Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy
<p>Adaptive Variational Mode Decomposition Process.</p> "> Figure 2
<p><math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mn>4</mn> </mrow> </semantics></math> VMD exploded view.</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>8</mn> <mi>f</mi> <mi>s</mi> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mi>f</mi> <mi>s</mi> <mo>,</mo> <mo> </mo> <mi>f</mi> <mi>s</mi> <mo>,</mo> <mo> </mo> <mn>2</mn> <mi>f</mi> <mi>s</mi> </mrow> </semantics></math> modal signal spectrum distribution.</p> "> Figure 4
<p>AVMD-based fault diagnosis flow chart.</p> "> Figure 5
<p>DDS comprehensive test bench and faulty gear. (<b>a</b>) DDS comprehensive failure test bench. (<b>b</b>) Test bearing.</p> "> Figure 6
<p>AVMD decomposition and spectrum diagram of inner ring fault signal.</p> "> Figure 7
<p>T-SNE dimensional reduction visualization of MFE feature set. (<b>a</b>) EEMD-PSO-MFE feature set. (<b>b</b>) LMD-PSO-MFE feature set. (<b>c</b>) AVMD-PSO-MFE feature set.</p> "> Figure 8
<p>T-SNE dimensionality reduction visualization of FE, MFE and PSO-MFE feature sets. (<b>a</b>) AVMD-FE feature set. (<b>b</b>) AVMD-MFE feature set. (<b>c</b>) AVMD-PSO-MFE feature set.</p> "> Figure 8 Cont.
<p>T-SNE dimensionality reduction visualization of FE, MFE and PSO-MFE feature sets. (<b>a</b>) AVMD-FE feature set. (<b>b</b>) AVMD-MFE feature set. (<b>c</b>) AVMD-PSO-MFE feature set.</p> ">
Abstract
:1. Introduction
2. Basic Theory
2.1. Variational Modal Decomposition
- (1)
- Initialize , and ;
- (2)
- , entering the loop;
- (3)
- update according to the update formula for and until the inner loop stops when the number of decompositions K is reached;
- (4)
- update according to the update formula of ;
- (5)
- Given the precision ω, if the stopping condition , is satisfied, stop the loop, otherwise enter step 2 to continue the loop.
2.2. Adaptive Variational Modal Decomposition
2.3. Multiscale Fuzzy Entropy
- (1)
- Coarse-grained original time series is processed to obtain coarse-grained sequence .
- (2)
- Calculate the fuzzy entropy of coarse-grained sequence under each scale factor, and its calculation formula is:
2.4. PSO-Optimized Multiscale Fuzzy Entropy
3. Fault Feature Set Construction
- (1)
- Obtain the original signal, initialize the modal number , use the default value of the penalty factor and the correlation coefficient threshold : .
- (2)
- Perform VMD on the vibration signal and calculate the correlation coefficient between each mode and the original signal. When the correlation coefficient satisfies the termination condition, the correlation coefficient threshold less than %, and the optimal mode number and penalty factor are determined.
- (3)
- The optimized VMD is performed on the vibration signal to generate modal components.
- (4)
- In order to minimize the Ske of the original signal, the optimal MFE parameters are obtained by adaptive optimization using the PSO algorithm.
- (5)
- Calculate the MFE of modal components to construct a multiscale and multiband fuzzy entropy feature set.
- (6)
- Input the fuzzy entropy feature set obtained in the previous step into the classifier for fault identification.
4. Experimental Verification
5. Conclusions
- (1)
- By analyzing the simulation and experimental results, AVMD optimizes the mode number in VMD by using the correlation coefficient, which can reduce the phenomenon of mode aliasing and excessive decomposition.
- (2)
- The early fault feature extraction method based on AVMD and optimized MFE mainly decomposes the fault signal through AVMD. Taking Ske as the objective function, PSO searches for the optimal parameters of MFE and extracts the MFE features in multiple frequency bands. Through this method, the MFE of the modes in different frequency bands is calculated by decomposing the adaptive variational modes, and the MFE in different frequency bands is used to form a feature vector set. In this way, the weak fault information of rotating machinery can be more fully characterized, and it is more conducive to the early weak fault identification. Simultaneously, it can achieve higher fault diagnosis accuracy.
- (3)
- The MFE feature extraction method based on AVMD can effectively extract the weak fault information of the fault signal, but the calculation amount of MFE is large. The next work will improve this problem to improve the computational efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, L.; Liu, F.; Li, M.L.; He, K.K.; Xu, G.H. Feature selection for machine fault diagnosis using clustering of non-negation matrix factorization. Measurement 2016, 94, 295–305. [Google Scholar] [CrossRef]
- Wu, Y.K.; Jiang, B.; Wang, Y.L. Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains. ISA Trans. 2020, 99, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Immovilli, F.; Bellini, A.; Rubini, R.; Tassoni, C. Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals: A Critical Comparison. IEEE Trans. Ind. Appl. 2010, 46, 1350–1359. [Google Scholar] [CrossRef]
- Rzeszucinski, P.; Orman, M.; Pinto, C.T.; Tkaczyk, A.; Sulowicz, M. Bearing Health Diagnosed with a Mobile Phone: Acoustic Signal Measurements Can be Used to Test for Structural Faults in Motors. IEEE Ind. Appl. Mag. 2018, 24, 17–23. [Google Scholar] [CrossRef]
- Frosini, L.; Harlişca, C.; Szabó, L. Induction Machine Bearing Fault Detection by Means of Statistical Processing of the Stray Flux Measurement. IEEE Trans. Ind. Appl. 2015, 62, 1846–1854. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Bustos, A.; Rubio, H.; Castejon, C.; Garcia-Prada, J.C. EMD-Based Methodology for the Identification of a High-Speed Train Running in a Gear Operating State. Sensors 2018, 18, 793. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.R.; Fan, F.; Zhou, K.; He, Z.J. Wheel-bearing fault diagnosis of trains using empirical wavelet transform. Measurement 2016, 82, 439–449. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Smith, J.S. The local mean decomposition and its application to EEG perception dat. J. R. Soc. Interface 2005, 2, 443–454. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Liu, T.; Chen, Q. Rolling Bearing Fault Feature Extraction Based on Variational Mode Decomposition Optimized by Information Entropy. Shock Vib. 2018, 5, 219–225. [Google Scholar]
- Zheng, X.X.; Zhou, G.W.; Ren, H.H.; Fu, Y. Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Permutation Entropy. Shock Vib. 2017, 4, 22–28. [Google Scholar]
- Xia, J.Z.; Zhao, L.; Bai, Y.C.; Yu, M.Q.; Wang, A.Z. Weak fault feature extraction of rolling bearings based on MCKD and VMD. Shock Vib. 2017, 36, 78–83. [Google Scholar]
- Liu, H.; Xie, H.B.; He, W.X.; Wang, Z.Z. Feature extraction and classification of EEG sleep stages based on fuzzy entropy. J. Data Acq Proces 2010, 25, 484–489. [Google Scholar]
- Zhen, J.D.; Chen, M.J.; Cheng, J.S.; Yang, Y. Multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings. J Vib. Eng. Technol. 2014, 27, 145–151. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Li, B.Q.; Cheng, J.S.; Wu, Z.T.; Yang, Y. Gear fault diagnosis method based on ASTFA and PMMFE. J. Vib. Eng. Technol. 2016, 29, 928–935. [Google Scholar]
- Yang, W.C.; Zhang, P.L.; Wang, H.G.; Chen, Y.L.; Sun, Y.Z. Gear fault diagnosis based on EEMD multi-scale fuzzy entropy. Shock Vib. 2015, 34, 163–167. [Google Scholar]
- Fan, X.H.; Shi, W.L.; Zhang, C.Q. Armored vehicle recognition based on VMD multi-scale entropy and ABC-SVM. J. Armored Forces 2018, 32, 68–73. [Google Scholar]
- Xu, F.; Xie, W.D. Rolling bearing fault diagnosis based on fine composite multi-scale fuzzy entropy and particle swarm optimization support vector machine. J. Cent. South Univ. 2019, 26, 2404–2417. [Google Scholar] [CrossRef]
- Ding, W.; Wang, S.T.; Hu, X. Fault diagnosis algorithm of rolling bearing based on LMD-MFE and DHMM. Noise Vib. Control 2018, 38, 169–173. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 1 November 1995. [Google Scholar]
Modulus\Correlation Coefficient | |||||
---|---|---|---|---|---|
0.9923 | 0.1038 | ||||
0.9765 | 0.2564 | 0.1535 | |||
0.9813 | 0.2846 | 0.1689 | 0.0878 | ||
0.9625 | 0.2987 | 0.1257 | 0.0756 | 0.0878 |
The Modulus\The Correlation Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|
0.5576 | 0.2306 | |||||||
0.5638 | 0.2637 | 0.2303 | ||||||
0.5544 | 0.5407 | 0.3163 | 0.2217 | |||||
0.4042 | 0.4877 | 0.5364 | 0.3247 | 0.2184 | ||||
0.4036 | 0.4871 | 0.5348 | 0.2108 | 0.3207 | 0.2175 | |||
0.2646 | 0.3877 | 0.4737 | 0.5335 | 0.2620 | 0.2827 | 0.2142 | ||
0.2578 | 0.3819 | 0.4684 | 0.4627 | 0.4218 | 0.3105 | 0.2180 | 0.0947 |
Modal Number | Inner Ring Fault | Outer Ring Fault | Rolling Body Fault | Inner Ring + Gear Wear Fault | Inner Ring + Broken Tooth Fault |
---|---|---|---|---|---|
7 | 8 | 8 | 7 | 9 |
Parameter\Fault Type | Inner Ring Fault | Outer Ring Fault | Rolling Body Fault | Inner Ring + Gear Wear Fault | Inner Ring + Broken Tooth Fault |
---|---|---|---|---|---|
M | 5 | 3 | 5 | 5 | 5 |
S | 10 | 3 | 4 | 6 | 7 |
T | 1 | 1 | 4 | 1 | 5 |
Fault Type | Sample Number | Feature Vector | Expected Output | ||||||
---|---|---|---|---|---|---|---|---|---|
Inner ring | 1 | 0.0031 | 0.1380 | 0.4990 | 0.5983 | 0.7603 | 0.6467 | 0.3830 | 1 |
2 | 0.0036 | 0.1799 | 0.4101 | 0.5768 | 0.7545 | 0.7067 | 0.3755 | ||
3 | 0.0033 | 0.1544 | 0.4293 | 0.5907 | 0.7692 | 0.7662 | 0.3346 | ||
Rolling element | 10 | 0.0111 | 0.1015 | 0.4513 | 0.6587 | 0.413 | 0.5540 | 0.2112 | 2 |
102 | 0.0145 | 0.1735 | 0.4338 | 0.6330 | 0.4024 | 0.3927 | 0.2496 | ||
103 | 0.0195 | 0.1022 | 0.4587 | 0.6104 | 0.4922 | 0.5042 | 0.2097 | ||
Outer ring | 201 | 0.0044 | 0.1459 | 0.5183 | 0.5314 | 0.7753 | 0.4901 | 0.3953 | 3 |
202 | 0.0046 | 0.1449 | 0.5966 | 0.5168 | 0.7162 | 0.5975 | 0.3323 | ||
203 | 0.0048 | 0.1304 | 0.5736 | 0.5109 | 0.7880 | 0.5312 | 0.3228 | ||
Inner ring + gear wear | 301 | 0.0085 | 0.1418 | 0.5929 | 0.6776 | 0.8001 | 0.7140 | 0.4273 | 4 |
302 | 0.0082 | 0.1216 | 0.5738 | 0.6483 | 0.8968 | 0.5445 | 0.4502 | ||
303 | 0.0084 | 0.1808 | 0.5526 | 0.6102 | 0.8114 | 0.7295 | 0.4105 | ||
Inner ring + broken tooth | 401 | 0.0023 | 0.1720 | 0.2627 | 0.4657 | 0.5695 | 0.3751 | 0.2856 | 5 |
402 | 0.0022 | 0.1697 | 0.2400 | 0.4156 | 0.5161 | 0.4363 | 0.2883 | ||
403 | 0.0022 | 0.1186 | 0.2662 | 0.4677 | 0.5982 | 0.5006 | 0.2448 |
Decomposition Method | Inner Ring Fault | Outer Ring Fault | Rolling Body Fault | Inner Ring + Broken Tooth Fault | Inner Ring + Gear Wear Fault | Average Accuracy |
---|---|---|---|---|---|---|
EEMD-PSO-MFE | 93.3% | 97.0% | 47.0% | 66.7% | 66.7% | 73.3% |
LMD-PSO-MFE | 93.3% | 90.0% | 83.3% | 76.7% | 83.3% | 85.3% |
AVMD-FE | 100% | 100% | 90.0% | 40.0% | 76.7% | 81.3% |
AVMD-MFE | 100% | 100% | 90.0% | 73.3% | 80.0% | 89.3% |
AVMD-PSO-MFE | 100% | 100% | 100% | 93.3% | 96.7% | 98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Han, S.; Peng, L.; Yang, L.; Cao, Y. Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy. Sensors 2022, 22, 4504. https://doi.org/10.3390/s22124504
Lv Z, Han S, Peng L, Yang L, Cao Y. Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy. Sensors. 2022; 22(12):4504. https://doi.org/10.3390/s22124504
Chicago/Turabian StyleLv, Zhongliang, Senping Han, Linhao Peng, Lin Yang, and Yujiang Cao. 2022. "Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy" Sensors 22, no. 12: 4504. https://doi.org/10.3390/s22124504
APA StyleLv, Z., Han, S., Peng, L., Yang, L., & Cao, Y. (2022). Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy. Sensors, 22(12), 4504. https://doi.org/10.3390/s22124504