Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments
<p>The realization of the IoV scenario with heterogeneous vehicular networks.</p> "> Figure 2
<p>System architecture.</p> "> Figure 3
<p>Building blocks of the network model.</p> "> Figure 4
<p>Vehicular cloud-oriented heterogeneous network model for IoV.</p> "> Figure 5
<p>The two-level vehicular cloud engine for IoV.</p> "> Figure 6
<p>Key functional modules in heterogeneous connection: (<b>a</b>) HIC and (<b>b</b>) HIG.</p> "> Figure 7
<p>Experimentally validated access-technology prioritization tree.</p> "> Figure 8
<p>Simulation scenario as open street view.</p> "> Figure 9
<p>Simulation scenario as simulator view.</p> "> Figure 10
<p>Message diversion in M2C-based accident prevention.</p> "> Figure 11
<p>Message drop in back-box-oriented emergency message delivery.</p> "> Figure 12
<p>Distributed delay in MEC-based parking helper.</p> "> Figure 13
<p>Stream utilization in telematics-based video data delivery.</p> ">
Abstract
:1. Introduction
- What are the key technical components involved in realizing a heterogeneous vehicular network model for the IoV?
- How to realize vehicular cloud-oriented data processing in vehicular environments enabling big traffic data computation for making intelligent traffic decisions?
- How to perform heterogeneous connection management and prioritization in dynamic vehicular traffic environments?
- Is the provisioned heterogeneous vehicular network model for the IoV efficient and scalable considering the growing network heterogeneousness, vehicle speed, and density?
2. Related Work
3. Internet of Connected Vehicles
3.1. Heterogeneous Vehicular Networks
3.2. Network Model
- (1)
- Vehicular Cloud
- Traffic-Oriented Cloud Services
- Smart Server
- (2)
- Connection for Heterogeneous Vehicular Communication
- Heterogeneous Internetworking Coordinator (HIC)
- Heterogeneous Internetworking Gateway
- (3)
- Smart Services as Clients
- Machine-to-Cloud-Oriented Accident Prevention
- Black-Box-Oriented Emergency Call Guarantee
- Mobile Edge Computing–Oriented Parking Helper
- Remote-Operation-Oriented Vehicular Telematics
3.3. Network Prioritization in Heterogeneous Vehicular Networks
4. Performance Evaluation—A Case Study
4.1. Simulation Setting and Metrics
4.2. Analysis of Results
4.3. Summary of Observations
4.3.1. Network Prioritization in Content-Centric Networking
4.3.2. Virtual Vehicle Hijacking in Vehicular Cyber System
4.3.3. Big Data Analytics in Heterogeneous Traffic Data
4.3.4. Vehicular-Cooperation-Oriented Edge Computing
4.3.5. Driver Privacy in Heterogeneous Vehicular Communications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, K.; Qu, Y.; Yang, K. A tutorial on the internet of things: From a heterogeneous network integration perspective. IEEE Netw. 2016, 30, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Lloret, J.; Tomas, J.; Canovas, A.; Parra, L. An Integrated IoT Architecture for Smart Metering. IEEE Commun. Mag. 2016, 54, 50–57. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Altameem, A.; Prasad, M.; Lin, C.T.; Liu, X. Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 2016, 4, 5356–5373. [Google Scholar] [CrossRef]
- Fangchun, Y.; Shangguang, W.; Jinglin, L.; Zhihan, L.; Qibo, S. An overview of internet of vehicles. China Commun. 2014, 11, 1–15. [Google Scholar]
- Kaiwartya, O.; Kumar, S. Cache agent-based geocasting in VANETs. Int. J. Inf. Commun. Technol. 2015, 7, 562–584. [Google Scholar] [CrossRef]
- Saini, M.; Alelaiwi, A.; El Saddik, A. How Close are We to Realizing a Pragmatic VANET Solution? A Meta-Survey. ACM Comput. Surv. 2015, 48, 29. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, Q.; Chatzimisios, P.; Xiang, W.; Zhou, Y. Heterogeneous vehicular networking: A survey on architecture, challenges, and solutions. IEEE Commun. Surv. Tutor. 2016, 17, 2377–2396. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Kumar, S. Geocast routing: Recent advances and future challenges in vehicular adhoc networks. In Proceedings of the 2014 International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 20–21 February 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 291–296. [Google Scholar]
- Aliyu, A.; Abdullah, A.H.; Kaiwartya, O.; Cao, Y.; Usman, M.J.; Kumar, S.; Lobiyal, D.K.; Raw, R.S. Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges. IETE Tech. Rev. 2017, 35, 523–547. [Google Scholar] [CrossRef]
- Applin, S.; Riener, A.; Fischer, M.D. Extending Driver-Vehicle Interface Research Into the Mobile Device Commons: Transitioning to (nondriving) passengers and their vehicles. IEEE Consum. Electron. Mag. 2015, 4, 101–106. [Google Scholar] [CrossRef]
- Chen, J.; Mao, G.; Li, C.; Zafar, A.; Zomaya, A. Throughput of Infrastructure-Based Cooperative Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2964–2979. [Google Scholar] [CrossRef] [Green Version]
- Forbes, I. Innovation is Great: Connected and Automated Vehicles. UK, Center for Connected and Autonomous Vehicles. 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/929352/innovation-is-great-connected-and-automated-vehicles-booklet.pdf (accessed on 15 January 2022).
- Niu, Z.; Shen, X.S.; Zhang, Q.; Tang, Y. Space-air-ground integrated vehicular network for connected and automated vehicles: Challenges and solutions. Intell. Converg. Netw. 2020, 1, 142–169. [Google Scholar] [CrossRef]
- Liu, R.; Liu, A.; Qu, Z.; Xiong, N.N. An UAV-Enabled Intelligent Connected Transportation System with 6G Communications for Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 1–15. [Google Scholar] [CrossRef]
- Su, Z.; Dai, M.; Xu, Q.; Li, R.; Zhang, H. UAV Enabled Content Distribution for Internet of Connected Vehicles in 5G Heterogeneous Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5091–5102. [Google Scholar] [CrossRef]
- Sharma, P.; Liu, H. A Machine-Learning-Based Data-Centric Misbehavior Detection Model for Internet of Vehicles. IEEE Internet Things J. 2020, 8, 4991–4999. [Google Scholar] [CrossRef]
- Mollah, M.B.; Zhao, J.; Niyato, D.; Guan, Y.L.; Yuen, C.; Sun, S.; Lam, K.-Y.; Koh, L.H. Blockchain for the Internet of Vehicles Towards Intelligent Transportation Systems: A Survey. IEEE Internet Things J. 2021, 8, 4157–4185. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, C.; Chu, W. A Cooperative Driving Strategy Based on Velocity Prediction for Connected Vehicles With Robust Path-Following Control. IEEE Internet Things J. 2020, 7, 3822–3832. [Google Scholar] [CrossRef]
- Fang, Y.; Min, H.; Wu, X.; Wang, W.; Zhao, X.; Mao, G. On-Ramp Merging Strategies of Connected and Automated Vehicles Considering Communication Delay. IEEE Trans. Intell. Transp. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Tao, L.; Watanabe, Y.; Li, Y.; Yamada, S.; Takada, H. Collision Risk Assessment Service for Connected Vehicles: Leveraging Vehicular State and Motion Uncertainties. IEEE Internet Things J. 2021, 8, 11548–11560. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Cao, Y.; Lloret, J.; Kumar, S.; Aslam, N.; Kharel, R.; Abdullah, A.H.; Shah, R.R. Geometry-Based Localization for GPS Outage in Vehicular Cyber Physical Systems. IEEE Trans. Veh. Technol. 2018, 67, 3800–3812. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Bouk, S.H.; Kim, D.; Rawat, D.B.; Song, H. Named Data Networking for Software Defined Vehicular Networks. IEEE Commun. Mag. 2017, 55, 60–66. [Google Scholar] [CrossRef]
- Eiza, M.H.; Ni, Q. Driving with Sharks: Rethinking Connected Vehicles with Vehicle Cybersecurity. IEEE Veh. Technol. Mag. 2017, 12, 45–51. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2017, 5, 19–35. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Kumar, S. Enhanced caching for geocast routing in vehicular Ad Hoc network. In Intelligent Computing, Networking, and Informatics; Springer: New Delhi, India, 2014; pp. 213–220. [Google Scholar]
- Zavvos, E.; Gerding, E.H.; Yazdanpanah, V.; Maple, C.; Stein, S.; Schraefel, M. Privacy and Trust in the Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 1–16. [Google Scholar] [CrossRef]
- Kerrache, C.A.; Lagraa, N.; Hussain, R.; Ahmed, S.H.; Benslimane, A.; Calafate, C.T.; Cano, J.-C.; Vegni, A.M. TACASHI: Trust-Aware Communication Architecture for Social Internet of Vehicles. IEEE Internet Things J. 2018, 6, 5870–5877. [Google Scholar] [CrossRef]
- Sheet, D.K.; Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Hassan, A.N.; Kumar, S. Location information verification using transferable belief model for geographic routing in vehicular ad hoc networks. IET Intell. Transp. Syst. 2016, 11, 53–60. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, K.; Yu, Y.; Lin, X.; Shen, X.S. Privacy-preserving Smart Parking Navigation Supporting Efficient Driving Guidance Retrieval. IEEE Trans. Veh. Technol. 2018, 67, 6504–6517. [Google Scholar] [CrossRef]
- Azad, M.A.; Bag, S.; Parkinson, S.; Hao, F. TrustVote: Privacy-Preserving Node Ranking in Vehicular Networks. IEEE Internet Things J. 2018, 6, 5878–5891. [Google Scholar] [CrossRef] [Green Version]
- Khatri, A.; Kumar, S.; Kaiwartya, O.; Aslam, N.; Meena, N.; Abdullah, A.H. Towards green computing in wireless sensor networks: Controlled mobility-aided balanced tree approach. Int. J. Commun. Syst. 2018, 31, e3463. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, L.; Du, S.; Zhu, H.; Chen, C. Achieving Differentially Private Location Privacy in Edge-Assistant Connected Vehicles. IEEE Internet Things J. 2018, 6, 4472–4481. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Vehicular network connectivity graph | |
Set of vehicular nodes as vertices of the graph | |
Set of vehicular communication links as edges of the graph | |
Set of vehicular communication flows in the network graph | |
Shortest communication paths between vehicular nodes | |
Number of segments in a particular path | |
Number of subpaths in a particular path | |
Weight of a path used for vehicular path selection | |
Link utilization ratio of a vehicular network | |
Link load of shared link in a particular path | |
Link capacity of shared link in aparticular path |
Client | Client-Oriented Priority Order High Low |
---|---|
Accident Prevention | WAVE/DSRC → 4G/LTE → ZigBee → Wi-Fi → Bluetooth → WiMax |
Emergency Call Guarantee | Bluetooth → ZeeBee → Wi-Fi → WAVE/DSRC → WiMax → 4G/LTE |
MEC-Oriented Parking Helper | WiMax → Wi-Fi → 4G/LTE → WAVE/DSRC → Bluetooth → ZigBee |
Vehicular Telematics | 4G/LTE → WiMax → WAVE/DSRC → Wi-Fi → Bluetooth → ZigBee |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khasawneh, A.M.; Helou, M.A.; Khatri, A.; Aggarwal, G.; Kaiwartya, O.; Altalhi, M.; Abu-ulbeh, W.; AlShboul, R. Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments. Sensors 2022, 22, 1247. https://doi.org/10.3390/s22031247
Khasawneh AM, Helou MA, Khatri A, Aggarwal G, Kaiwartya O, Altalhi M, Abu-ulbeh W, AlShboul R. Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments. Sensors. 2022; 22(3):1247. https://doi.org/10.3390/s22031247
Chicago/Turabian StyleKhasawneh, Ahmad M., Mamoun Abu Helou, Aanchal Khatri, Geetika Aggarwal, Omprakash Kaiwartya, Maryam Altalhi, Waheeb Abu-ulbeh, and Rabah AlShboul. 2022. "Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments" Sensors 22, no. 3: 1247. https://doi.org/10.3390/s22031247
APA StyleKhasawneh, A. M., Helou, M. A., Khatri, A., Aggarwal, G., Kaiwartya, O., Altalhi, M., Abu-ulbeh, W., & AlShboul, R. (2022). Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments. Sensors, 22(3), 1247. https://doi.org/10.3390/s22031247