StyleMarey, M., & Mostafa, H. (2022). Modulation Awareness Method for Dual-Hop Cooperative Transmissions over Frequency-Selective Channels. Sensors, 22(14), 5441. https://doi.org/10.3390/s22145441