Control Systems with Tomographic Sensors—A Review
<p>(<b>a</b>) Flow patterns in the mold; (<b>b</b>) parametrization of the jet flow using a line with a variable angle.</p> "> Figure 2
<p>Main options for closing the control loop using tomographic measurements.</p> "> Figure 3
<p>Schematic sketch of the concentration distribution control process.</p> "> Figure 4
<p>Schematic sketch of the swirled separator process.</p> "> Figure 5
<p>(<b>a</b>) Schematic sketch of the fluidized bed dryer and its instrumentation (<b>b</b>) structure of its control-oriented mathematical model.</p> "> Figure 6
<p>Schematic structure of the fluidized bed dryer control system.</p> "> Figure 7
<p>Schematic of the continuous casting process.</p> "> Figure 8
<p>General structure of a fuzzy controller.</p> "> Figure 9
<p>Example of an input membership function for temperature control.</p> "> Figure 10
<p>Defuzzification example resulting in a single numerical value of manipulated variable (heater power).</p> "> Figure 11
<p>Schematic of the forward and inverse neural model (inverse model = controller).</p> "> Figure 12
<p>Potential of modelling and control approaches for tomography-based control.</p> ">
Abstract
:1. Introduction
2. General Characteristics of Tomography-Based Control
2.1. Implications for Selection of Control Method
2.2. Tomography Data Processing
3. Control Techniques, Methods, and Applications
3.1. Control Based on Distributed Models
3.1.1. Concentration Distribution Control
3.1.2. Microwave Drying Process
3.1.3. Inline Fluid Separation Process
3.1.4. Issues with Control Based on Early-Lumped PDE Models
3.2. Control Based on Lumped Parameters Dynamical Models with a Static Model of Distributed Variables
3.3. Experimental Approaches: Identified Models, Empirical Controller Tuning
3.3.1. Control of a Wurster Fluidized Bed
3.3.2. Control of Microwave Drying
3.3.3. Control of Continuous Casting of Metals
3.3.4. Control of Hydrocyclone Separators
3.4. Knowledge-Based Control, Fuzzy Logic and Artificial Intelligence Approaches
4. Discussion and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECT | Electrical Capacitance Tomography |
EIT | Electrical Impedance Tomography |
FEM | Finite Element Method |
LQ | Linear Quadratic |
ODE | Ordinary Differential Equation |
PDE | Partial Differential Equation |
PID | Proportional Integral Derivative |
MIMO | Multi Input Multi Output |
MPC | Model Predictive Control |
SISO | Single Input Single Output |
TRL | Technology Readiness Level |
References
- Beck, M.S.; Williams, R.A. Process Tomography: A European Innovation and Its Applications. Meas. Sci. Technol. 1996, 7, 215–224. [Google Scholar] [CrossRef]
- Reimers, P.; Gilboy, W.B.; Goebbels, J. Recent Developments in the Industrial Application of Computerized Tomography with Ionizing Radiation. NDT Int. 1984, 17, 197–207. [Google Scholar] [CrossRef]
- Beck, M.S.; Dyakowski, T.; Williams, R.A. Process Tomography-The State of the Art. Trans. Inst. Meas. Control 1998, 20, 163–177. [Google Scholar] [CrossRef]
- Hampel, U.; Babout, L.; Banasiak, R.; Schleicher, E.; Soleimani, M.; Wondrak, T.; Vauhkonen, M.; Lähivaara, T.; Tan, C.; Hoyle, B.; et al. A review on fast tomographic imaging techniques and their potential application in industrial process Control. Sensors 2022, 22, 2309. [Google Scholar] [CrossRef]
- Wei, K.; Hsin, Y.; Qiu, C.-H.; Primrose, K. Super-Sensing Technology: Industrial Applications and Future Challenges of Electrical Tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 0328. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, M. Super-sensing through industrial process tomography. Philos. Trans. R. Soc. A 2016, 374, 0445. [Google Scholar] [CrossRef] [Green Version]
- Abdul, W.Y.; Abdul, R.R.; Fazalul, R.M.H.; Ridzuan, A.S.; Mohd, Y.F.R.; Goh, C.L.; Abdul, R.H.; Ling, L.P. Non-Invasive Process Tomography in Chemical Mixtures–A Review. Sens. Actuators B Chem. 2015, 210, 602–617. [Google Scholar] [CrossRef]
- Sattar, M.A.; Garcia, M.M.; Portela, L.M.; Babout, L. A Fast Electrical Resistivity-Based Algorithm to Measure and Visualize Two-Phase Swirling Flows. Sensors 2022, 22, 1834. [Google Scholar] [CrossRef]
- Beck, M.S.; Williams, R.A. Process Tomography-Principles, Techniques and Applications; Butterworth-Heinemann: Oxford, UK, 1995; ISBN 9780080938011. [Google Scholar] [CrossRef]
- Scott, D.M.; McCann, H. Process Imaging for Automatic Control; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-1-315-22089-5. [Google Scholar]
- Wang, M. Industrial Tomography-Systems and Applications; Publishing Series in Electronic and Optical Materials, Number 71; Woodhead: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- World Congress on Industrial Process Tomography. Available online: https://www.isipt.org/publications.html (accessed on 23 December 2021).
- Cruz, F.A.J.; Dantas, C.C.; de Lima, H.J.B.F.; Lima, A.O.E.; Melo, S.B.; Barbosa, E.S. Digital Control Design for a Circulating Fluidized Bed Unit Using Gamma Transmission Measurements. In Proceedings of the 8th World Congress on Industrial Process Tomography, Iguassu Falls, Brazil, 26–29 September 2016; ISBN 978-0-853-16349-7. [Google Scholar]
- Cruz, F.A.J.; Barbosa, E.S.; Dantas, C.C.; de Lima, H.J.B.F.; Lima, A.O.E.; Melo, S.B. Identification and Digital Control Design for a Pilot FCC Type Unit using Gamma Transmission Measurements. In Proceedings of the 9th World Congress on Industrial Process Tomography, Bath, UK, 2–6 September 2018; ISBN 978-0-853-16356-5. [Google Scholar]
- Zhang, Z.; Jia, J. Control Strategies of EIT-Guided Mechanical Ventilation. In Proceedings of the 10th World Congress on Industrial Process Tomography, Global, Online Event, 13–16 September 2021; ISBN 978-0-85316-364-0. [Google Scholar]
- Sattar, M.A.; Garcia, M.M.; Banasiak, R.; Portela, L.M.; Babout, L. Electrical Resistance Tomography for Control Applications: Quantitative Study of the Gas-Liquid Distribution inside A Cyclone. Sensors 2020, 20, 6069. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W. Application of Electrical Capacitance Tomography in Circulating Fluidised Beds–A Review. Appl. Therm. Eng. 2020, 176, 115311. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W. Application of Electrical Capacitance Tomography in Pharmaceutical Fluidised Beds–A Review. Chem. Eng. Sci. 2021, 231, 116236. [Google Scholar] [CrossRef]
- Yao, J.; Takei, M. Application of Process Tomography to Multiphase Flow Measurement in Industrial and Biomedical Fields: A Review. IEEE Sens. J. 2017, 17, 8196–8205. [Google Scholar] [CrossRef]
- Ma, L.; Soleimani, M. Magnetic induction tomography methods and applications: A review. Meas. Sci. Technol. 2017, 28, 072001. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.I.R.L.; Lawrence, D.A. Linear State-Space Control Systems; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-471-73555-7. [Google Scholar]
- Curtain, R.; Zwart, H. Introduction to Infinite-Dimensional Systems Theory a State-Space Approach; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-1-0716-0590-5. [Google Scholar] [CrossRef]
- Lasiecka, I. Control of Systems Governed by Partial Differential Equations: A Historical Perspective. In Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; Volume 3, pp. 2792–2796. [Google Scholar] [CrossRef]
- Christofides, P.D. Nonlinear and Robust Control of PDE Systems-Methods and Applications to Transport-Reaction Processes; Birkhäuser: Basel, Switzerland, 2001; ISBN 978-1-4612-0185-4. [Google Scholar]
- Krstic, M.; Smyshlyaev, A. Boundary Control of PDEs: A Course on Backstepping Designs; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008; ISBN 978-0-89871-650-4. [Google Scholar]
- Morris, K.A. Controller Design for Distributed Parameter Systems; Springer Nature: Cham, Switzerland, 2020; ISBN 978-3-030-34949-3. [Google Scholar]
- Yupanqui Tello, I.F.; Vande Wouwer, A.; Coutinho, D. A Concise Review of State Estimation Techniques for Partial Differential Equation Systems. Mathematics 2021, 9, 3180. [Google Scholar] [CrossRef]
- Mbihi, J. Analog Automation and Digital Feedback Control Techniques; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 978-1-78630-248-9. [Google Scholar]
- Mazumder, S. Numerical Methods for Partial Differential Equations Finite Difference and Finite Volume Methods; Academic Press: Cambridge, MA, USA, 2016; ISBN 978-0-12-849894-1. [Google Scholar]
- Shang, H.; Forbes, J.F.; Guay, M. Feedback Control of Hyperbolic PDE Systems. IFAC Proc. Vol. 2000, 33, 533–538. [Google Scholar] [CrossRef]
- Kouvaritakis, B.; Cannon, M. Model Predictive Control-Classical, Robust and Stochastic; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24851-6. [Google Scholar]
- Cinquemani, S.; Ferrari, D.; Bayati, I. Reduction of spillover effects on independent modal space control through optimal placement of sensors and actuators. Smart Mater. Struct. 2015, 24, 085006. [Google Scholar] [CrossRef]
- Hoyle, B.S.; McCann, H.; Scott, D.M. Process Tomography. In Process Imaging for Automatic Control; Scott, D.M., McCann, H., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 85–126. ISBN 978-1-315-22089-5. [Google Scholar]
- West, R.M.; Jia, X.; Williams, R.A. Parametric Modelling in Industrial Process Tomography. Chem. Eng. J. 2000, 77, 31–36. [Google Scholar] [CrossRef]
- Romanowski, A.; Grudzien, K.; Williams, R.A. A Review of Data Analysis Methods for Electrical Industrial Process Tomography Applications. In Proceedings of the 4th World Congress on Industrial Process Tomography, Aizu, Japan, 5 September 2005; pp. 916–921. [Google Scholar]
- Zhou, L.; Zhang, Y.C.; Yao, D.Y.; Peng, L.H.; Zhang, B.F. Using Principal Component Analysis to Measure Two-Phase Flow Concentration. In Proceedings of the 2nd World Congress on Industrial Process Tomography, Hannover, Germany, 29–31 August 2001; pp. 35–40. [Google Scholar]
- Seleghim, P.; Hervieu, E. Direct imaging of two-phase flows by electrical impedance measurements. Meas. Sci. Technol. 1998, 9, 1492–1500. [Google Scholar] [CrossRef]
- Yang, W.Q.; Liu, S. Role of tomography in gas/solids flow measurement. Flow Meas. Instrum. 2000, 11, 237–244. [Google Scholar] [CrossRef]
- Jeanmeure, L.F.C.; Dyakowski, T.; Zimmerman, W.B.J.; Clark, W. Direct flow-pattern identification using electrical capacitance tomography. Exp. Therm. Fluid Sci. 2002, 26, 763–773. [Google Scholar] [CrossRef]
- Yan, R.; Viumdal, H.; Mylvaganam, S. Process Tomography for Model Free Adaptive Control (MFAC) via Flow Regime Identification in Multiphase Flows. IFAC-PapersOnLine 2020, 53, 11753–11760. [Google Scholar] [CrossRef]
- Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Control of Jet Flow Angle in Continuous Casting Process Using an Electromagnetic Brake. IFAC-PapersOnLine 2019, 52, 88–93. [Google Scholar] [CrossRef]
- Choi, Y.J.; Mccarthy, K.L.; Mccarthy, M.J. Tomographic Techniques for Measuring Fluid Flow Properties. J. Food Sci. 2002, 67, 2718–2724. [Google Scholar] [CrossRef]
- Tan, C.; Murai, Y.; Liu, W.; Tasaka, Y.; Dong, F.; Takeda, Y. Ultrasonic Doppler Technique for Application to Multiphase Flows: A Review. Int. J. Multiph. Flow 2021, 144, 103811. [Google Scholar] [CrossRef]
- Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Flow Control Based on Feature Extraction in Continuous Casting Process. Sensors 2020, 20, 6880. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation Kalman, H∞ and Nonlinear Approaches; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 978-0-471-70858-2. [Google Scholar]
- Ruuskanen, A.R.; Seppänen, A.; Duncan, S.; Somersalo, E.; Kaipio, J.P. Using process tomography as a sensor for optimal Control. Appl. Numer. Math. 2006, 56, 37–54. [Google Scholar] [CrossRef]
- Ruuskanen, A.R.; Seppänen, A.; Duncan, S.; Somersalo, E.; Kaipio, J.P. Using tomographic measurements in process control. In Proceedings of the 43 IEEE Conference on Decision and Control, Nassau, Bahamas, 14–17 December 2004; pp. 4696–4701. [Google Scholar] [CrossRef]
- Ruuskanen, A.R.; Seppänen, A.; Duncan, S.; Somersalo, E.; Kaipio, J.P. Optimal control in process tomography. In Proceedings of the 3rd World Congress on Industrial Process Tomography, Banff, AB, Canada, 2–5 September 2003; pp. 245–251. [Google Scholar]
- Duncan, S. Regulating concentration profile in fluid flow using process tomography. IFAC Proc. Vol. IFAC-PapersOnline 2002, 151, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S. Using process tomography as a sensor in a system for controlling concentration in fluid flow. In Proceedings of the 2nd World Congress on Industrial Process Tomography, Hannover, Germany, 29–31 August 2001; pp. 378–386. [Google Scholar]
- Kaasinen, A. Optimal Control in Process Tomography. Ph.D. Thesis, University of Eastern Finland, Kuopio, Finland, 2013. Available online: https://core.ac.uk/download/pdf/32423406.pdf (accessed on 3 April 2022).
- Seppänen, A.; Heikkinen, L.; Savolainen, T.; Voutilainen, A.; Somersalo, E.; Kaipio, J.P. An Experimental Evaluation of State Estimation with Fluid Dynamical Models in Process Tomography. Chem. Eng. J. 2007, 127, 23–30. [Google Scholar] [CrossRef]
- Kaipio, J.P.; Seppänen, A.; Voutilainen, A.; Haario, H. Optimal Current Patterns in Dynamical Electrical Impedance Tomography Imaging. Inverse Probl. 2007, 23, 1201–1214. [Google Scholar] [CrossRef]
- Normey-Rico, J.E.; Camacho, E.F. Control of Dead-Time Processes; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-1-84628-829-6. [Google Scholar]
- Stengel, R.F. Optimal Control and Estimation; Dover Publications: New York, NY, USA, 1994; ISBN 978-0-48668-200-6. [Google Scholar]
- Hosseini, M.; Kaasinen, A.; Link, G.; Lähivaara, T.; Vauhkonen, M. LQR Control of Moisture Distribution in Microwave Drying Process Based on a Finite Element Model of Parabolic PDEs. IFAC-PapersOnLine 2020, 53, 11470–11476. [Google Scholar] [CrossRef]
- Roussy, G.; Bennani, A.; Thiebaut, J. Temperature Runaway of Microwave Irradiated Materials. J. Appl. Phys. 1987, 62, 1167–1170. [Google Scholar] [CrossRef]
- Yadav, R.; Omrani, A.; Link, G.; Vauhkonen, M.; Lähivaara, T. Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System. Sensors 2021, 21, 6919. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.M.; Sahovic, B.; Sattar, M.A.; Atmani, H.; Schleicher, E.; Hampel, U.; Babout, L.; Legendre, D.; Portela, L.M. Control of a gas-liquid inline swirl separator based on tomographic measurements. IFAC-PapersOnLine 2020, 53, 11483–11490. [Google Scholar] [CrossRef]
- Sahovic, B.; Atmani, H.; Sattar, M.A.; Garcia, M.M.; Schleicher, E.; Legendre, D.; Climent, E.; Zamansky, R.; Pedrono, A.; Babout, L.; et al. Controlled Inline Fluid Separation Based on Smart Process Tomography Sensors. Chem. Ing. Tech. 2020, 92, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Vallabhan, M.K.G.; Matias, J.; Holden, C. Feedforward, Cascade and Model Predictive Control Algorithms for De-Oiling Hydrocyclones: Simulation Study. Model. Identif. Control 2021, 42, 185–195. [Google Scholar] [CrossRef]
- Skogestad, S.; Poslethwaite, I. Multivariable Feedback Control Analysis and Design, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 13-978-0-470-01168-3. [Google Scholar]
- Rakovic, S.V.; Levine, W.S. Handbook of Model Predictive Control; Birkhäuser: Basel, Switzerland, 2019; ISBN 978-3-319-77488-6. [Google Scholar]
- Sbarbaro, D.; Vergara, S. Design of a Control System Based on EIT Sensors: An Optimization Based Approach. IFAC-PapersOnLine 2015, 48, 218–222. [Google Scholar] [CrossRef]
- Li, H.-X.; Qi, C. Modeling of Distributed Parameter Systems for Applications—A Synthesized Review from Time–Space Separation. J. Process Control 2010, 20, 891–901. [Google Scholar] [CrossRef]
- Hoo, K.A.; Zheng, D. Low-Order Control-Relevant Models for a Class of Distributed Parameter Systems. Chem. Eng. Sci. 2001, 56, 6683–6710. [Google Scholar] [CrossRef]
- Villegas, J.A.; Li, M.; Duncan, S.R.; Wang, H.G.; Yang, W.Q. Feedback Control of Moisture in a Batch Fluidised Bed Dryer Using Tomographic Sensor. In Proceedings of the 5th World Congress on Industrial Process Tomography, Bergen, Norway, 3–6 September 2007; pp. 405–413. [Google Scholar]
- Villegas, J.A.; Li, M.; Duncan, S.R.; Wang, H.G.; Yang, W.Q. Modeling and Control of Moisture Content in a Batch Fluidized Bed Dryer Using Tomographic Sensor. In Proceedings of the American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 3350–3355. [Google Scholar] [CrossRef]
- Villegas, J.A.; Duncan, S.R.; Wang, H.G.; Yang, W.Q.; Raghavan, R.S. Distributed Parameter Control of a Batch Fluidised Bed Dryer. Control Eng. Pract. 2009, 17, 1096–1106. [Google Scholar] [CrossRef]
- Wang, H.G.; Senior, P.R.; Mann, R.; Yang, W.Q. Online Measurement and Control of Solids Moisture in Fluidised Bed Dryers. Chem. Eng. Sci. 2009, 64, 2893–2902. [Google Scholar] [CrossRef]
- Sherwood Scientific, Model 501 Fluid Bed Dryer-Lab-Scale, Programmable & Analytical, Information Brochure. Available online: https://www.sherwood-scientific.com/wp-content/uploads/2020/01/Fluid-bed-dryer-brochure.pdf (accessed on 5 February 2022).
- Li, M.; Duncan, S. Dynamic Model Analysis of Batch Fluidized Bed Dryers. Part. Part. Syst. Charact. 2008, 25, 328–344. [Google Scholar] [CrossRef]
- Che, H.; Wang, H.; Ye, J.; Yang, W. Control of Pellets Coating in a Wurster Fluidised Bed by Means of Electrical Capacitance Tomography. Trans. Inst. Meas. Control 2020, 42, 729–742. [Google Scholar] [CrossRef]
- Ziegler, J.G.; Nichols, N.B. Optimum Settings for Automatic Controllers. Trans. ASME 1942, 64, 759–768. [Google Scholar] [CrossRef]
- Hosseini, M.; Kaasinen, A.; Aliyari Shoorehdeli, M.; Link, G.; Lähivaara, T.; Vauhkonen, M. System Identification of Conveyor Belt Microwave Drying Process of Polymer Foams Using Electrical Capacitance Tomography. Sensors 2021, 21, 7170. [Google Scholar] [CrossRef]
- Hosseini, M.; Kaasinen, A.; Shoorehdeli, M.A.; Link, G.; Lähivaara, T.; Vauhkonen, M. Tomography-assisted control for the microwave drying process of polymer foams. J. Process Control, 2022; submitted. [Google Scholar]
- Thomas, B.G. Review on Modeling and Simulation of Continuous Casting. Steel Res. Int. 2018, 89, 1700312. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.; Jiang, P. Measurement of Molten Steel Velocity near the Surface and Modeling for Transient Fluid Flow in the Continuous Casting Mold. Metals 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Moon, S.; Na, C.; Lee, D.; Kueon, Y.; Lee, J.S. Control of Mold Level in Continuous Casting Based on a Disturbance Observer. J. Process Control 2011, 21, 1022–1029. [Google Scholar] [CrossRef]
- Furtmueller, C.; del Re, L. Control Issues in Continuous Casting of Steel. IFAC Proc. Vol. 2008, 41, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Sedén, M.; Jacobson, N. Online Flow Control with Mold Flow Measurements and Simultaneous Braking and Stirring. IOP Conf. Ser. Mater. Sci. Eng. 2018, 424, 012015. [Google Scholar] [CrossRef] [Green Version]
- Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Switched MPC Based on Clogging Detection in Continuous Casting Process. IFAC-PapersOnLine 2020, 53, 11491–11496. [Google Scholar] [CrossRef]
- Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Adaptive Control of Meniscus Velocity in Continuous Caster Based on NARX Neural Network Model. IFAC-PapersOnLine 2019, 52, 222–227. [Google Scholar] [CrossRef]
- Glavinic, I.; Muttakin, I.; Abouelazayem, S.; Blishchik, A.; Stefani, F.; Eckert, S.; Soleimani, M.; Saidani, I.; Hlava, J.; Kenjereš, S.; et al. Laboratory Investigation of Tomography-Controlled Continuous Steel Casting. Sensors 2022, 22, 2195. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Gnecchi, J.A.; Marroquín-Pineda, E. Control of a pilot-scale, solid-liquid separation plant using electrical impedance tomography measurements. Part. Part. Syst. Charact. 2008, 25, 306–313. [Google Scholar] [CrossRef]
- Gutiérrez, J.A.; Dyakowski, T.; Beck, M.S.; Williams, R.A. Using Electrical Impedance Tomography for Controlling Hydrocyclone Underflow Discharge. Powder Technol. 2000, 108, 180–184. [Google Scholar] [CrossRef]
- Williams, R.A.; Dickin, F.J.; Gutiérrez, J.A.; Dyakowski, T.; Beck, M.S. Using Electrical Impedance Tomography for Controlling Hydrocyclone Underflow Discharge. Control Eng. Pract. 1997, 5, 253–256. [Google Scholar] [CrossRef]
- Hooda, D.S.; Raich, V. Fuzzy Logic Models and Fuzzy Control an Introduction; Alpha Science International Ltd.: Oxford, UK, 2017; ISBN 978-1-78332-281-7. [Google Scholar]
- Mahmoud, M.S. Fuzzy Control, Estimation and Diagnosis Single and Interconnected Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-54954-5. [Google Scholar]
- Siddique, N. Neuro-Fuzzy Control. In Intelligent Control, Studies in Computational Intelligence; Springer: Cham, Switzerland, 2014; Volume 517. [Google Scholar] [CrossRef]
- Neuffer, D.; Alvarez, A.; Owens, D.H.; Ostrowski, K.L.; Luke, S.P.; Williams, R.A. Control of pneumatic conveying using ECT. In Proceedings of the 1st World Congress on Industrial Process Tomography, Buxton, UK, 14–17 April 1999; pp. 71–76. [Google Scholar]
- Deloughry, R.; Pickup, E.; Ponnapalli, P. Closed loop control of a pneumatic conveying system using tomographic imaging. J. Electron. Imaging 2001, 10, 653–660. [Google Scholar] [CrossRef]
- Ponnapalli, P.V.S.; Benchebra, D.; Deloughry, R.; Ibrahim, I. Application of an ANN-based controller for the control of pneumatic conveyed polypropylene pellet flow. In Proceedings of the 5th World Congress in Industrial Process Tomography, Bergen, Norway, 3–6 September 2007; pp. 677–682. [Google Scholar]
- Cirstea, M.N.; Dinu, A.; Khor, J.G.; McCormick, M. Neural and Fuzzy Logic Control of Drives and Power Systems; Elsevier Ltd.: Amsterdam, The Netherlands, 2002; ISBN 0 7506 55585. [Google Scholar]
- Bukhari, S.F.A.; Yang, W.; McCann, H. A hybrid control strategy for oil separators based on electrical capacitance tomography images. Meas. Control 2007, 40, 211–221. [Google Scholar] [CrossRef]
- Hou, Z.; Jin, S. Model Free Adaptive Control-Theory and Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781138033962. [Google Scholar]
- Yang, Y.; Yang, W.; Zhong, H. Temperature distribution measurement and control of extrusion process by tomography. In Proceedings of the IST IEEE Workshop on Imaging Systems and Techniques, Chania, Greece, 10–12 September 2008; pp. 170–174. [Google Scholar] [CrossRef]
- Abouelazayem, S. Control of Continuous Casting Process Based on Distributed Sensing. Ph.D. Thesis, Technical University of Liberec, Liberec, Czech Republic, 2022. [Google Scholar]
- Rymarczyk, T.; Sikora, J. Applying industrial tomography to control and optimization flow systems. Open Phys. 2018, 16, 332–345. [Google Scholar] [CrossRef]
- Candy, J.V. Model-Based Processing: An Applied Subspace Identification Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 978-1-119-45776-3. [Google Scholar]
- Esfandiari, K.; Abdollahi, F.; Talebi, H.A. Neural Network-Based Adaptive Control of Uncertain Nonlinear Systems; Springer Nature: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Su, X.; Wen, Y.; Yang, Y.; Shi, P. Intelligent Control, Filtering and Model Reduction Analysis for Fuzzy-Model-Based Systems; Springer Nature: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlava, J.; Abouelazayem, S. Control Systems with Tomographic Sensors—A Review. Sensors 2022, 22, 2847. https://doi.org/10.3390/s22082847
Hlava J, Abouelazayem S. Control Systems with Tomographic Sensors—A Review. Sensors. 2022; 22(8):2847. https://doi.org/10.3390/s22082847
Chicago/Turabian StyleHlava, Jaroslav, and Shereen Abouelazayem. 2022. "Control Systems with Tomographic Sensors—A Review" Sensors 22, no. 8: 2847. https://doi.org/10.3390/s22082847
APA StyleHlava, J., & Abouelazayem, S. (2022). Control Systems with Tomographic Sensors—A Review. Sensors, 22(8), 2847. https://doi.org/10.3390/s22082847