Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets
<p>The framework of the noise-adaption EKF.</p> "> Figure 2
<p>The basic framework of DDPG.</p> "> Figure 3
<p>The implementation framework of the process noise adaption based on DDPG.</p> "> Figure 4
<p>The structure of actor network.</p> "> Figure 5
<p>Estimated trajectories.</p> "> Figure 6
<p>Position estimations errors. (<b>a</b>) Estimation errors of the range; (<b>b</b>) Estimation errors of the azimuth angle; (<b>c</b>) Estimation errors of THE elevation angle.</p> "> Figure 7
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of position estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of the range; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of the azimuth angle; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of the elevation angle.</p> "> Figure 8
<p>Velocity estimation errors. (<b>a</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of velocity estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Acceleration estimation errors. (<b>a</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of acceleration estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math> -Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p>Position estimations errors. (<b>a</b>) Estimation errors of the range; (<b>b</b>) Estimation errors of the azimuth angle; (<b>c</b>) Estimation errors of the elevation angle.</p> "> Figure 13
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of position estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of the range; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of the azimuth angle; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of the elevation angle.</p> "> Figure 14
<p>Velocity estimation errors. (<b>a</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 15
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of velocity estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 16
<p>Acceleration estimation errors. (<b>a</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 17
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of acceleration estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 18
<p>Estimated trajectories.</p> "> Figure 19
<p>Position estimation errors. (<b>a</b>) Estimation errors of the range; (<b>b</b>) Estimation errors of the azimuth angle; (<b>c</b>) Estimation errors of the elevation angle.</p> "> Figure 20
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of position estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of the range; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of the azimuth angle; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of the elevation angle.</p> "> Figure 21
<p>Velocity estimation errors. (<b>a</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 22
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of velocity estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 23
<p>Acceleration estimation errors. (<b>a</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) Estimation errors of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 24
<p><math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of acceleration estimation errors. (<b>a</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-Boundary of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Maneuver Detection and the Framework
3.1. Maneuver Detection Based on D-S Evidence Theory
3.2. The Framework of the Noise-Adaption EKF
4. Noise-Adaption EKF for Maneuvering Targets
4.1. Process Noise Adaption Based on DDPG
Algorithm 1 The process noise adaption based on DDPG |
1 Initialize the parameters of the actor network and critic network |
2 Initialize target networks by copying the actor and critic network |
3 Initialize the replay memory buffer |
For each episode, perform the following steps |
4 Initialize the estimation state and its covariance matrix |
For each timestep, perform the following steps |
5 Generate an action based on the actor network and the current state , where the random noise is generated by Ornstein-Uhlenbeck process |
6 Execute the action, i.e., the compensation factor in the filter to obtain a new state and a new reward |
7 Store the sample in the buffer |
8 Randomly select samples from the buffer |
9 Calculate the temporal difference error of each sample |
10 Calculate the policy gradient |
11 Update the actor network by Adam optimizer: |
12 Update the critic network |
13 Update the two target networks by soft update |
End timestep |
End episode |
4.2. Recursive Measurement Noise Estimation
4.3. Fusion Algorithm
5. Simulation
5.1. Target Model
5.2. Construction of Neural Networks
5.3. Simulation Results
5.3.1. Continuous Time Varying Maneuver
5.3.2. Abrupt Maneuver
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, J.; Yang, Z.; Luo, Y. Adaptive tracking method for non-cooperative continuously thrusting spacecraft. Aerospace 2021, 8, 244. [Google Scholar] [CrossRef]
- Wang, S.; Bi, D.; Ruan, H.; Du, M. Radar maneuvering target tracking algorithm based on human cognition mechanism. Chin. J. Aeronaut. 2019, 32, 1695–1704. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.; Park, H. Minimax particle filtering for tracking a highly maneuvering target. Int. J. Robust Nonlinear Control 2020, 30, 636–651. [Google Scholar] [CrossRef]
- Cheng, Y.; Yan, X.; Tang, S.; Wu, M.; Li, C. An adaptive non-zero mean damping model for trajectory tracking of hypersonic glide vehicles. Aerosp. Sci. Technol. 2021, 111, 106529. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Xu, M. DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network. Inf. Fusion 2020, 53, 289–304. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, Z.; Li, B.; Wu, Z. Research on the observability of bearings-only target tracking based on multiple sonar sensors. In Proceedings of the 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 8–10 December 2012. [Google Scholar]
- Jia, S.; Zhang, Y.; Wang, G. Highly maneuvering target tracking using multi-parameter fusion Singer model. J. Syst. Eng. Electron. 2017, 28, 841–850. [Google Scholar] [CrossRef]
- Jiang, B.; Sheng, W.; Zhang, R.; Han, Y.; Ma, X. Range tracking method based on adaptive “current” statistical model with velocity prediction. Signal Process. 2017, 131, 261–270. [Google Scholar] [CrossRef]
- Blom, H.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control 1988, 33, 780–783. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.; Park, H. Interactive-multiple-model algorithm based on minimax particle filtering. IEEE Signal Process. Lett. 2020, 27, 36–40. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Y. Multi-platform maneuvering target tracking based on BLUE-AIMM-CI algorithm. In Proceedings of the 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015. [Google Scholar]
- Ding, Z.; Liu, Y.; Liu, J.; Yu, K.; You, Y.; Jing, P.; He, Y. Adaptive interacting multiple model algorithm based on information-weighted consensus for maneuvering target tracking. Sensors 2018, 18, 2012. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Chen, W.; Chambers, J. State dependent multiple model-based particle filtering for ballistic missile tracking in a low-observable environment. Aerosp. Sci. Technol. 2017, 67, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jilkov, V.; Ru, J. Multiple-model estimation with variable structure part VI: Expected-mode augmentation. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 853–867. [Google Scholar]
- Wang, J.; Dong, P.; Jing, Z.; Cheng, J. Consensus variable structure multiple model filtering for distributed maneuvering tracking. Signal Process. 2019, 162, 234–241. [Google Scholar] [CrossRef]
- Yu, M.; Oh, H.; Chen, W. An improved multiple model particle filtering approach for maneuvering target tracking using airborne GMTI with geographic information. Aerosp. Sci. Technol. 2016, 52, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Gelb, A. Applied Optimal Estimation; MIT Press: Cambridge MA, USA, 1974. [Google Scholar]
- Kim, J.; Lee, K. Unscented Kalman filter-aided long short-term memory approach for wind nowcasting. Aerospace 2021, 8, 236. [Google Scholar] [CrossRef]
- Wan, E.A.; van der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 1–4 October 2000. [Google Scholar]
- Zhong, Z.; Zhao, E.; Zheng, X.; Zhao, X. A consensus-based square-root cubature Kalman filter for maneuvering target tracking in sensor networks. Trans. Inst. Meas. Control 2020, 42, 3052–3062. [Google Scholar] [CrossRef]
- Zhou, D.; Xi, Y.; Zhang, Z. Suboptimal fading extended Kalman filtering for nonlinear systems. Control Decis. 1990, 5, 1–6. [Google Scholar]
- Zhou, D.; Xi, Y.; Zhang, Z. A suboptimal multiple fading extended Kalman filter. Acta Autom. Sin. 1991, 17, 689–695. [Google Scholar]
- Liu, Q.; Huang, C.; Li, P. Distributed consensus strong tracking filter for wireless sensor networks with model mismatches. Int. J. Distrib. Sens. Netw. 2017, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Gao, D.; Zhong, Y.; Subic, A. Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty. Int. J. Adapt. Control Signal Process. 2015, 29, 1561–1577. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.; Wang, M.; Sun, W.; Xu, Z.; Lai, Y. A new method for state of charge estimation of lithium-ion battery based on strong tracking cubature Kalman filter. Energies 2015, 8, 13458–13472. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhao, R.; Chen, J.; Zhao, C.; Zhu, Y. Target tracking algorithm based on adaptive strong tracking particle filter. IET Sci. Meas. Technol. 2016, 10, 704–710. [Google Scholar]
- Zhang, A.; Bao, S.; Gao, F.; Bi, W. A novel strong tracking cubature Kalman filter and its application in maneuvering target tracking. Chin. J. Aeronaut. 2019, 32, 2489–2502. [Google Scholar] [CrossRef]
- Liu, H.; Wu, W. Strong tracking spherical simplex-radial cubature Kalman filter for maneuvering target tracking. Sensors 2017, 17, 741. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, W.; Ding, D. A novel fifth-degree strong tracking cubature Kalman filter for two-dimensional maneuvering target tracking. Math. Probl. Eng. 2018, 2018, 5918456. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Xu, X.; Li, Y. A variational Bayesian based strong tracking interpolatory cubature Kalman filter for maneuvering target tracking. IEEE Access 2018, 6, 52544–52560. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, J.; Ge, J.; Lu, W.; Liu, B. Strong tracking SCKF based on adaptive CS model for maneuvering aircraft tracking. IET Radar Sonar Navig. 2018, 12, 742–749. [Google Scholar] [CrossRef]
- Ma, J.; Guo, X. Combination of IMM algorithm and ASTRWCKF for maneuvering target tracking. IEEE Access 2020, 8, 143095–143103. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, P.; Baoyin, H. Residual-normalized strong tracking filter for tracking a noncooperative maneuvering spacecraft. J. Guid. Control Dyn. 2019, 42, 2304–2309. [Google Scholar] [CrossRef]
- Gao, W.; Li, J.; Zhou, G.; Li, Q. Adaptive Kalman filtering with recursive noise estimator for integrated SINS/DVL systems. J. Navig. 2015, 68, 142–161. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Trans. Autom. Control 2018, 63, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.; Zhang, H.; Jiang, L.; Li, Z.; Butt, M. Adaptive unscented Kalman filter for target tracking with unknown time-varying noise covariance. Sensors 2019, 19, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Chen, L. Noise-aware maneuvering target tracking algorithm in wireless sensor networks by a novel adaptive cubature Kalman filter. IET Radar Sonar Navig. 2020, 14, 1795–1802. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, J.; Lu, S.; Gong, Y.; Tao, Y.; Tang, Y.; Yan, P.; Luo, H.; Liu, J. A LSTM algorithm estimating pseudo measurements for aiding INS during GNSS signal outages. Remote Sens. 2020, 12, 256. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Luo, H.; Jia, H.; Zhao, F.; Xiao, Y.; Gao, X. Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation. IEEE Trans. Instrum. Meas. 2021, 70, 8500613. [Google Scholar] [CrossRef]
- Hu, L.; Tang, Y.; Zhou, Z.; Pan, W. Reinforcement learning for orientation estimation using inertial sensors with performance guarantee. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [Google Scholar]
- Tang, Y.; Hu, L.; Zhang, Q.; Pan, W. Reinforcement learning compensated extended Kalman filter for attitude estimation. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), New York, NY, USA, 27 September–1 October 2021. [Google Scholar]
- Gao, X.; Luo, H.; Ning, B.; Zhao, F.; Bao, L.; Gong, Y.; Xiao, Y.; Jiang, J. RL-AKF: An adaptive Kalman filter navigation algorithm based on reinforcement learning for ground vehicles. Remote Sens. 2020, 12, 1704. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Liu, K. Network anomaly detection system with optimized DS Evidence Theory. Sci. World J. 2014, 753659, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X. Distributed estimation fusion with unavailable cross-correlation. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 259–278. [Google Scholar] [CrossRef]
- Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Li, B.; Gan, Z.; Chen, D.; Sergey Aleksandrovich, D. UAV maneuvering target tracking in uncertain environments based on deep reinforcement learning and meta-learning. Remote Sens. 2020, 12, 3789. [Google Scholar] [CrossRef]
Layers | Actor Network | Critic Network |
---|---|---|
Input layer | 3 | 4 |
Hidden layer 1 | 128 | 128 |
Hidden layer 2 | 128 | 128 |
Output layer | 1 | 1 |
Parameters | Value |
---|---|
The discounting factor | 0.99 |
The updating rate | 0.001 |
The number of samples | 64 |
The number of episodes | 500 |
The number of timesteps | 1000 |
Directions | |||
---|---|---|---|
1 | 2 | 1 | |
0.005 | 0.01 | 0.005 | |
30 | 30 | 30 |
Sensors | |||
---|---|---|---|
10 | 0.01 | 0.01 | |
5 | 0.02 | 0.02 | |
10 | 0.02 | 0.02 |
Sensors | IMM | STF | RNSTF | AKF | NAEKF |
---|---|---|---|---|---|
15.7454 | 17.5285 | 17.4727 | 96.1808 | 14.4525 | |
4.8372 | 3.9745 | 3.9816 | 3.8560 | 3.8291 | |
8.9003 | 8.1024 | 8.1208 | 7.604 | 7.3634 | |
Fusion | 4.7536 | 8.1988 | 8.4076 | 129.2355 | 3.5371 |
Sensors | IMM | STF | RNSTF | AKF | NAEKF |
---|---|---|---|---|---|
0.0073 | 0.0098 | 0.0098 | 0.0116 | 0.0057 | |
0.0110 | 0.0130 | 0.0133 | 0.0088 | 0.0090 | |
0.0101 | 0.0135 | 0.0139 | 0.0099 | 0.0087 | |
Fusion | 0.0052 | 0.0076 | 0.0077 | 0.0108 | 0.0043 |
Sensors | IMM | STF | RNSTF | AKF | NAEKF |
---|---|---|---|---|---|
0.0076 | 0.0100 | 0.0098 | 0.4293 | 0.0060 | |
0.0108 | 0.0140 | 0.0136 | 0.0097 | 0.0097 | |
0.0102 | 0.0145 | 0.0139 | 0.0328 | 0.0094 | |
Fusion | 0.0051 | 0.0076 | 0.0074 | 0.1790 | 0.0043 |
IMM | STF | RNSTF | AKF | NAEKF |
---|---|---|---|---|
1.9645 | 1.7343 | 1.8173 | 3.3055 | 1.8572 |
Time (s) | Time (s) | ||||||
---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||
0–60 | 0 | 0 | 0 | 480–540 | 2.5 | −5 | 2.5 |
60–120 | −22.5 | 18 | −22.5 | 540–600 | −12.5 | 24 | −12.5 |
120–180 | 2.5 | −10 | 2.5 | 600–660 | 2.5 | −14 | 2.5 |
180–240 | −15 | −15 | −15 | 660–720 | 7.5 | −10 | 7.5 |
240–300 | 4.5 | −10 | 4.5 | 720–780 | −9 | 10 | −9 |
300–360 | −20 | 29 | −20 | 780–840 | −5.5 | 11 | −5.5 |
360–420 | −10 | −8 | −10 | 840–900 | 4.5 | −9 | 4.5 |
420–480 | −12.5 | −10 | −12.5 | 900–1000 | 2.5 | −12 | 2.5 |
Sensors | IMM | STF | RNSTF | NAEKF |
---|---|---|---|---|
18.2491 | 18.0910 | 18.2003 | 17.4784 | |
5.0014 | 5.2004 | 5.2474 | 4.6219 | |
9.4525 | 9.2029 | 9.3168 | 8.6291 | |
Fusion | 4.9532 | 11.8334 | 12.0310 | 4.8331 |
Sensors | IMM | STF | RNSTF | NAEKF |
---|---|---|---|---|
0.0062 | 0.0098 | 0.0099 | 0.0064 | |
0.0110 | 0.0137 | 0.0143 | 0.0104 | |
0.0117 | 0.0133 | 0.0136 | 0.0096 | |
Fusion | 0.0048 | 0.0079 | 0.0080 | 0.0047 |
Sensors | IMM | STF | RNSTF | NAEKF |
---|---|---|---|---|
0.0062 | 0.0093 | 0.0092 | 0.0057 | |
0.0102 | 0.0141 | 0.0137 | 0.0107 | |
0.0112 | 0.0134 | 0.0131 | 0.0098 | |
Fusion | 0.0050 | 0.0076 | 0.0074 | 0.0045 |
IMM | STF | RNSTF | NAEKF |
---|---|---|---|
1.9920 | 1.6958 | 1.8096 | 1.8723 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Tang, S.; Guo, J. Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets. Sensors 2022, 22, 5389. https://doi.org/10.3390/s22145389
Li J, Tang S, Guo J. Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets. Sensors. 2022; 22(14):5389. https://doi.org/10.3390/s22145389
Chicago/Turabian StyleLi, Jiali, Shengjing Tang, and Jie Guo. 2022. "Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets" Sensors 22, no. 14: 5389. https://doi.org/10.3390/s22145389
APA StyleLi, J., Tang, S., & Guo, J. (2022). Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets. Sensors, 22(14), 5389. https://doi.org/10.3390/s22145389