Usefulness of an Additional Filter Created Using 3D Printing for Whole-Body X-ray Imaging with a Long-Length Detector
<p>(<b>a</b>) Whole-body phantom and (<b>b</b>) long-length detector used in the study.</p> "> Figure 2
<p>Material and equipment used in the experiment: (<b>a</b>) using the Ultimaker 3D printer; (<b>b</b>) long-leg filter 3D modeling using the CAD program; (<b>c</b>) side view of the completed 14 mm thick Al whole-spine filter; (<b>d</b>) side view of the completed 14 mm thick Al long-leg filter; (<b>e</b>) anterior view of the completed 14 mm thick Al + 1 mm thick Cu composite whole-spine filter; (<b>f</b>) side view of the completed 14 mm thick Al + 1 mm thick Cu composite whole-spine filter; (<b>g</b>) side view of the completed 14 mm thick Al + 1 mm thick Cu composite long-leg filter; (<b>h</b>) filter installed for use in experiments.</p> "> Figure 3
<p>ROI setting in the whole-spine AP image: (<b>a</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of C-3; (<b>b</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of T-6; (<b>c</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of L-3.</p> "> Figure 4
<p>ROI setting in the whole-spine LAT image: (<b>a</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of C-3; (<b>b</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of T-6; (<b>c</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of L-3.</p> "> Figure 5
<p>ROI setting in the long-leg AP image: (<b>a</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of the pelvis; (<b>b</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of the knee; (<b>c</b>) ROI<sub>target</sub> and ROI<sub>background</sub> of the ankle.</p> "> Figure 6
<p>Acquired whole-spine AP X-ray images without and with additional filters. (<b>a</b>) Whole-spine AP image (<b>a</b>) without an additional filter, (<b>b</b>) with a 14 mm thick Al additional filter, and (<b>c</b>) with a 14 mm thick Al + 1 mm thick Cu composite additional filter.</p> "> Figure 7
<p>Acquired whole-spine LAT X-ray images obtained without and with additional filters. (<b>a</b>) Whole-spine LAT image (<b>a</b>) without an additional filter, (<b>b</b>) with a 14 mm thick Al additional filter, and (<b>c</b>) with a 14 mm thick Al + 1 mm thick Cu composite additional filter.</p> "> Figure 8
<p>Acquired long-leg AP X-ray images without and with additional filters. (<b>a</b>) Long-leg AP image (<b>a</b>) without an additional filter, (<b>b</b>) with a 14 mm thick Al additional filter, and (<b>c</b>) with a 14 mm thick Al + 1 mm thick Cu composite additional filter.</p> "> Figure 9
<p>Graphs of the SNR and CNR results evaluated with and without additional filters. SNR results for (<b>a</b>) whole-spine AP, (<b>b</b>) whole-spine LAT, and (<b>c</b>) long-leg AP examinations. CNR results for (<b>d</b>) whole-spine AP, (<b>e</b>) whole-spine LAT, and (<b>f</b>) long-leg AP examinations.</p> "> Figure 10
<p>Graph of the evaluated radiation dose (mSv) in examinations with and without additional filters.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Images and Quantitative Evaluations
3.2. Radiation Dose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yvert, M.; Diallo, A.; Bessou, P.; Rehel, J.L.; Lhomme, E.; Chateil, J.F. Radiography of scoliosis: Comparative dose levels and image quality between a dynamic flat-panel detector and a slot-scanning device (EOS system). Diagn. Interv. Imaging 2015, 96, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Yoon, S.W.; Seo, D.N.; Nam, S.R.; Kim, J.M. Evaluation of the Patient Effective Dose in Whole Spine Scanography Based on the Automatic Image Pasting Method for Digital Radiography. Iran. J. Radiol. Q. J. Publ. Iran. Radiol. Soc. 2016, 13, 22514. [Google Scholar] [CrossRef] [Green Version]
- Sa dos Reis, C.; Ndlovu, J.; Serrenho, C.; Akhtar, I.; de Haan, S.; Garcia, J.; de Linde, D.; Thorskog, M.; Franco, L.; Lanca, C.; et al. Optimisation of paediatrics computed radiography for full spine curvature measurements using a phantom: A pilot study. In OPTIMAX 2014—Radiation Dose and Image Quality Optimisation in Medical Imaging; Curtin University: Perth, Australia, 2014; pp. 43–51. [Google Scholar]
- Sabharwal, S.; Zhao, C.; McKeon, J.; Melaghari, T.; Blacksin, M.; Wenekor, C. Reliability analysis for radiographic measurement of limb length discrepancy: Full-length standing anteroposterior radiograph versus scanogram. J. Pediatr. Orthop. 2007, 27, 46–50. [Google Scholar] [CrossRef]
- Herndon, W.A. Spinal deformities in children. The improving picture. Postgrad. Med. 1984, 76, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.; Indrajit, I. Impact of computers in radiography: The advent of digital radiography, Part-2. Indian J. Radiol. Imaging 2008, 18, 204–209. [Google Scholar] [CrossRef] [PubMed]
- John, Y. Recent developments in digital radiography detectors. In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment; Elsevier: Amsterdam, The Netherlands, 2007; Volume 580, pp. 974–985. [Google Scholar]
- Gooßen, A.; Pralow, T.; Grigat, R. Automatic stitching of digital radiographies using image interpretation. In Medical Image Understanding and Analysis 2008, Proceedings of the Twelfth Annual Conference, University of Dundee, Dundee, UK, 2–3 July 2008; British Machine Vision Association and Society for Pattern Recognition: Malvern, UK, 2008; pp. 204–208. [Google Scholar]
- Neitzel, U. Status and prospects of digital detector technology for CR and DR. Radiat. Prot. Dosim. 2005, 114, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Morishima, Y.; Chida, K.; Muroya, Y.; Utsumi, Y. Effectiveness of a New Lead-Shielding Device and Additional Filter for Reducing Staff and Patient Radiation Exposure During Videofluoroscopic Swallowing Study Using a Human Phantom. Dysphagia 2018, 33, 109–114. [Google Scholar] [CrossRef]
- Kawashima, H.; Ichikawa, K.; Nagasou, D.; Hattori, M. X-ray dose reduction using additional copper filtration for abdominal digital radiography: Evaluation using signal difference-to-noise ratio. Phys. Med. 2017, 34, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses. P T Peer-Rev. J. Formul. Manag. 2014, 39, 704–711. [Google Scholar]
- Fan, D.; Li, Y.; Wang, X.; Zhu, T.; Wang, Q.; Cai, H.; Li, W.; Tian, Y.; Liu, Z. Progressive 3D Printing Technology and Its Application in Medical Materials. Front. Pharmacol. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squelch, A. 3D printing and medical imaging. J. Med. Radiat. Sci. 2018, 65, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.A.; Reed, W. 3D printing in medical imaging and healthcare services. J. Med. Radiat. Sci. 2018, 65, 237–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez Sanpablo, A.I.; Romero Avila, E.; González Mendoza, A. Three-Dimensional Printing in Healthcare. Rev. Mex. Ing. Biom. 2021, 42, 32–48. [Google Scholar]
- Mothiram, U.; Brennan, P.C.; Lewis, S.J.; Moran, B.; Robinson, J. Digital radiography exposure indices: A review. J. Med. Radiat. Sci. 2014, 61, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joana, R.; Miguel, R.; Richard, C.; Mauricio, C. AFGA HealthCare. Diagnostic Imaging Europe; Alan, B., David, L., Eds.; David Lansdowne: St-Albans, UK, 2016; p. 62. [Google Scholar]
- Schaake, W.; Visser, R.; Huizinga, E.; Bloomfield, C.; Boavida, F.; Chabloz, D.; Crausaz, E.; Hustveit, H.; Knight, H.; Pereira, A.; et al. Review article—A narrative review on the reduction of effective dose to a paediatric patient by using different combinations of kVp, mAs and additional filtration whilst maintaining image quality. In OPTIMAX 2014—Radiation Dose and Image Quality Optimisation in Medical Imaging; Healthy Ageing, Allied Health Care and Nursing: Lisbon, Portugal, 2015; pp. 81–84. [Google Scholar]
- Al Khalifah, K.; Davidson, R.; Zhou, A. Using aluminum for scatter control in mammography: Preliminary work using measurements of CNR and FOM. Radiol. Phys. Technol. 2020, 13, 37–44. [Google Scholar] [CrossRef]
- Moore, C.S.; Beavis, A.W.; Saunderson, J.R. Investigation of optimum X-ray beam tube voltage and filtration for chest radiography with a computed radiography system. Br. J. Radiol. 2008, 81, 771–777. [Google Scholar] [CrossRef]
- Lai, Z.H.; Sá Dos Reis, C.; Sun, Z. Effective dose and image optimisation of lateral lumbar spine radiography: A phantom study. Eur. Radiol. Exp. 2020, 4, 13. [Google Scholar] [CrossRef]
Type of X-ray Examination | Examination Area | Source-to-Image Distance (SID) | kVp | mAs | Image Acquisition Time |
---|---|---|---|---|---|
Whole-spine AP | C-spine | 250 cm | 90 | 50 | 10.02 s |
T-spine | |||||
L-spine | |||||
Whole-spine LAT | C-spine | 250 cm | 105 | 80 | 10.06 s |
T-spine | |||||
L-spine | |||||
Long-leg AP | Pelvis | 250 cm | 90 | 50 | 9.7 s |
Knee | |||||
Ankle |
SNR | CNR | ||||||
---|---|---|---|---|---|---|---|
Type of X-ray Examination | Examination Area | None | 14 mm Al | 14 mm Al + 1 mm Cu | None | 14 mm Al | 14 mm Al + 1 mm Cu |
Whole-spine AP | C-spine | 46.72 | 69.39 | 76.17 | 26.53 | 35.19 | 38.07 |
T-spine | 58.76 | 72.12 | 79.08 | 29.07 | 36.88 | 39.15 | |
L-spine | 61.16 | 73.08 | 79.11 | 35.17 | 40.11 | 42.21 | |
Whole-spine LAT | C-spine | 46.80 | 61.96 | 78.93 | 30.44 | 38.04 | 43.65 |
T-spine | 56.17 | 67.18 | 80.17 | 32.30 | 38.10 | 41.38 | |
L-spine | 55.51 | 69.04 | 83.15 | 27.93 | 35.66 | 36.76 | |
Long-leg AP | Pelvis | 76.10 | 90.76 | 98.32 | 55.02 | 73.68 | 75.85 |
Knee | 85.79 | 93.91 | 99.11 | 54.79 | 68.68 | 75.01 | |
Ankle | 53.03 | 88.27 | 95.83 | 50.68 | 74.95 | 80.18 |
Type of X-ray Examination | None | 14 mm Al | 14 mm Al + 1 mm Cu |
---|---|---|---|
Whole-spine AP | 0.1665 | 0.0715 | 0.0150 |
Whole-spine LAT | 0.4017 | 0.1896 | 0.0477 |
Long-leg AP | 0.0724 | 0.0362 | 0.0069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.; Kim, W.; Han, B.; Jang, H.; Yoon, M.S.; Lee, Y. Usefulness of an Additional Filter Created Using 3D Printing for Whole-Body X-ray Imaging with a Long-Length Detector. Sensors 2022, 22, 4299. https://doi.org/10.3390/s22114299
Seo H, Kim W, Han B, Jang H, Yoon MS, Lee Y. Usefulness of an Additional Filter Created Using 3D Printing for Whole-Body X-ray Imaging with a Long-Length Detector. Sensors. 2022; 22(11):4299. https://doi.org/10.3390/s22114299
Chicago/Turabian StyleSeo, Hyunsoo, Wooyoung Kim, Bongju Han, Huimin Jang, Myeong Seong Yoon, and Youngjin Lee. 2022. "Usefulness of an Additional Filter Created Using 3D Printing for Whole-Body X-ray Imaging with a Long-Length Detector" Sensors 22, no. 11: 4299. https://doi.org/10.3390/s22114299
APA StyleSeo, H., Kim, W., Han, B., Jang, H., Yoon, M. S., & Lee, Y. (2022). Usefulness of an Additional Filter Created Using 3D Printing for Whole-Body X-ray Imaging with a Long-Length Detector. Sensors, 22(11), 4299. https://doi.org/10.3390/s22114299