Mechanism Analysis and Self-Adaptive RBFNN Based Hybrid Soft Sensor Model in Energy Production Process: A Case Study
<p>The structure of radial basis function neural network.</p> "> Figure 2
<p>The schematic diagram of improved GA algorithm.</p> "> Figure 3
<p>Architecture of the proposed hybrid soft sensor method.</p> "> Figure 4
<p>Spread factors of SA-RBFNN and EF-RBFNN under different cluster number setting.</p> "> Figure 5
<p>Soft sensing results of VCM using three RBFNN based methods under different cluster number (<b>a</b>) 15 clusters (<b>b</b>) 20 clusters (<b>c</b>) 25 clusters (<b>d</b>) 30 clusters (<b>e</b>) 35 clusters (<b>f</b>) 40 clusters.</p> "> Figure 6
<p>Comparison results of the comparative methods under different cluster numbers.</p> "> Figure 7
<p>Soft sensing results of comparative models on testing dataset.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Radial Basis Function Neural Network (RBFNN)
2.2. Improved Genetic Algorithm (GA)
- Step 1: Generating the initial population
- Step 2: Evaluating the fitness of individuals
- Step 3: Selecting individuals
- Step 4: Crossover and Mutation operations
- Step 5: Generating a new population
2.3. Self-Adaptive RBFNN (SA-RBFNN)
3. Overview of the Proposed Methodology
3.1. Hybrid Soft Sensor Model
3.2. Model Evaluation
4. Case Study
4.1. Motivation of CMV Soft Sensor
4.2. Mechanism Modeling of CMV
4.3. Parameters Setting of SA-RBFNN
4.4. Dataset Description
4.5. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, W.; Hu, H.; Chang, C. Economic policy uncertainty and energy production in China. Environ. Sci. Pollut. Res. 2021, 28, 53544–53567. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Bai, W.; Huang, B. Output-relevant Variational Autoencoder for just-in-time soft sensor modeling with missing data. J. Process Control 2020, 92, 90–97. [Google Scholar] [CrossRef]
- Sun, Q.; Ge, Z. A survey on deep learning for data-driven soft sensors. IEEE Trans. Ind. Inform. 2021, 9, 5853–5866. [Google Scholar] [CrossRef]
- Chen, N.; Dai, J.; Yuan, X.; Gui, W.; Ren, W.; Koivo, H.N. Temperature prediction model for roller Kiln by ALD-based double locally weighted kernel principal component regression. IEEE Trans. Instrum. Meas. 2018, 8, 2001–2010. [Google Scholar] [CrossRef]
- Lian, P.; Liu, H.; Wang, X.; Guo, R. Soft sensor based on DBN-IPSO-SVR approach for rotor thermal deformation prediction of rotary air-preheater. Measurment 2020, 165, 108109. [Google Scholar] [CrossRef]
- Yuan, X.; Ge, Z.; Huang, B.; Song, Z. A probabilistic just-in-time learning framework for soft sensor development with missing data. IEEE Trans. Control Syst. Technol. 2017, 25, 1124–1132. [Google Scholar] [CrossRef]
- Shao, W.; Tian, X. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models. Chem. Eng. Res. Des. 2015, 95, 113–132. [Google Scholar] [CrossRef]
- Farahabadi, H.; Fatehi, A.; Nadali, A.; Shoorehdeli, M.A. Domain Adversarial Neural Network Regression to design transferable soft sensor in a power plant. Comput. Ind. 2021, 132, 103489. [Google Scholar]
- Yuan, X.; Li, L.; Shardt, Y.A.W.; Wang, Y.; Yang, C. Deep learning with spatiotemporal attention-based LSTM for Industrialsoft sensor model development. IEEE Trans. Ind. Electron. 2021, 5, 4404–4414. [Google Scholar] [CrossRef]
- Yuan, X.; Ge, Z.; Huang, B.; Song, Z.; Wang, Y. Semi-supervised JITL framework for nonlinear industrial soft sensing based on locally semi-supervised weighted PCR. IEEE Trans. Ind. Inform. 2017, 2, 532–541. [Google Scholar] [CrossRef]
- Zheng, J.; Song, Z.; Ge, Z. Probabilistic learning of partial least squares regression model: Theory and industrial applications. Chemometr. Intell. Lab. Syst. 2016, 158, 80–90. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Yuan, X. A two-layer ensemble learning framework for data-driven soft sensor of the diesel attributes in an industrial hydrocracking process. J. Chemometr. 2019, 33, e3185. [Google Scholar] [CrossRef]
- Bispo, V.; Scheid, C.; Calcada, L.; da Cruz Meleiro, L.A. Development of an ANN-based soft-sensor to estimate the apparent viscosity of water-based drilling fluids. J. Pet. Sci. Eng. 2017, 150, 69–73. [Google Scholar] [CrossRef]
- Pan, H.; Song, H.; Wang, Z. Soft sensor for net calorific value of coal based on improved PSO-SVM control. Eng. Appl. Inform. 2021, 23, 32–40. [Google Scholar]
- Yin, S.; Li, Y.; Sun, B.; Feng, Z.; Yan, F.; Ma, Y. Mixed kernel principal component weighted regression based on just-in-time learning for soft sensor modeling. Meas. Sci. Technol. 2022, 33, 015102. [Google Scholar] [CrossRef]
- Yuan, X.; Gu, Y.; Wang, Y.; Yang, C.; Gui, W. A deep supervised learning framework for data-driven soft sensor modeling of industrial processes. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4737–4746. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, C.; Sun, Y. Dual attention-based encoder–decoder: A customized sequence-to-sequence learning for soft sensor development. IEEE Trans. Neural Netw. Learn. Syst. 2021, 8, 3306–3317. [Google Scholar] [CrossRef]
- Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep learning. Appl. Intell. 2015, 42, 722–737. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Gai, J.; Zhong, K.; Du, X.; Yan, K.; Shen, J. Detection of gear fault severity based on parameter-optimized deep belief network using sparrow search algorithm. Measurement 2021, 185, 110079. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Xie, M. A joint long short-term memory and AdaBoost regression approach with application to remaining useful life estimation. Measurement 2021, 170, 108707. [Google Scholar] [CrossRef]
- Han, Y.; Tang, B.; Deng, L. Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis. Measurement 2018, 127, 246–255. [Google Scholar] [CrossRef]
- Qu, J.; Li, H.; Huang, G.; Yang, G. Intelligent analysis of tool wear state using Stacked Denoising Autoencoder with online sequential-extreme learning machine. Measurement 2021, 167, 108153. [Google Scholar]
- Xibilia, M.; Latino, Z.; Atanaskovic, A.; Donato, N. Soft sensors based on deep neural networks for applications in security and safety. IEEE Trans. Instrum. Meas. 2020, 69, 7869–7876. [Google Scholar] [CrossRef]
- Zhu, X.; Hao, K.; Huang, B. Soft sensor based on EXtreme gradient boosting and bidirectional converted gates long short-term memory self-attention network. Neurocomputing 2021, 434, 126–136. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Wang, K.; Wang, K.; Yuan, X. Deep learning with nonlocal and local structure preserving Stacked Autoencoder for soft sensor in industrial processes. Eng. Appl. Artif. Intell. 2021, 104, 104341. [Google Scholar] [CrossRef]
- Powell, M. Radial basis function approximations to polynomials. In Numerical Analysis; Longman Publishing Group: New York, NY, USA, 1989; pp. 223–241. [Google Scholar]
- Han, S.; Wang, H.; Tian, Y.; Christov, N. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 2020, 97, 171–181. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Hu, X. A fault diagnosis method for lithium-ion battery packs using improved RBF neural network. Front. Energy Res. 2021, 9, 2139. [Google Scholar] [CrossRef]
- Yao, F.; Zhao, J.; Li, X.; Mao, L.; Qu, K. RBF neural network based virtual synchronous generator control with improved frequency stability. IEEE Trans. Ind. Inform. 2021, 17, 4014–4024. [Google Scholar] [CrossRef]
- Hamadneh, N.; Sathasivam, S.; Choon, O. Higher order logic programming in radial basis function neural network. Appl. Math. Sci. 2012, 6, 115–127. [Google Scholar]
- Segal, R.; Kothari, M.; Madnani, S. Radial Basis Function (RBF) network adaptive power system stabilizer. IEEE Trans. Power Syst. 2000, 15, 722–727. [Google Scholar] [CrossRef]
- Gen, M. Genetic Algorithms and Their Applications; Springer: London, UK, 2006. [Google Scholar]
- Nikolaos, A.; Nikolaos, M. Optimization of fused deposition modeling process using a virus-evolutionary genetic algorithm. Comput. Ind. 2021, 125, 103371. [Google Scholar]
- Ren, Q.; Zhang, Y.; Nikolaidis, I.; Li, J.; Pan, Y. RSSI quantization and genetic algorithm based localization in wireless sensor networks. Ad Hoc Netw. 2020, 107, 102255. [Google Scholar] [CrossRef]
- Liang, H.; Zou, J.; Zuo, K.; Khan, M.J. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech. Syst. Signal Process. 2020, 142, 106708. [Google Scholar] [CrossRef]
- Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28, 1489–1498. [Google Scholar] [CrossRef]
- Jiang, Q.; Yan, X.; Hui, Y.; Gao, F. Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares. IEEE Trans. Ind. Electron. 2019, 67, 4098–4107. [Google Scholar] [CrossRef]
Hyper-Parameter | RI-RBFNN | RI-RBFNN | SA-RBFNN |
---|---|---|---|
Epochs | 100 | 100 | 100 |
Learning rate | 0.01 | 0.01 | 0.01 |
Batch size | 80 | 80 | 80 |
Number of clusters centers | 15, 20, 25, 30, 35, 40 | 15, 20, 25, 30, 35, 40 | 15, 20, 25, 30, 35, 40 |
Number of input layer nodes | 9 | 9 | 9 |
Number of output layer nodes | 1 | 1 | 1 |
Number of hidden units | 15, 20, 25, 30, 35, 40 | 15, 20, 25, 30, 35, 40 | 15, 20, 25, 30, 35, 40 |
Range of spread factors | 0.16, 0.58, 0.36, 0.98, 0.47, 0.25 | 0.383, 0.333, 0.301, 0.274, 0.256, 0.245 | Shown in Figure 4 |
Hyper-Parameter | Symbol | Values |
---|---|---|
Population size | P | 100 |
Chromosome length | L | 4 |
Probability of performing crossover | Pc | 0.9 (initial value) |
Probability of mutation | Pm | 0.5/L (initial value) |
Maximum number of generations | N | 100 |
Parameters | Descriptions | Units |
---|---|---|
mc | Coal quantity | t/h |
tc | Raw coal temperature | °C |
tin | Primary wind temperature at mill inlet | °C |
tout | Primary wind temperature at mill outlet | °C |
pin | Primary air pressure at mill inlet | kPa |
pout | Primary wind pressure at mill outlet | kPa |
∆p | Grinding bowl upper and lower pressure difference | kPa |
Im | Coal mill current | A |
pb | Furnace negative pressure | kPa |
D | Power load | MWe |
Model | RMSE | Space Complexity: Os | Time Complexity: Ot | |
---|---|---|---|---|
Total Parameters Number | Training Time (s per Sample) | Testing Time (s per Sample) | ||
Random forest | 0.0651 | -- | 0.0425 | 0.0250 |
SVM | 0.0695 | -- | 0.0574 | 0.0018 |
PLS regression | 0.0935 | -- | 0.0496 | 0.0073 |
DNN | 0.0496 | 1081 | 0.0961 | 0.0085 |
LSTM | 0.0562 | 7525 | 0.1053 | 0.1845 |
SAE | 0.0418 | 1051 | 0.0842 | 0.0165 |
SA-RBFNN | 0.0335 | 595 | 0.0618 | 0.0016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Zhang, J.; Yang, L.; Li, X.; Guo, L.; Song, L. Mechanism Analysis and Self-Adaptive RBFNN Based Hybrid Soft Sensor Model in Energy Production Process: A Case Study. Sensors 2022, 22, 1333. https://doi.org/10.3390/s22041333
Du J, Zhang J, Yang L, Li X, Guo L, Song L. Mechanism Analysis and Self-Adaptive RBFNN Based Hybrid Soft Sensor Model in Energy Production Process: A Case Study. Sensors. 2022; 22(4):1333. https://doi.org/10.3390/s22041333
Chicago/Turabian StyleDu, Junrong, Jian Zhang, Laishun Yang, Xuzhi Li, Lili Guo, and Lei Song. 2022. "Mechanism Analysis and Self-Adaptive RBFNN Based Hybrid Soft Sensor Model in Energy Production Process: A Case Study" Sensors 22, no. 4: 1333. https://doi.org/10.3390/s22041333
APA StyleDu, J., Zhang, J., Yang, L., Li, X., Guo, L., & Song, L. (2022). Mechanism Analysis and Self-Adaptive RBFNN Based Hybrid Soft Sensor Model in Energy Production Process: A Case Study. Sensors, 22(4), 1333. https://doi.org/10.3390/s22041333