Model Analysis and Experimental Investigation of Soft Pneumatic Manipulator for Fruit Grasping
<p>(<b>a</b>) Structure diagram of soft manipulator; (<b>b</b>) internal structure diagram of soft actuator.</p> "> Figure 2
<p>Soft actuator preparation flow chart. (<b>a</b>) Preparation of strain layer with mold. (<b>b</b>) Prepared strain layer. (<b>c</b>) Preparation of limiting layer. (<b>d</b>) Attachment of the bending sensor. (<b>e</b>) The assembled soft manipulator.</p> "> Figure 3
<p>(<b>a</b>) A uniaxial tensile test was performed; (<b>b</b>) the averaged nominal stress–strain curve of silicone rubber and model fitting curve; (<b>c</b>) size information of the dumbbell-shaped specimens.</p> "> Figure 4
<p>Effect of cavity wall thickness on bending properties. (<b>a</b>) Simulation results of different cavity wall thickness; (<b>b</b>) BENDING simulation diagram with wall thickness of 1.5 mm at 40 kPa.</p> "> Figure 5
<p>Effect of chamber clearance on bending properties.</p> "> Figure 6
<p>Effect of constraint layer thickness on bending properties.</p> "> Figure 7
<p>Comparison diagram of finite element simulation with and without constraint rings.</p> "> Figure 8
<p>Simplified schematic diagram of cavity structure deformation.</p> "> Figure 9
<p>Cavity bending force balance diagram.</p> "> Figure 10
<p>Relationship between bending angle and inflation pressure.</p> "> Figure 11
<p>Flexible rod large-deformation equivalent model. (<b>a</b>) Free bending state of soft actuator. (<b>b</b>) After the soft actuator is bent to a free state, a reverse thrust is applied.</p> "> Figure 12
<p>Relationship between the end-output force and the bending angle.</p> "> Figure 13
<p>Flex Sensor 2.2. (<b>a</b>) Circuit diagram of bending sensor. (<b>b</b>) The relationship between the resistance value of the bending sensor and the bending angle.</p> "> Figure 14
<p>Experimental platform. 1. Host computer; 2. Stm32 MCU; 3. Solenoid valve; 4. Soft actuator; 5. DC power supply; 6. Triode amplifier circuit; 7. Relay module; 8. Proportional valve; 9. Vacuum generator.</p> "> Figure 15
<p>Results of bending experiments of soft actuators. (<b>a</b>) The bending angle of the soft actuator under different air pressure without constraint ring. (<b>b</b>) The bending angle of the soft actuator under different air pressure with constraint ring. (<b>c</b>) Comparison of experimental structure and theoretical results of soft actuator bending angle.</p> "> Figure 16
<p>Output force experiment at the end of soft actuator. (<b>a</b>) Schematic diagram of the output force test at the end of the soft actuator. (<b>b</b>) Experimental diagram of the output force at the end of the soft actuator.</p> "> Figure 17
<p>Experiment of fingertip grasping and envelope grasping. (<b>a</b>) Experimental diagram of grasping. (<b>b</b>) Experimental diagram of fingertip grasping (<b>c</b>) Experimental diagram of envelope grasping.</p> "> Figure 18
<p>Soft manipulator grasping experiment. (<b>a</b>) Bending outward. (<b>b</b>) Enveloping grasping. (<b>c</b>) Fingertip grasping.</p> ">
Abstract
:1. Introduction
2. Design and Fabrication of Soft Manipulator
2.1. Structure Design
2.2. Fabrication Process
- (1)
- The two parts of silicone rubber (Dragon Skin 20 by Smooth-ON company, Macungie, PA, USA) A and B were mixed at a ratio of 1:1 by a mixer.
- (2)
- The uncured silicone was then poured into the molds for the strain layer and constraint layer. In order to eliminate bubbles, the molds were degassed in a vacuum chamber (see Figure 2a,c);
- (3)
- (4)
- Finally, the strain layer and constraint layer were assembled with an air quick connector inserted in the air hole (see Figure 2e).
3. Finite Element Analysis of Soft Actuator
3.1. Effect of Cavity Wall Thickness on Bending Angle
3.2. Effect of Chamber Clearance on Bending Properties
3.3. Effect of Constraint Layer Thickness on Bending Properties
4. Modeling and Analysis of Soft Actuator
4.1. Relationship between Driving Pressure and Bending Angle
4.2. End-Output Force Model
5. Experimental Analysis of Soft Manipulator
5.1. Bending Angle Experiment
5.2. End-Output Force Experiment
5.3. Grasping Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- You, H.X. Variation of vegetable sown areas in China during the past eleven years. North. Hortic. 2016, 6, 168–170. [Google Scholar]
- Zhang, J.H.; Wang, T.; Hong, J.; Wang, M.Y. Review of soft-bodied manipulator. J. Mech. Eng. 2017, 53, 19–28. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Ding, F.; Zhuang, Z. Recognition and grasping of disorderly stacked wood planks using a local image patch and point pair feature method. Sensors 2020, 20, 6235. [Google Scholar] [CrossRef] [PubMed]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elango, N.; Faudzi, A.A.M. A review article: Investigations on soft materials for soft robot manipulations. Int. J. Adv. Manuf. Technol. 2015, 80, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.H.; Xie, Y.X.; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, F.L.; Liu, Y.; Shen, L.; Dong, R. Detection and recognition technology of green plum surface defects based on Gaussian mixture model. J. For. Eng. 2020, 5, 139–144. [Google Scholar]
- Diteesawat, R.S.; Helps, T.; Taghavi, M.; Rossiter, J. Electro-pneumatic pumps for soft robotics. Sci. Robot. 2021, 6, eabc3721. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, X.; Mann, I.S.; Su, H.J. A novel variable stiffness compliant robotic gripper based on layer jamming. J. Mech. Robot. 2020, 12, 051013. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Li, Y.; Jin, Z.Y.; Yang, Y.; Yang, M.B.; Yin, B. Light-and magnetic-responsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics. J. Mater. Chem. C 2021, 9, 5515–5527. [Google Scholar] [CrossRef]
- Zheng, Z.; Kumar, P.; Chen, Y.; Cheng, H.; Wagner, S.; Chen, M.; Verma, N.; Sturm, J.C. Scalable simulation and demonstration of jumping piezoelectric 2-D soft robots. arXiv 2022, arXiv:2202.13521. [Google Scholar]
- Shian, S.; Bertoldi, K.; Clarke, D.R. Dielectric elastomer based “grippers” for soft robotics. Adv. Mater. 2015, 27, 6814–6819. [Google Scholar] [CrossRef] [PubMed]
- Xi, S.; Zuo, S. Modeling study on actuating characteristics of bending polypyrrole actuators. Chin. J. Anal. Chem. 2020, 48, 1486–1492. [Google Scholar]
- Chung, H.J.; Parsons, A.M.; Zheng, L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review. Adv. Intell. Syst. 2021, 3, 2000186. [Google Scholar] [CrossRef]
- Russo, S.; Ranzani, T.; Liu, H.; Nefti-Meziani, S.; Althoefer, K.; Menciassi, A. Soft and stretchable sensor using biocompatible electrodes and liquid for medical applications. Soft Robot. 2015, 2, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deimel, R.; Brock, O. A novel type of compliant and under actuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2016, 35, 161–185. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, X.; Huang, Y.; Cao, L.; Liu, J. A review of soft manipulator research, applications, and opportunities. J. Field Robot. 2021, 39, 281–311. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Gong, Y. Dynamic model and analysis of soft manipulator facing underwater complex environment. In Proceedings of the 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 15–17 July 2021. [Google Scholar] [CrossRef]
- Jiang, Q.; Xu, F. Design and motion analysis of adjustable pneumatic soft manipulator for grasping objects. IEEE Access 2020, 8, 191920–191929. [Google Scholar] [CrossRef]
- Hao, Y.; Gong, Z.; Xie, Z.; Guan, S.; Yang, X.; Ren, Z.; Wang, T.; Wen, L. Universal soft pneumatic robotic actuator with variable effective length. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016. [Google Scholar]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [Green Version]
- Jorg, O.; Sportelli, M.; Fontanelli, M.; Frasconi, C.; Raffaelli, M.; Fantoni, G. Design, development and testing of feeding grippers for vegetable plug transplanters. AgriEngineering 2021, 3, 43. [Google Scholar] [CrossRef]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451. [Google Scholar] [CrossRef] [PubMed]
- She, Y.; Li, C.; Cleary, J.; Su, H.J. Design and fabrication of a soft robotic hand with embedded actuators and sensors. J. Mech. Robot. 2015, 7, 021007. [Google Scholar] [CrossRef]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal robotic actuator based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Kanegae, R.; Hirai, S. Circular shell gripper for handling food products. Soft Robot. 2020, 8, 542–554. [Google Scholar] [CrossRef]
- So, J.; Kim, U.; Kim, Y.B.; Seok, D.Y.; Yang, S.Y.; Kim, K.; Park, J.H.; Hwang, S.T.; Gong, Y.J.; Choi, H.R. Shape estimation of soft manipulator using stretchable sensor. Cyborg Bionic Syst. 2021, 2021, 9843894. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Y.G.; Yang, Y.; Liu, N.; Sun, Y. Research progress on application of soft robotic actuator in fruit and vegetable harvesting. Trans. Chin. Soc. Agric. Eng. 2018, 34, 11–20. [Google Scholar]
- Ruciman, M.; Darzi, A.; Mylonas, G.P. Soft robotics in minimally invasive surgery. Soft Robot. 2019, 6, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, W.; Gong, Y. Static modeling and analysis of soft manipulator considering environment contact based on segmented constant curvature method. Ind. Robot. 2021, 48, 233–246. [Google Scholar] [CrossRef]
- Gong, Z.; Fang, X.; Chen, X.; Cheng, J.; Xie, Z.; Liu, J.; Chen, B.; Yang, H.; Kong, S.; Hao, Y.; et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. Int. J. Robot. Res. 2020, 40, 449–469. [Google Scholar] [CrossRef]
- Lu, Z.; Li, W.; Zhang, L. Research development of soft manipulator: A review. Adv. Mech. Eng. 2020, 12, 1687814020950094. [Google Scholar]
- Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft robot review. Int. J. Control Autom. Syst. 2017, 15, 3–15. [Google Scholar] [CrossRef]
- Qian, S.; Lu, Y.M.; Yang, X.Q. Overview of selection and parameter determination for hyper elastic constitutive model of rubber material. Rubber Sci. Technol. 2018, 16, 5–10. [Google Scholar]
- Ma, T.; Yang, D.; Zhao, H.; Li, T.; Ai, N. Grasp analysis and optimal design of a new under actuated Actuator. Robot 2020, 42, 354–364. [Google Scholar]
Angle/(°) | 0 | 15 | 30 | 45 | 60 | 75 | 90 | |
---|---|---|---|---|---|---|---|---|
Pressure/kPa | ||||||||
10 | 0.07 | / | / | / | / | / | / | |
20 | 0.24 | 0.15 | 0.08 | / | / | / | / | |
30 | 0.46 | 0.36 | 0.29 | 0.21 | 0.11 | / | / | |
40 | 0.72 | 0.61 | 0.53 | 0.45 | 0.36 | 0 | / | |
50 | 1.08 | 0.95 | 0.84 | 0.73 | 0.64 | 0.52 | 0 | |
60 | 1.36 | 1.22 | 1.09 | 0.95 | 0.84 | 0.71 | 0.55 |
Angle/(°) | 0 | 15 | 30 | 45 | 60 | 75 | 90 | |
---|---|---|---|---|---|---|---|---|
Pressure/kPa | ||||||||
10 | 0.11 | 0.06 | / | / | / | / | / | |
20 | 0.28 | 0.18 | 0.14 | 0.08 | / | / | / | |
30 | 0.65 | 0.48 | 0.39 | 0.25 | 0.16 | 0.08 | / | |
40 | 1.28 | 0.97 | 0.75 | 0.58 | 0.48 | 0.35 | 0.21 | |
50 | 1.61 | 1.33 | 1.13 | 0.93 | 0.79 | 0.68 | 0.54 | |
60 | 2.3 | 1.96 | 1.58 | 1.36 | 1.25 | 1.16 | 0.86 |
Pressure/kPa | 10 | 20 | 30 | 40 | 50 | 60 |
---|---|---|---|---|---|---|
Fingertip grasping | 0.41 | 0.79 | 1.29 | 1.51 | 1.85 | 2.13 |
Enveloping grasping | 0.79 | 1.34 | 2.28 | 3.47 | 4.68 | 5.8 |
Fruit Varieties | Quality/g | Inflation Pressure/kPa |
---|---|---|
Apple | 200.6 | 30 |
Tomato | 282.9 | 35 |
Pear | 389.1 | 45 |
Mango | 580.3 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Feng, K.; Hua, C.; Wang, X.; Hu, Z.; Wang, H.; Su, H. Model Analysis and Experimental Investigation of Soft Pneumatic Manipulator for Fruit Grasping. Sensors 2022, 22, 4532. https://doi.org/10.3390/s22124532
Zhu Y, Feng K, Hua C, Wang X, Hu Z, Wang H, Su H. Model Analysis and Experimental Investigation of Soft Pneumatic Manipulator for Fruit Grasping. Sensors. 2022; 22(12):4532. https://doi.org/10.3390/s22124532
Chicago/Turabian StyleZhu, Yinlong, Kai Feng, Chao Hua, Xu Wang, Zhiqiang Hu, Huaming Wang, and Haijun Su. 2022. "Model Analysis and Experimental Investigation of Soft Pneumatic Manipulator for Fruit Grasping" Sensors 22, no. 12: 4532. https://doi.org/10.3390/s22124532
APA StyleZhu, Y., Feng, K., Hua, C., Wang, X., Hu, Z., Wang, H., & Su, H. (2022). Model Analysis and Experimental Investigation of Soft Pneumatic Manipulator for Fruit Grasping. Sensors, 22(12), 4532. https://doi.org/10.3390/s22124532