DICOMization of Proprietary Files Obtained from Confocal, Whole-Slide, and FIB-SEM Microscope Scanners
<p>Depiction of the conversion of distinct proprietary files into DICOM, with advantages, enumerated.</p> "> Figure 2
<p>Overview of the proposed pipeline for the conversion of CLSM, WSI, and FIB-SEM microscope imaging modalities into the standard DICOM.</p> "> Figure 3
<p>Samples of different microscope imaging modalities (<b>a</b>). Six-channel mouse bone tissue (left leg femur, infected treated unsuccessfully) (<span class="html-italic">S. aureus</span>: Visualized in blue; RUNX2: Visualized in pink; nuclei: Visualized in green; actin cytoskeleton: Visualized in red; collagen (SHG 2 photon): Visualized in orange): Generated by Zeiss scanner, with the .czi extension (<b>b</b>) FIB-SEM sample image showing liver microvili: Generated by electron scanner, with the .tif extension (<b>c</b>). WSI sample image of mouse bone tissue (left leg femur, infected treated unsuccessfully): Generated by Hamamatsu scanner, with the .ndpi extension.</p> "> Figure 4
<p>Pipeline for the conversion of CLSM and FIB-SEM microscope imaging modalities into standard DICOM.</p> "> Figure 5
<p>Pipeline for the conversion of WSI imaging modalities into standard DICOM (<b>a</b>) Workflow of the pipeline, (<b>b</b>) Overview of function-1 and function-2.</p> "> Figure 6
<p>WSI image series of resolution layers; (<b>a</b>) complete resolution layers; (<b>b</b>) some missing resolution layers; (<b>c</b>) actual and found missing resolution layers after applying function-1 and function-2 for the .ndpi sample.</p> "> Figure 7
<p>Mapping a DICOM-compliant multi-resolution WSI pyramidal image. Each layer of the pyramid is a downsample of the WSI picture and is made up of a series of tiles. The tiles are encrypted as separate frames of the multi-frame DICOM instances (files).</p> "> Figure 8
<p>Four distinct (.czi, .nd2, .lif, and .lsm) CLSM microscope images successfully converted into standard DICOM.</p> "> Figure 9
<p>Bioimaging information of each microscope imaging modality is stored inside the metadata of each image: (<b>a</b>) Biological information of channel-1 of CLSM image (Nikon scanner), (<b>b</b>) FIB-SEM .tif sample biological information, (<b>c</b>) Metadata information about WSI sample (DCM_1D_1c-6c), base resolution layer.</p> "> Figure 10
<p>Two distinct (.mrc and .tif) FIB-SEM microscope images were successfully converted into standard DICOM.</p> "> Figure 11
<p>Eleven stack WSI images (belongs to .ndpi extension) successfully converted into standard DICOM.</p> "> Figure 12
<p>Screenshot of the generated DICOM file (of 11 stacks .ndpi WSI image) into Dicoogle WSI web viewer.</p> "> Figure 13
<p>Dicoogle PACS shows that the files in the eight distinct proprietary file formats were successfully indexed by the archive.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Datasets
2.2. Microscope Systems
2.2.1. Confocal Laser Scanning Microscopy
2.2.2. Whole Slide Imaging
2.2.3. Focused-Ion Beam Scanning Electron Microscope
2.3. Digital Imaging and Communication in Medicine (DICOM)
3. Overview of the Proposed Framework
3.1. CLSM and FIB-SEM Conversion Pipeline
3.2. WSI Conversion Pipeline
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Zuylen, J. The microscopes of Antoni van Leeuwenhoek. J. Microsc. 1981, 121, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Bohn, S.; Sperlich, K.; Allgeier, S.; Bartschat, A.; Prakasam, R.; Reichert, K.M.; Stolz, H.; Guthoff, R.; Mikut, R.; Köhler, B.; et al. Cellular in vivo 3D imaging of the cornea by confocal laser scanning microscopy. Biomed. Opt. Express 2018, 9, 2511–2525. [Google Scholar] [CrossRef] [PubMed]
- Paddock, S.W.; Eliceiri, K.W. Laser scanning confocal microscopy: History, applications, and related optical sectioning techniques. In Confocal Microscopy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–47. [Google Scholar]
- Walter, T.; Shattuck, D.W.; Baldock, R.; Bastin, M.E.; Carpenter, A.E.; Duce, S.; Ellenberg, J.; Fraser, A.; Hamilton, N.; Pieper, S.; et al. Visualization of image data from cells to organisms. Nat. Methods 2010, 7, S26–S41. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wong, S.T. Informatics challenges of high-throughput microscopy. IEEE Signal Process. Mag. 2006, 23, 63–72. [Google Scholar] [CrossRef]
- Meijering, E. Neuron tracing in perspective. Cytom. Part A 2010, 77, 693–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinevez, J.Y.; Perry, N.; Schindelin, J.; Hoopes, G.M.; Reynolds, G.D.; Laplantine, E.; Bednarek, S.Y.; Shorte, S.L.; Eliceiri, K.W. TrackMate: An open and extensible platform for single-particle tracking. Methods 2017, 115, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Eliceiri, K.W.; Berthold, M.R.; Goldberg, I.G.; Ibáñez, L.; Manjunath, B.S.; Martone, M.E.; Murphy, R.F.; Peng, H.; Plant, A.L.; Roysam, B.; et al. Biological imaging software tools. Nat. Methods 2012, 9, 697–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, W. Carl Zeiss, Ernst Abbe, and Advances in the Light Microscope. Microsc. Today 2017, 25, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Goode, A.; Gilbert, B.; Harkes, J.; Jukic, D.; Satyanarayanan, M. OpenSlide: A vendor-neutral software foundation for digital pathology. J. Pathol. Informatics 2013, 4, 27. [Google Scholar]
- Moore, J.; Linkert, M.; Blackburn, C.; Carroll, M.; Ferguson, R.K.; Flynn, H.; Gillen, K.; Leigh, R.; Li, S.; Lindner, D.; et al. OMERO and Bio-Formats 5: Flexible access to large bioimaging datasets at scale. In Proceedings of the Medical Imaging 2015: Image Processing, Orlando, FL, USA, 21–26 February 2015; Volume 9413, p. 941307. [Google Scholar]
- Herrmann, M.D.; Clunie, D.A.; Fedorov, A.; Doyle, S.W.; Pieper, S.; Klepeis, V.; Le, L.P.; Mutter, G.L.; Milstone, D.S.; Schultz, T.J.; et al. Implementing the DICOM standard for digital pathology. J. Pathol. Informatics 2018, 9, 37. [Google Scholar]
- Allan, C.; Burel, J.M.; Moore, J.; Blackburn, C.; Linkert, M.; Loynton, S.; MacDonald, D.; Moore, W.J.; Neves, C.; Patterson, A.; et al. OMERO: Flexible, model-driven data management for experimental biology. Nat. Methods 2012, 9, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Kahn, C.E.; Carrino, J.A.; Flynn, M.J.; Peck, D.J.; Horii, S.C. DICOM and radiology: Past, present, and future. J. Am. Coll. Radiol. 2007, 4, 652–657. [Google Scholar] [CrossRef]
- Huang, H.K.; Zhang, A.; Liu, B.; Zhou, Z.; Documet, J.; King, N.; Chan, L.W. Data grid for large-scale medical image archive and analysis. In Proceedings of the 13th Annual ACM International Conference on Multimedia, Hilton, Singapore, 6–11 November 2005; pp. 1005–1013. [Google Scholar]
- Bidgood, W.D., Jr.; Horii, S.C.; Prior, F.W.; Van Syckle, D.E. Understanding and using DICOM, the data interchange standard for biomedical imaging. J. Am. Med. Informatics Assoc. 1997, 4, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, Y.; Costa, C.; Pinho, E.; Silva, L.A.B.; Mandal, S.; Neugebauer, U. Dicomization of LSM fluorescence composite microscopic image with its bioimaging information. In Proceedings of the 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 7–9 June 2021; pp. 533–538. [Google Scholar] [CrossRef]
- Gupta, Y.; Costa, C.; Pinho, E.; Bastião Silva, L.A. A DICOM Standard Pipeline for Microscope Imaging Modalities. In Proceedings of the 2021 IEEE Symposium on Computers and Communications (ISCC), Athens, Greece, 5–8 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Gupta, Y.; Costa, C.; Pinho, E.; Silva, L.A.B. Improving the Visualization and Dicomization process for the Stacked Whole Slide Imaging. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Costa, C.; Ferreira, C.; Bastião, L.; Ribeiro, L.; Silva, A.; Oliveira, J.L. Dicoogle-an open source peer-to-peer PACS. J. Digit. Imaging 2011, 24, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Cell Image Library. Available online: http://www.cellimagelibrary.org (accessed on 20 February 2022).
- Cytomine. Available online: https://cytomine.com/collection (accessed on 20 February 2022).
- The Cancer Genome Atlas Program. Available online: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga (accessed on 20 February 2022).
- Openslide-testdata. Available online: https://openslide.cs.cmu.edu/download/openslide-testdata/ (accessed on 20 February 2022).
- Electron Microscopy Public Image Archive. Available online: https://www.ebi.ac.uk/empiar/ (accessed on 20 February 2022).
- Bacus, J.W.; Grace, L.J. Optical microscope system for standardized cell measurements and analyses. Appl. Opt. 1987, 26, 3280–3293. [Google Scholar] [CrossRef]
- Paddock, S.W. Confocal laser scanning microscopy. Biotechniques 1999, 27, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Zarella, M.D.; Bowman, D.; Aeffner, F.; Farahani, N.; Xthona, A.; Absar, S.F.; Parwani, A.; Bui, M.; Hartman, D.J. A practical guide to whole slide imaging: A white paper from the digital pathology association. Arch. Pathol. Lab. Med. 2019, 143, 222–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clunie, D.A. Dual-personality DICOM-TIFF for whole slide images: A migration technique for legacy software. J. Pathol. Informatics 2019, 10, 12. [Google Scholar] [CrossRef]
- Sakamoto, T. Focused Ion Beam Scanning Electron Microscope. In Compendium of Surface and Interface Analysis; Springer: Berlin/Heidelberg, Germany, 2018; pp. 181–186. [Google Scholar]
- Lešer, V.; Milani, M.; Tatti, F.; Pipan Tkalec, Ž.; Štrus, J.; Drobne, D. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research. Protoplasma 2010, 246, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kizilyaprak, C.; Daraspe, J.; Humbel, B. Focused ion beam scanning electron microscopy in biology. J. Microsc. 2014, 254, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.N.; Perriss, R.W.; Scarsbrook, A.F. DICOM demystified: A review of digital file formats and their use in radiological practice. Clin. Radiol. 2005, 60, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Helin, H.; Tolonen, T.; Ylinen, O.; Tolonen, P.; Näpänkangas, J.; Isola, J. Optimized JPEG 2000 compression for efficient storage of histopathological whole-slide images. J. Pathol. Informatics 2018, 9, 20. [Google Scholar]
- Stathonikos, N.; Veta, M.; Huisman, A.; van Diest, P.J. Going fully digital: Perspective of a Dutch academic pathology lab. J. Pathol. Informatics 2013, 4, 15. [Google Scholar] [CrossRef]
- Gupta, Y. Dicomized Result. 2022. Available online: https://figshare.com/projects/Dicomization_of_Proprietary_Files_obtained_from_Confocal_Whole-Slide_and_FIB-SEM_Microscope_Scanners/132077 (accessed on 20 February 2022).
Distinct Scanners | File Extension | Bit Depth | Image Size | Nos. of z-Stack Image | Nos. of Channels | Total Image | Conversion Time (s) |
---|---|---|---|---|---|---|---|
Zeiss | .czi | 16 | 431 MB | 46 | 3 | 138 | 2.12 |
Nikon | .nd2 | 12 | 604 MB | 24 | 3 | 72 | 7.39 |
Leica | .lif | 8 | 900 MB | 64 | 4 | 256 | 9.56 |
Zeiss | .lsm | 8 | 708 MB | 56 | 3 | 168 | 6.69 |
Tags | Unique Identifier |
---|---|
Patient ID | 186355337916212766286352571899677090176885900481 |
Study Instance UID | 1.186355337916212766286352571899677090176885900481 |
Series Instance UID | 1.186355337916212766286352571899677090176885900481.0 |
SOP Instance UID | 1.186355337916212766286352571899677090176885900481.0.23 |
SOP Class UID | 1.2.840.10008.5.1.4.1.1.77.1.2 |
Transfer Syntax UID | 1.2.840.10008.1.2 |
File Extension | Pixel Type | Image Size | Total Image | Conversion Time (s) |
---|---|---|---|---|
.mrc | 8 | 948 MB | 361 | 5.74 |
.tif | 8 | 2.7 GB | 447 | 14.76 |
File Extension | Image Size | Compression Quality | Converted to OME.tiff | Compression Quality | Image Size | Conversion Time |
---|---|---|---|---|---|---|
.tiff | 158 GB | Jpeg: 70 | 1.ome.tiff | Jpeg: 90 | 247.2 GB | 10 h |
.tif | 847 MB | Jpeg: 92 | 2.ome.tiff | Jpeg: 90 | 713.5 MB | 2.72 min |
File Extension | Actual Number of Resolution Layer | Image Dimension (x, y, z) | Stack (Y/N) | Image Size | Total Converted DICOM File Size | Total Number of Resolution Layer after Conversion | Total Conversion Time (min) |
---|---|---|---|---|---|---|---|
.ndpi | 5 | (166,656 × 60,928 × 11) | Y | 7.3 GB | 6.4 GB | 10 | 581.65 |
.ndpi | 5 | (142,848 × 68,608 × 11) | Y | 9.4 GB | 7.9 GB | 10 | 863.29 |
.scn | 6 | (41,984 × 41,088) | N | 149.8 MB | 183.2 MB | 12 | 2.41 |
.svs | 5 | (18,9448 × 41,237) | N | 871.6 MB | 777 MB | 10 | 19.95 |
.tif | 9 | (42,460 × 29,140) | N | 141.6 MB | 95.9 MB | 10 | 2.18 |
.tiff | 9 | (46,000 × 32,914) | N | 218 MB | 153.9 MB | 10 | 2.89 |
ome.tiff | 10 | (69,632 × 72,704) | N | 713.5 MB | 487.1 MB | 11 | 9.64 |
.bif | 10 | (105,817 × 93,978) | N | 3.9 GB | 1.7 GB | 11 | 109.32 |
.vsi | 10 | (66,982 × 76,963) | N | 512 MB | 982.3 MB | 10 | 3.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, Y.; Costa, C.; Pinho, E.; Bastião Silva, L. DICOMization of Proprietary Files Obtained from Confocal, Whole-Slide, and FIB-SEM Microscope Scanners. Sensors 2022, 22, 2322. https://doi.org/10.3390/s22062322
Gupta Y, Costa C, Pinho E, Bastião Silva L. DICOMization of Proprietary Files Obtained from Confocal, Whole-Slide, and FIB-SEM Microscope Scanners. Sensors. 2022; 22(6):2322. https://doi.org/10.3390/s22062322
Chicago/Turabian StyleGupta, Yubraj, Carlos Costa, Eduardo Pinho, and Luís Bastião Silva. 2022. "DICOMization of Proprietary Files Obtained from Confocal, Whole-Slide, and FIB-SEM Microscope Scanners" Sensors 22, no. 6: 2322. https://doi.org/10.3390/s22062322
APA StyleGupta, Y., Costa, C., Pinho, E., & Bastião Silva, L. (2022). DICOMization of Proprietary Files Obtained from Confocal, Whole-Slide, and FIB-SEM Microscope Scanners. Sensors, 22(6), 2322. https://doi.org/10.3390/s22062322