Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets
<p>(<b>a</b>) Schematic presentation of the acoustofluidic concentration device. (<b>b</b>) Principle of the concentration process. (<b>c</b>) Experimentally observed 10 μm particle concentration at 48 kHz, 40 Vpp. (<b>d</b>) The trajectory of particles in cross-sections at different heights.</p> "> Figure 2
<p>The numerical model details. In the FE model, Γ<sub>1</sub> is the droplet area, Γ<sub>2</sub> is the PDMS area, and Γ<sub>3</sub> is the glass area.</p> "> Figure 3
<p>(<b>a</b>) The normalized acoustic pressure distribution. (<b>b</b>)The normalized acoustic streaming, the arrows in the primary and enlarged area are <<b><span class="html-italic">v</span></b><sub>2</sub>> and <<b><span class="html-italic">v</span></b><sub>2x</sub>>. (<b>c</b>) The time-series distribution of 10 μm particles upon <span class="html-italic">d</span><sub>m</sub> = 10 nm. The arrow represents the velocity direction, and the color represents the magnitude of velocity, m/s.</p> "> Figure 4
<p>(<b>a</b>) The intensity of acoustic streaming in the droplet of different cross-sections. The height of the droplet is 1.14 mm. (<b>b</b>) The force conditions for particles to gather in two positions.</p> "> Figure 5
<p>Time-series images of 10 μm particle concentration process. (<a href="#app1-sensors-22-01269" class="html-app">Supplemental Movie S4</a>) The images were taken at the <span class="html-italic">h</span> = 0. The equivalent diameter of the concentrated region at 40, 60, 80, 100, 200, 300 s are 216, 228, 265, 306, 340, 356 μm respectively.</p> "> Figure 6
<p>Particle concentration of different sizes within 300 s (48 kHz, 40 Vpp). (<b>a</b>–<b>d</b>) 7, 5, 2, and 0.5 μm particle. Where <span class="html-italic">d</span> is particle diameter. (<b>e</b>) 10 and 2 μm mixed particles. The images were taken at the <span class="html-italic">h</span> = 0. The equivalent diameter of the concentrated region for (<b>a</b>–<b>c</b>,<b>e</b>) are 352, 391, 167, and 429 respectively.</p> "> Figure 7
<p>Simultaneously concentration of 10 μm particles and cells in multiple sessile droplets. (<b>a</b>) Photograph image of the chip and numbered diagram of droplets. (<b>b</b>) The effect of particle concentration in nine droplets at 200 s. (<b>c</b>) Concentration effect of liver cancer cells in three droplets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Principle
2.2. Experimental Setup
2.3. Numerical Modeling Setup
3. Results and Discussions
3.1. Numerical Simulation Results
3.2. Experimentally Observed Particle Concentration Process
3.3. Concentration of Microparticles with Different Sizes
3.4. Simultaneously Concentration of Microparticles in Multiple Sessile Droplets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Sazan, H.; Piperno, S.; Layani, M.; Magdassi, S.; Shpaisman, H. Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves. J. Colloid Interface Sci. 2019, 536, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Dinh, N.D.; Luo, R.; Christine, M.T.A.; Lin, W.N.; Shih, W.C.; Goh, J.C.H.; Chen, C.H. Effective Light Directed Assembly of Building Blocks with Microscale Control. Small 2017, 13, 1700684. [Google Scholar] [CrossRef] [PubMed]
- Tait, A.; Glynne-Jones, P.; Hill, A.R.; Smart, D.E.; Blume, C.; Hammarstrom, B.; Fisher, A.L.; Grossel, M.C.; Swindle, E.J.; Hill, M.; et al. Engineering multi-layered tissue constructs using acoustic levitation. Sci. Rep. 2019, 9, 9789. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, P.; Wu, H.; Lee, S.; Sharma, A.; Hu, D.A.; Venkatraman, S.; Ganesan, A.V.; Usta, O.B.; Yarmush, M.; et al. Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials 2017, 131, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Li, P.; Wu, M.; Bachman, H.; Mesyngier, N.; Guo, X.; Liu, S.; Costanzo, F.; Huang, T.J. Enriching Nanoparticles via Acoustofluidics. ACS Nano 2017, 11, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Fan, C.; Zhou, M.; Jiang, F.; Drummer, D.; Jiang, B. Rapid Enrichment of Submicron Particles within a Spinning Droplet Driven by a Unidirectional Acoustic Transducer. Anal. Chem. 2021, 93, 13293–13301. [Google Scholar] [CrossRef]
- Liu, D.; Chen, S.; Naing, M.W. A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol. Bioeng. 2021, 118, 542–554. [Google Scholar] [CrossRef]
- Schneck, N.A.; Lowenthal, M.; Phinney, K.; Lee, S.B. Current trends in magnetic particle enrichment for mass spectrometry-based analysis of cardiovascular protein biomarkers. Nanomedicine 2015, 10, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Jonkheijm, P.; Terstappen, L.W.M.M.; Stevens, M. Magnetic particles for ctc enrichment. Cancers 2020, 12, 3525. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, C.; Mao, Z.; Bachman, H.; Becker, R.; Rufo, J.; Wang, Z.; Zhang, P.; Mai, J.; Yang, S.; et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 2021, 7, eabc0467. [Google Scholar] [CrossRef]
- Destgeer, G.; Cho, H.; Ha, B.H.; Jung, J.H.; Park, J.; Sung, H.J. Acoustofluidic particle manipulation inside a sessile droplet: Four distinct regimes of particle concentration. Lab Chip 2016, 16, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Tian, Z.; Hao, N.; Bachman, H.; Zhang, P.; Hu, J.; Huang, T.J. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab Chip 2020, 20, 3399–3409. [Google Scholar] [CrossRef] [PubMed]
- Armon, N.; Greenberg, E.; Layani, M.; Rosen, Y.S.; Magdassi, S.; Shpaisman, H. Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns. ACS Appl. Mater. Interfaces 2017, 9, 44214–44221. [Google Scholar] [CrossRef] [PubMed]
- Han, S.I.; Soo Kim, H.; Han, A. In-droplet cell concentration using dielectrophoresis. Biosens. Bioelectron. 2017, 97, 41–45. [Google Scholar] [CrossRef]
- Drinkwater, B.W. A Perspective on acoustical tweezers—Devices, forces, and biomedical applications. Appl. Phys. Lett. 2020, 117, 180501. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, M.; Yuan, S.; Fan, C.; Jiang, B. Numerical investigation of particle deflection in tilted-angle standing surface acoustic wave microfluidic devices. Appl. Math. Model. 2022, 101, 517–532. [Google Scholar] [CrossRef]
- Wu, M.; Ozcelik, A.; Rufo, J.; Wang, Z.; Fang, R.; Jun Huang, T. Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Friend, J.R.; Yeo, L.Y. Surface acoustic wave concentration of particle and bioparticle suspensions. Biomed. Microdevices 2007, 9, 647–656. [Google Scholar] [CrossRef]
- Hsu, J.C.; Lin, Y.D. Microparticle concentration and separation inside a droplet using phononic-crystal scattered standing surface acoustic waves. Sens. Actuators A Phys. 2019, 300, 111651. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Z.; Ai, Y. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration. Anal. Chem. 2020, 92, 12795–12800. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, M.; Yuan, S.; Jiang, B. Trapping stable bubbles in hydrophobic microchannel for continuous ultrasonic microparticle manipulation. Sens. Actuators A Phys. 2021, 331, 113045. [Google Scholar] [CrossRef]
- Ding, X.; Li, P.; Lin, S.C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F.; et al. Surface acoustic wave microfluidics. Lab Chip 2013, 13, 3626–3649. [Google Scholar] [CrossRef] [PubMed]
- Sudeepthi, A.; Yeo, L.; Sen, A.K. Cassie-Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Appl. Phys. Lett. 2020, 116, 093704. [Google Scholar] [CrossRef]
- Ahmed, H.; Park, J.; Destgeer, G.; Afzal, M.; Sung, H.J. Surface acoustic wave-based micromixing enhancement using a single interdigital transducer. Appl. Phys. Lett. 2019, 114, 043702. [Google Scholar] [CrossRef]
- Ni, Z.; Xu, G.; Huang, J.; Yao, G.; Tu, J.; Guo, X.; Zhang, D. Lamb wave coupled resonance for SAW acoustofluidics. Appl. Phys. Lett. 2021, 118, 051103. [Google Scholar] [CrossRef]
- Qin, X.; Wang, H.; Wei, X. Intra-droplet particle enrichment in a focused acoustic field. RSC Adv. 2020, 10, 11565–11572. [Google Scholar] [CrossRef] [Green Version]
- Akther, A.; Marqus, S.; Rezk, A.R.; Yeo, L.Y. Submicron Particle and Cell Concentration in a Closed Chamber Surface Acoustic Wave Microcentrifuge. Anal. Chem. 2020, 92, 10024–10032. [Google Scholar] [CrossRef]
- Bachman, H.; Gu, Y.; Rufo, J.; Yang, S.; Tian, Z.; Huang, P.H.; Yu, L.; Huang, T.J. Low-frequency flexural wave based microparticle manipulation. Lab Chip 2020, 20, 1281–1289. [Google Scholar] [CrossRef]
- Aghakhani, A.; Cetin, H.; Erkoc, P.; Tombak, G.I.; Sitti, M. Flexural wave-based soft attractor walls for trapping microparticles and cells. Lab Chip 2021, 21, 582–596. [Google Scholar] [CrossRef]
- Bachman, H.; Fu, H.; Huang, P.H.; Tian, Z.; Embry-Seckler, J.; Rufo, J.; Xie, Z.; Hartman, J.H.; Zhao, S.; Yang, S.; et al. Open source acoustofluidics. Lab Chip 2019, 19, 2404–2414. [Google Scholar] [CrossRef]
- Jiang, R.; Agrawal, S.; Aghaamoo, M.; Parajuli, R.; Agrawal, A.; Lee, A.P. Rapid isolation of circulating cancer associated fibroblasts by acoustic microstreaming for assessing metastatic propensity of breast cancer patients. Lab Chip 2021, 21, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.V.; Nanayakkara, I.A.; Simon, M.G.; Lee, A.P. Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. Lab Chip 2014, 14, 3860–3872. [Google Scholar] [CrossRef] [PubMed]
- Kurashina, Y.; Takemura, K.; Friend, J. Cell agglomeration in the wells of a 24-well plate using acoustic streaming. Lab Chip 2017, 17, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Whitehill, J.; Neild, A.; Ng, T.W.; Stokes, M. Collection of suspended particles in a drop using low frequency vibration. Appl. Phys. Lett. 2010, 96, 053501. [Google Scholar] [CrossRef]
- Oberti, S.; Neild, A.; Quach, R.; Dual, J. The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics 2009, 49, 47–52. [Google Scholar] [CrossRef]
- Lei, J. Formation of inverse Chladni patterns in liquids at microscale: Roles of acoustic radiation and streaming-induced drag forces. Microfluid. Nanofluidics 2017, 21, 50. [Google Scholar] [CrossRef] [Green Version]
- Riaud, A.; Baudoin, M.; Bou Matar, O.; Thomas, J.L.; Brunet, P. On the influence of viscosity and caustics on acoustic streaming in sessile droplets: An experimental and a numerical study with a cost-effective method. J. Fluid Mech. 2017, 821, 384–420. [Google Scholar] [CrossRef] [Green Version]
- Giorgini, A.; Avino, S.; Malara, P.; De Natale, P.; Gagliardi, G. Liquid droplet microresonators. Sensors 2019, 19, 473. [Google Scholar] [CrossRef] [Green Version]
- Robertson, W.M.; Lehman, G.W. The shape of a sessile drop. J. Appl. Phys. 1968, 39, 1994–1996. [Google Scholar] [CrossRef]
- Good, R.J.; Koo, M.N. The effect of drop size on contact angle. J. Colloid Interface Sci. 1979, 71, 283–292. [Google Scholar] [CrossRef]
- Lei, J.; Cheng, F.; Li, K.; Guo, Z. Two-dimensional concentration of microparticles using bulk acousto-microfluidics. Appl. Phys. Lett. 2020, 116, 033104. [Google Scholar] [CrossRef]
- Lei, J.; Cheng, F.; Liu, G.; Li, K.; Guo, Z. Dexterous formation of unconventional Chladni patterns using standing bulk acoustic waves. Appl. Phys. Lett. 2020, 117, 184101. [Google Scholar] [CrossRef]
- Muller, P.B.; Barnkob, R.; Jensen, M.J.H.; Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 2012, 12, 4617–4627. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, M.; Green, R.; Ohlin, M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip 2012, 12, 2438–2451. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, T.; Li, L.; Zhou, M.; Jiang, F. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets. Sensors 2022, 22, 1269. https://doi.org/10.3390/s22031269
Peng T, Li L, Zhou M, Jiang F. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets. Sensors. 2022; 22(3):1269. https://doi.org/10.3390/s22031269
Chicago/Turabian StylePeng, Tao, Luming Li, Mingyong Zhou, and Fengze Jiang. 2022. "Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets" Sensors 22, no. 3: 1269. https://doi.org/10.3390/s22031269
APA StylePeng, T., Li, L., Zhou, M., & Jiang, F. (2022). Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets. Sensors, 22(3), 1269. https://doi.org/10.3390/s22031269