Vision-Based Detection of Bolt Loosening Using YOLOv5
<p>Experiment of bolt loosening: (<b>a</b>) experimental equipment of bolt loosening; (<b>b</b>) curve of bolt loosening.</p> "> Figure 2
<p>The principle of target detection using YOLO.</p> "> Figure 3
<p>YOLOv5 network structure.</p> "> Figure 4
<p>Labeling of the dataset: (<b>a</b>) captured bolt image; (<b>b</b>) labels of three classes.</p> "> Figure 5
<p>Center coordinates of the three classes.</p> "> Figure 6
<p>Training results of the model: (<b>a</b>) training loss; (<b>b</b>) validation loss; (<b>c</b>) precision; (<b>d</b>) recall; (<b>e</b>) mAP@0.5; (<b>f</b>) mAP@0.5:0.95.</p> "> Figure 7
<p>Identification results of bolt loosening at any angle: (<b>a</b>) angle-measuring method; (<b>b</b>) initial state; (<b>c</b>) 15° of rotation; (<b>d</b>) 30° of rotation; (<b>e</b>) 45° of rotation; (<b>f</b>) 60° of rotation.</p> "> Figure 8
<p>Identification results of loose bolts at tiny angle: (<b>a</b>) initial state; (<b>b</b>) 10° of rotation; (<b>c</b>) 8° of rotation; (<b>d</b>) 5° of rotation; (<b>e</b>) 2° of rotation; (<b>f</b>) 1° of rotation.</p> "> Figure 9
<p>Identification results of bolt loosening under different shooting distances: (<b>a</b>) 5 cm; (<b>b</b>) 10 cm; (<b>c</b>) 15 cm; (<b>d</b>) 20 cm.</p> "> Figure 10
<p>Identification results of bolt loosening under different shooting angles: (<b>a</b>) 0° of tilt; (<b>b</b>) 10° of tilt; (<b>c</b>) 30° of tilt; (<b>d</b>) 45° of tilt.</p> "> Figure 11
<p>Identification results of loose bolts under different light conditions: (<b>a</b>) normal light; (<b>b</b>) weak light; (<b>c</b>) dark light; (<b>d</b>) camera flash.</p> "> Figure 11 Cont.
<p>Identification results of loose bolts under different light conditions: (<b>a</b>) normal light; (<b>b</b>) weak light; (<b>c</b>) dark light; (<b>d</b>) camera flash.</p> ">
Abstract
:1. Introduction
2. Problem Description
3. Methodology
3.1. YOLOv5 Algorithm for Bolt Loosening
3.2. The Detection Method of Bolt Loosening
4. Detection of Bolt Loosening
4.1. Model Training
4.2. Identification of Bolt Loosening Angles
4.2.1. Identification of Bolt Loosening at Any Angle
4.2.2. Identification of Bolt Loosening at Tiny Angle
4.3. Identification under Different Shooting Conditions
4.3.1. Different Shooting Distances
4.3.2. Different Shooting Angles
4.3.3. Different Light Conditions
5. Summary and Conclusions
- The precision rate and recall rate of the model trained by the dataset are respectively 99.8% and 100%, and the mAP of the model is over 0.95. This method not only de-creases the time to collect real bolt images, but also improves the generalization ability of the network and reduces the cost of detection.
- The smaller the bolt loosening angle is, the larger the detection error is. The method is also accurate in detecting the tiny angle of bolt loosening. The minimum identifiable angle is 1°, and the error is only 2.90%.
- The detection error of nut rotation angle will increase with the increase in shooting angle, and the maximum error of bolt loosening angle is only 5.91% when the camera is tilted 45°. This shows that the method is effective and accurate even under some difficult shooting conditions.
- The detection results are not sensitive to the shooting distance and the light condition. When the shooting distance is within 10~15 cm and the light is sufficient, the detection accuracy is the best.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, D.; Shi, Q.F.; Fei, Q.G.; Wu, S.Q. Stiffness identification of fixed bolted-joint interface. J. Solid Rocket Technol. 2014, 37, 688–693. [Google Scholar]
- Jiang, D.; Wu, S.Q.; Shi, Q.F.; Fei, Q.G. Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship. J. Vib. Shock. 2014, 33, 35–40. [Google Scholar]
- Tan, Z.; Fei, Q.; Wu, H.; Zhang, H.; Jiang, D. Thermal adaptive technique for connecting composite material and high-temperature alloy bolt. J. Southeast Univ. (Nat. Sci. Ed.) 2017, 47, 337–342. [Google Scholar]
- Wang, M.; Tan, Z.; He, D.; Jiang, D.; Fei, Q. Anti-loosening Experiment of Composite Bolted Structures Under High Temperature and Vibration Circumstance. J. Vib. Meas. Diagn. 2018, 38, 1169–1175, 1292. [Google Scholar]
- Huang, J.; Liu, J.; Gong, H.; Deng, X. A comprehensive review of loosening detection methods for threaded fasteners. Mech. Syst. Signal Process. 2022, 168, 108652. [Google Scholar] [CrossRef]
- Tian, Y.; Qian, H.; Cao, Z.; Zhang, D.; Jiang, D. Identification of Pre-Tightening Torque Dependent Parameters for Empirical Modeling of Bolted Joints. Appl. Sci. 2021, 11, 9134. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Yu, Y.; Liu, Y.; Jiang, D. Loosening of Bolted Connections under Transverse Loading in Timber Structures. Forests 2020, 11, 816. [Google Scholar] [CrossRef]
- Jiang, D.; Wu, S.Q.; Shi, Q.F.; Fei, Q.G. Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method. Eng. Mech. 2015, 32, 220–227. [Google Scholar]
- Goodier, J. Loosening by Vibration of Threaded Fastenings. Mech. Eng. 1945, 67, 798. [Google Scholar]
- Junker, G.H. New criteria for self-loosening of fasteners under vibration. Sae Trans. 1969, 78, 314–335. [Google Scholar]
- Jiang, Y.Y.; Zhang, M.; Lee, C.H. A study of early stage self-loosening of bolted joints. J. Mech. Des. 2003, 125, 518–526. [Google Scholar] [CrossRef]
- Yin, H.; Wang, T.; Yang, D.; Liu, S.; Shao, J.; Li, Y. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method. Appl. Sci. 2016, 6, 320. [Google Scholar] [CrossRef]
- Huo, L.; Wang, F.; Li, H.; Song, G. A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers. Smart Mater. Struct. 2017, 26, 104010. [Google Scholar] [CrossRef]
- Xu, C.; Wu, G.; Du, F.; Zhu, W.; Mahdavi, S.H. A Modified Time Reversal Method for Guided Wave Based Bolt Loosening Monitoring in a Lap Joint. J. Nondestruct. Eval. 2019, 38, 85. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, P.; Zhang, E.; Lu, G. Health Monitoring of Bolt Looseness in Timber Structures Using PZT-Enabled Time-Reversal Method. J. Sens. 2019, 2019, 2801638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, X.; Sun, X.; Su, W.; Xue, Z. Bolt loosening detection based on audio classification. Adv. Struct. Eng. 2019, 22, 2882–2891. [Google Scholar] [CrossRef]
- Wang, F.; Song, G. Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method. Nonlinear Dynam. 2020, 100, 243–254. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Y.; Zheng, J.; Dai, X. Ecodesign method of intelligent boom sprayer based on Preferable Brownfield Process. J. Clean. Prod. 2020, 268, 122206. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Tai, Y.; Shi, G.; Chen, N.; Yao, J. New control strategy for suppressing the local vibration of sandwich beams based on the wave propagation method. J. Intell. Mater. Syst. Struct. 2021, 33, 231–247. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, L.; Zhang, A.; Hang, X. Finite element explicit dynamics simulation of motion and shedding of jujube fruits under forced vibration. Comput. Electron. Agric. 2022, 198, 107009. [Google Scholar] [CrossRef]
- Ji, X.; Miao, Z.; Kromanis, R. Vision-based measurements of deformations and cracks for RC structure tests. Eng. Struct. 2020, 212, 110508. [Google Scholar] [CrossRef]
- Obiechefu, C.B.; Kromanis, R. Damage detection techniques for structural health monitoring of bridges from computer vision derived parameters. Struct. Monit. Maint. 2021, 8, 91–110. [Google Scholar]
- Nguyen, T.-C.; Huynh, T.-C.; Ryu, J.-Y.; Park, J.-H.; Kim, J.-T. Bolt-loosening identification of bolt connections by vision image-based technique. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2016, Las Vegas, NV, USA, 21–24 March 2016; pp. 227–243. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 1440–1448. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Cha, Y.-J.; Choi, W. Vision-Based Concrete Crack Detection Using a Convolutional Neural Network. In Dynamics of Civil Structures; Springer: Cham, Switzerland, 2017; Volume 2, pp. 71–73. [Google Scholar]
- Xu, Z.-D.; Yang, Y.; Miao, A.-N. Dynamic Analysis and Parameter Optimization of Pipelines with Multidimensional Vibration Isolation and Mitigation Device. J. Pipeline Syst. Eng. Pract. 2021, 12, 04020058. [Google Scholar] [CrossRef]
- Lu, H.; Xu, Z.-D.; Iseley, T.; Matthews, J.C. Novel Data-Driven Framework for Predicting Residual Strength of Corroded Pipelines. J. Pipeline Syst. Eng. Pract. 2021, 12, 04021045. [Google Scholar] [CrossRef]
- Xu, Z.-D.; Dong, Y.-R.; Chen, S.; Guo, Y.-Q.; Li, Q.-Q.; Xu, Y.-S. Development of hybrid test system for three-dimensional viscoelastic damping frame structures based on Matlab-OpenSees combined programming. Soil Dyn. Earthq. Eng. 2021, 144, 1006681. [Google Scholar] [CrossRef]
- Yan, X.; She, D.; Xu, Y.; Jia, M. Application of Generalized Composite Multiscale Lempel–Ziv Complexity in Identifying Wind Turbine Gearbox Faults. Entropy 2021, 23, 1372. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yu, Y.; Liu, Y.; Chen, J.; Wang, Z. Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads. Forests 2021, 12, 652. [Google Scholar] [CrossRef]
- Cha, Y.-J.; You, K.; Choi, W. Vision-based detection of loosened bolts using the Hough transform and support vector machines. Autom. Cons. 2016, 71, 181–188. [Google Scholar] [CrossRef]
- Ramana, L.; Choi, W.; Cha, Y.-J. Automated Vision-Based Loosened Bolt Detection Using the Cascade Detector. In Sensors and Instrumentation; Springer: New York, NY, USA, 2017; Volume 5, pp. 23–28. [Google Scholar]
- Ramana, L.; Choi, W.; Cha, Y.-J. Fully automated vision-based loosened bolt detection using the Viola–Jones algorithm. Struct. Health Monit. 2018, 18, 422–434. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Park, J.-H.; Jung, H.-J.; Kim, J.-T. Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing. Autom. Constr. 2019, 105, 102844. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Wang, N. Bolt loosening angle detection technology using deep learning. Struct. Control. Health Monit. 2019, 26, e2292. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, X.; Loh, K.J.; Su, W.; Xue, Z.; Zhao, X. Autonomous bolt loosening detection using deep learning. Struct. Health Monit. 2019, 19, 105–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuen, K.-V. Bolt damage identification based on orientation-aware center point estimation network. Struct. Health Monit. 2021, 21, 438–450. [Google Scholar] [CrossRef]
- Pham, H.C.; Ta, Q.-B.; Kim, J.-T.; Ho, D.-D.; Tran, X.-L.; Huynh, T.-C. Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model. Sensors 2020, 20, 3382. [Google Scholar] [CrossRef]
- Pal, J.; Sikdar, S.; Banerjee, S. A deep-learning approach for health monitoring of a steel frame structure with bolted connections. Struct. Control. Health Monit. 2021, 29, e2873. [Google Scholar] [CrossRef]
- Pan, X.; Yang, T.Y. Image-based monitoring of bolt loosening through deep-learning-based integrated detection and tracking. Comput. Aided Civ. Infrastruct. Eng. 2021. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Hao, H.; Kong, Q. Near real-time bolt-loosening detection using mask and region-based convolutional neural network. Struct. Control. Health Monit. 2021, 28, e2741. [Google Scholar] [CrossRef]
- Gong, H.; Deng, X.; Liu, J.; Huang, J. Quantitative loosening detection of threaded fasteners using vision-based deep learning and geometric imaging theory. Autom. Constr. 2022, 133, 104009. [Google Scholar] [CrossRef]
- Zhou, J.; Huo, L.; Wang, H. Computer Vision-Based Detection for Delayed Fracture of Bolts in Steel Bridges. J. Sens. 2021, 2021, 8325398. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Y.; Fang, C.; Zheng, Y.; Wang, W. Deep learning-based bolt loosening detection for wind turbine towers. Struct. Control. Health Monit. 2022, 29, e2943. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Size | 3024 × 3024 pixels |
Vertical resolution | 72 dpi |
Horizontal resolution | 72 dpi |
Bit depth | 24 |
Aperture | f/1.8 |
Focal length | 4 mm |
Parameters | Value |
---|---|
Image size | 640 × 640 |
Learning rate | 0.01 |
Momentum | 0.937 |
Weight decay | 0.0005 |
Batch size | 8 |
Iteration per epoch | 20 |
Total epoch | 500 |
Test Sample | Rotation Angle (°) | Detection Value (°) | Measured Value (°) | Error (%) |
---|---|---|---|---|
b | 0 | 90.44 | 90 | 0.49 |
c | 15 | 107.35 | 105 | 2.24 |
d | 30 | 123.69 | 120 | 3.08 |
e | 45 | 135.26 | 135 | 0.19 |
f | 60 | 151.07 | 150 | 0.71 |
Test Sample | Rotation Angle (°) | Detection Value (°) | Measured Value (°) | Error (%) |
---|---|---|---|---|
a | 0 | 89.84 | 90 | 0.18 |
b | 10 | 100.92 | 100 | 0.92 |
c | 8 | 98.68 | 98 | 0.69 |
d | 5 | 95.86 | 95 | 0.91 |
e | 2 | 93.84 | 92 | 2.00 |
f | 1 | 93.64 | 91 | 2.90 |
Test Sample | Shooting Distance (cm) | Detection Value (°) | Measured Value (°) | Error (%) |
---|---|---|---|---|
a | 5 | 152.14 | 150 | 1.43 |
b | 10 | 150.59 | 150 | 0.39 |
c | 15 | 149.44 | 150 | 0.37 |
d | 20 | 150.28 | 150 | 0.19 |
Test Sample | Shooting Angle (°) | Detection Value (°) | Measured Value (°) | Error (%) |
---|---|---|---|---|
a | 0 | 118.16 | 120 | 1.53 |
b | 10 | 121.00 | 120 | 0.83 |
c | 30 | 125.63 | 120 | 4.69 |
d | 45 | 127.09 | 120 | 5.91 |
Test Sample | Detection Value (°) | Measured Value (°) | Error (%) |
---|---|---|---|
a | 89.85 | 90 | 0.17 |
b | 92.51 | 90 | 2.79 |
c | - | 90 | - |
d | 85.57 | 90 | 4.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, M.; Dong, R.; Chen, W.; Jiang, D. Vision-Based Detection of Bolt Loosening Using YOLOv5. Sensors 2022, 22, 5184. https://doi.org/10.3390/s22145184
Sun Y, Li M, Dong R, Chen W, Jiang D. Vision-Based Detection of Bolt Loosening Using YOLOv5. Sensors. 2022; 22(14):5184. https://doi.org/10.3390/s22145184
Chicago/Turabian StyleSun, Yuhang, Mengxuan Li, Ruiwen Dong, Weiyu Chen, and Dong Jiang. 2022. "Vision-Based Detection of Bolt Loosening Using YOLOv5" Sensors 22, no. 14: 5184. https://doi.org/10.3390/s22145184
APA StyleSun, Y., Li, M., Dong, R., Chen, W., & Jiang, D. (2022). Vision-Based Detection of Bolt Loosening Using YOLOv5. Sensors, 22(14), 5184. https://doi.org/10.3390/s22145184