Microscopies Enabled by Photonic Metamaterials
<p>Metasurface-based phase contrast microscopy. (<b>a</b>) Schematic of the surface plasmon enhanced ptychographic phase microscope. (<b>b</b>) SEM image of the nanostructured metasurface for surface plasmon generation. Sale bar: 450 nm. (<b>c</b>) Ptychographic reconstructed phase image of an unstained tissue section. (<b>d</b>) Metasurface-enhanced ptychographic phase image of the same tissue sample shown in (<b>c</b>). Scale bar: 25 μm. Reprinted with permission from Ref. [<a href="#B54-sensors-22-01086" class="html-bibr">54</a>]. Copyright 2021 Springer Nature. (<b>e</b>) Schematic of the compact metasurface-based quantitative phase microscope. (<b>f</b>) Three differential interference contrast (DIC) images obtained by the metasurfaces. Scale bar: 50 μm. (<b>g</b>) Reconstructed phase image of the target in (<b>f</b>). Scale bar: 50 μm. Reprinted with permission from Ref. [<a href="#B55-sensors-22-01086" class="html-bibr">55</a>]. Copyright 2019 Springer Nature.</p> "> Figure 2
<p>Metasurface-enabled darkfield microscopy. (<b>a</b>) Left: Schematic of the luminescent photonic substrate. Right: Darkfield image of a micro-algae on the nanophotonic substrate. Scale bar: 5 μm. (<b>b</b>) Schematic drawing of the microscope used for imaging with the luminescent surface as the imaging substrate. Reprinted with permission from Ref. [<a href="#B57-sensors-22-01086" class="html-bibr">57</a>]. Copyright 2020 Springer Nature. (<b>c</b>) Design of the planar photonic chip for darkfield illumination (at 750 nm excitation) and total internal reflection imaging (at 640 nm excitation). (<b>d</b>) Imaging demonstration of two polymer nanowires. Scar bar: 20 μm. Reprinted from Ref. [<a href="#B58-sensors-22-01086" class="html-bibr">58</a>].</p> "> Figure 3
<p>Metasurface-based refractometric microscopy for biomolecular sensing. (<b>a</b>) The single-wavelength algorithm with spectral displacement reconstruction assists the principle of imaging biosensors. A sketch of the real-time flow into the imaging platform shows a 2D microarray of all-dielectric sensors integrated with a microfluidic unit composed of three independent flow channels. Biomarker binding can be detected by tracking the resonance wavelength or by the intensity change (ΔI) at a fixed detection wavelength (<span class="html-italic">λ</span>p). Reprinted from Ref. [<a href="#B60-sensors-22-01086" class="html-bibr">60</a>]. (<b>b</b>) Reconstructed spectral shift (Δ<span class="html-italic">λ</span>) calibration curve of biotinylated silica nanoparticles. Reprinted from Ref. [<a href="#B60-sensors-22-01086" class="html-bibr">60</a>] (<b>c</b>) Nanoparticle-enhanced plasmonic imager is used to detect the antigen (red) that has been recognized by the capture antibody (blue) immobilized on the Au-NHA, and then is recognized by the detection antibody (green) attached to the Au-NPs. To achieve the purpose of detection and precise image processing, the transmission signal is displayed as an image heat map through the plasmonic NHA chip and CMOS camera, thereby realizing the digital detection of biomolecules. Reprinted from Ref. [<a href="#B61-sensors-22-01086" class="html-bibr">61</a>]. (<b>d</b>) Process of using DENIS to detect and quantify PCT and CRP, including the mixing and loading of serum samples, and the signal output through Au-NHA chip. Reprinted from Ref. [<a href="#B60-sensors-22-01086" class="html-bibr">60</a>].</p> "> Figure 4
<p>Metasurface-based refractometric label-free microscopy for cell morphology. (<b>a</b>) Schematic of the photonic-crystal-enhanced microscopy (PCEM) instrument. (<b>b</b>) Bright field (left) and PWV imaging (right) of Panc-1 cells attached to the PC surface. Reprinted with permission from Ref. [<a href="#B64-sensors-22-01086" class="html-bibr">64</a>]. Copyright 2013 The Royal Society of Chemistry. (<b>c</b>) SEM image of the dielectric nanohole array and simulated electric field at resonance in the inset. (<b>d</b>) Bright field (left) versus hyperspectral (right) imaging of an individual Escherichia coli obtained with a dielectric nanohole array. Reprinted from Ref. [<a href="#B68-sensors-22-01086" class="html-bibr">68</a>].</p> "> Figure 5
<p>Metamaterial-Enhanced Interferometric Scattering Microscopy (<b>a</b>) Schematic of the photonic resonator interferometric scattering microscopy (PRISM) instrument. Inset: detection scheme for label-free detection of pseudotyped SARS-CoV-2 using DNA aptamers. (<b>b</b>) Selectivity and (<b>c</b>) sensitivity of the PRISM-based SARS-CoV-2 biosensor. Error bars represent the standard deviations of at least three independent measurements. (* significant; ** very significant; *** and **** extremely significant.) Reprinted from Ref. [<a href="#B71-sensors-22-01086" class="html-bibr">71</a>].</p> "> Figure 6
<p>PCEM detection of protein–protein binding. (<b>a</b>) Schematic illustration of the attachment of AuNR–IgG (AuNR conjugated with SH-PEG–IgG) on a PC biosensor surface. (<b>b</b>) SEM images of AuNR–IgG attached to the PC biosensor surface. Inset: Zoomed-in image. (<b>c</b>) PCEM detected PIV images and the difference between without and with AuNR–IgG on the PC surface. (<b>d</b>) Two representative cross-section lines of the normalized intensity images with/without two AuNRs-IgG on the PC surface. Reprinted with permission from Ref. [<a href="#B76-sensors-22-01086" class="html-bibr">76</a>]. Copyright 2014 The Royal Society of Chemistry.</p> "> Figure 7
<p>Detection of microRNA with digital-resolution and single-base selectivity by photonic resonator absorption microscopy. (<b>a</b>) Components of the toehold DNA–AuNP and miR detection by PC biosensors. (<b>i</b>) The DNA probe (green color) is bound by a protector (blue color, partially complementary) which prevents binding to the PC sensor. (<b>ii</b>–<b>iv</b>) target miR (red color) binds as toehold (<b>ii</b>), resulting in strand displacement of the protector (<b>iii</b>), which (<b>iv</b>) stabilizes probe binding to the capture DNA on the PC surface (<b>iv</b>). (<b>b</b>) PRAM instrument schematic (<b>c</b>) Simulated reflectance spectrum of the PC alone (blue) and the AuNP–PC hybrid (red). According to simulation, hybrid formation results in a reflectance peak wavelength shift (Δ<span class="html-italic">λ</span>) to 628 nm from 625 nm and a reflectance peak intensity drop (ΔI). (<b>d</b>) A 2D gray-scale PRAM image (Upper left) is represented in the 3D contour plot (Lower right), demonstrating the individual AuNP peak intensity shifts. Reprinted from Ref. [<a href="#B77-sensors-22-01086" class="html-bibr">77</a>].</p> "> Figure 8
<p>Photonic Crystal enhanced Fluorescence (PCEF). Schematic of (<b>a</b>) PC-enhanced Fluorescence platform using [<a href="#B82-sensors-22-01086" class="html-bibr">82</a>] and (<b>b</b>) objective-coupled line-scanning PCEF microscope. Two selectable incident beams are represented in blue and red illumination paths. The collection fluorescent beam paths overlap in the region between the dichroic mirror 2, PC and objective lens are represented in orange.</p> "> Figure 9
<p>PCEF applications in bio-imaging. (<b>a</b>) PC band-diagram design for fluorescent enhancement. (<b>b</b>) Fluorescent images of micro-spots from the TNF-α and IL-3 sandwich immunoassay [<a href="#B83-sensors-22-01086" class="html-bibr">83</a>]. (<b>c</b>,<b>d</b>) Integrated microfluidic PCEF scanning system with pg/mL-level limits of detection. Reprinted with permission from Ref. [<a href="#B84-sensors-22-01086" class="html-bibr">84</a>] Copyright 2015 Elsevier B.V. (<b>e</b>) Fluorescence microscope images of labeled cells on different substrates. Top left: lateral grating plate. Top right: longitudinal grating plate. Bottom left: glass slide with coating. Bottom right: uncoated normal glass slide. Bar corresponds to 10 μm. Reprinted with permission from Ref. [<a href="#B85-sensors-22-01086" class="html-bibr">85</a>] Copyright 2015 The Optical Society.</p> "> Figure 10
<p>Metamaterial-based super resolution microscopy. (<b>a</b>). Diffraction limited image using conventional epifluorescence. Scale: 20 μm (<b>b</b>) speckle-MAIN image with improved spatial resolution. Reprinted from Ref. [<a href="#B98-sensors-22-01086" class="html-bibr">98</a>]. (<b>c</b>) the dispersion relation for SIM, PSIM and MAIN and their corresponding k-space shift in Fourier plane.</p> "> Figure 11
<p>Existing methods for fabricating metamaterials. Schematic of the (<b>a</b>) Direct writing laser. Reprinted with permission from Ref. [<a href="#B106-sensors-22-01086" class="html-bibr">106</a>]. Copyright 2015 American Chemical Society. (<b>b</b>) Interference lithography. Reprinted from refs. [<a href="#B106-sensors-22-01086" class="html-bibr">106</a>,<a href="#B107-sensors-22-01086" class="html-bibr">107</a>]. (<b>c</b>) Electron beam lithography. Reprinted from Ref. [<a href="#B108-sensors-22-01086" class="html-bibr">108</a>]. (<b>d</b>) Focused ion beam. Reprinted from Ref. [<a href="#B109-sensors-22-01086" class="html-bibr">109</a>]. (<b>e</b>) Nanoimprint without photoresist. Reprinted from Ref. [<a href="#B110-sensors-22-01086" class="html-bibr">110</a>]. (<b>f</b>) Nanoimprint with photoresist. Reprinted with permission from Ref. [<a href="#B76-sensors-22-01086" class="html-bibr">76</a>]. Copyright 2014 The Royal Society of Chemistry. (<b>g</b>) Template-assisted self-assembly. Reprinted from Ref. [<a href="#B111-sensors-22-01086" class="html-bibr">111</a>]. (<b>h</b>) Non-template self-assembly. Reprinted with permission from Ref. [<a href="#B112-sensors-22-01086" class="html-bibr">112</a>]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA.</p> "> Figure 12
<p>SEM images of meta-surfaces fabricated by various nanofabrication technology (<b>a</b>) Cross-sectional view of 3-D helical nanostructures fabricated by direct writing laser, Reprinted with permission from Ref. [<a href="#B148-sensors-22-01086" class="html-bibr">148</a>]. Copyright 2009 American Association for the Advancement of Science.; (<b>b</b>) A large array of rod shape by interference lithography for surface-enhanced infrared absorption. Reprinted with permission from Ref. [<a href="#B149-sensors-22-01086" class="html-bibr">149</a>]. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (<b>c</b>) An array of gold nanodisk array with sub-10 nm nanogaps produced by electron-beam lithography. Reprinted with permission from Ref. [<a href="#B116-sensors-22-01086" class="html-bibr">116</a>]. Copyright 2011 American Chemical Society. (<b>d</b>) An array of nanoribbons with 20 nm width produced by focused ion beam. Reprinted with permission from Ref. [<a href="#B126-sensors-22-01086" class="html-bibr">126</a>]. Copyright 2022 IOP Publishing. (<b>e</b>) A several-centimeter scale of nanopatterns of PET materials produced by nanoimprint without photoresist. Reprinted with permission from Ref. [<a href="#B150-sensors-22-01086" class="html-bibr">150</a>]. Copyright 2019 American Chemical Society. (<b>f</b>) 2-D photonic crystals fabricated by nanoimprint with photoresist. Reprinted with permission from Ref. [<a href="#B76-sensors-22-01086" class="html-bibr">76</a>]. Copyright 2014 The Royal Society of Chemistry; (<b>g</b>) an array of nanoline patterns consisting of serially connected nanorods via dip-coating using wrinkled PDMS substrates as templates. Reprinted with permission from Ref. [<a href="#B151-sensors-22-01086" class="html-bibr">151</a>]. Copyright 2014 American Chemical Society. (<b>h</b>) An array of self-assembled silver nanocubes with an average edge length of 93 ± 4 nm produced by nontemplate self-assembly. Reprinted with permission from Ref. [<a href="#B152-sensors-22-01086" class="html-bibr">152</a>]. Copyright 2016 American Chemical Society.</p> ">
Abstract
:1. Introduction
2. Metamaterial-Enhanced Label-Free Imaging
2.1. Metamaterial-Enhanced Phase Microscopy
2.2. Metamaterial-Enhanced Darkfield Microscopy
2.3. Metamaterial-Enhanced Refractometric Microscopy
2.4. Metamaterial-Enhanced Elastic Scattering Microscopy
3. Metamaterial-Enhanced Imaging with Tags
3.1. Plasmonic Nanoparticles
3.2. Fluorescent Tags
3.2.1. Photonic Crystal Metamaterials for Enhanced Fluorescence Microscopy
3.2.2. Metamaterial-Based Super Resolution Microscopy
4. Nanofabrication Technology for Metamaterials
4.1. Laser-Based Fabrication
4.2. Electron/Ion Beams
4.3. Nanoimprint
4.4. Self-Assembly
5. Discussion and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Svedendahl, M.; Antosiewicz, T.J.; Kall, M. Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography. ACS Nano 2013, 7, 8824–8832. [Google Scholar] [CrossRef] [PubMed]
- Spindler, S.; Ehrig, J.; König, K.; Nowak, T.; Piliarik, M.; Stein, H.E.; Taylor, R.W.; Garanger, E.; Lecommandoux, S.; Alves, I.D. Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. J. Phys. D Appl. Phys. 2016, 49, 274002. [Google Scholar] [CrossRef]
- Sevenler, D.; Daaboul, G.G.; Ekiz Kanik, F.; Ünlü, N.e.L.; Ünlü, M.S. Digital microarrays: Single-molecule readout with interferometric detection of plasmonic nanorod labels. ACS Nano 2018, 12, 5880–5887. [Google Scholar] [CrossRef] [PubMed]
- Sevenler, D.; Trueb, J.; Ünlü, M.S. Beating the reaction limits of biosensor sensitivity with dynamic tracking of single binding events. Proc. Natl. Acad. Sci. USA 2019, 116, 4129–4134. [Google Scholar] [CrossRef] [Green Version]
- Young, G.; Hundt, N.; Cole, D.; Fineberg, A.; Andrecka, J.; Tyler, A.; Olerinyova, A.; Ansari, A.; Marklund, E.G.; Collier, M.P. Quantitative mass imaging of single biological macromolecules. Science 2018, 360, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Pujals, S.; Albertazzi, L. Super-resolution Microscopy for Nanomedicine Research. ACS Nano 2019, 13, 9707–9712. [Google Scholar] [CrossRef]
- Pujals, S.; Feiner-Gracia, N.; Delcanale, P.; Voets, I.; Albertazzi, L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat. Rev. Chem. 2019, 3, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Howes, P.D.; Kim, E.; Spicer, C.D.; Thomas, M.R.; Lin, Y.; Crowder, S.W.; Pence, I.J.; Stevens, M.M. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot–DNA Conjugates. ACS Appl. Mater. Interfaces 2018, 10, 28290–28300. [Google Scholar] [CrossRef] [Green Version]
- Comstock, M.J.; Ha, T.; Chemla, Y.R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods 2011, 8, 335–340. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.C. Photonic Metamaterials and Metadevices. In Functional Metamaterials and Metadevices; Springer International Publishing: Cham, Switzerland, 2018; pp. 71–106. [Google Scholar] [CrossRef]
- Iwanaga, M. Photonic metamaterials: A new class of materials for manipulating light waves. Sci. Technol. Adv. Mater. 2012, 13, 053002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.K.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Sabri, L.; Huan, Q.L.; Liu, N.; Cunningham, B. Design of anapole mode electromagnetic field enhancement structures for biosensing applications. Opt. Express 2019, 27, 7196–7212. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, N.; Block, I.D.; Mathias, P.C.; Zhang, W.; Chow, E.; Malyarchuk, V.; Cunningham, B.T. Leaky-mode assisted fluorescence extraction: Application to fluorescence enhancement biosensors. Opt. Express 2008, 16, 21626–21640. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, N.; Zhang, W.; Mathias, P.C.; Chow, E.; Soares, J.A.; Malyarchuk, V.; Smith, A.D.; Cunningham, B.T. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat. Nanotechnol. 2007, 2, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.H.; Joannopoulos, J.D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.C.; Liao, C.Y.; Savinov, V.; Chung, T.L.; Chen, W.T.; Huang, Y.W.; Wu, P.R.; Chen, Y.H.; Liu, A.Q.; Zheludev, N.I.; et al. Optical Anapole Metamaterial. ACS Nano 2018, 12, 1920–1927. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, N.; Block, I.D.; Cunningham, B.T. Near UV-wavelength photonic crystal biosensor with enhanced surface-to-bulk sensitivity ratio. Appl. Phys. Lett. 2006, 89, 023901–023904. [Google Scholar] [CrossRef]
- Liu, J.N.; Schulmerich, M.V.; Bhargava, R.; Cunningham, B.T. Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging. Opt. Express 2014, 22, 18142–18158. [Google Scholar] [CrossRef] [Green Version]
- Kodali, A.K.; Schulmerich, M.; Ip, J.; Yen, G.; Cunningham, B.T.; Bhargava, R. Narrowband Midinfrared Reflectance Filters Using Guided Mode Resonance. Anal. Chem. 2010, 82, 5697–5706. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.Z.; Schonbrun, E.; Yang, T.; Crozier, K.B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Muhammad; Lim, C.W. From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials. Arch. Comput. Methods Eng. 2021, 1–62. [Google Scholar] [CrossRef]
- Magnusson, R.; Wang, S.S. New principle for optical filters. Appl. Phys. Lett. 1992, 61, 1022–1024. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Magnusson, R. Design of waveguide-grating filters with symmetrical line shapes and low sidebands. Opt. Lett. 1994, 19, 919–921. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Amemiya, T.; Kagami, H.; Nishiyama, N.; Arai, S. Control of slow-light effect in a metamaterial-loaded Si waveguide. Opt. Express 2020, 28, 23198–23208. [Google Scholar] [CrossRef]
- Tsakmakidis, K.L.; Boardman, A.D.; Hess, O. ‘Trapped rainbow’ storage of light in metamaterials. Nature 2007, 450, 397–401. [Google Scholar] [CrossRef]
- Cetin, A.E.; Artar, A.; Turkmen, M.; Yanik, A.A.; Altug, H. Plasmon induced transparency in cascaded pi-shaped metamaterials. Opt. Express 2011, 19, 22607–22618. [Google Scholar] [CrossRef]
- Pendry, J.B. Quasi-Extended Electron-States in Strongly Disordered-Systems. J. Phys. C Solid State 1987, 20, 733–742. [Google Scholar] [CrossRef]
- Palmer, S.J.; Xiao, X.; Pazos-Perez, N.; Guerrini, L.; Correa-Duarte, M.A.; Maier, S.A.; Craster, R.V.; Alvarez-Puebla, R.A.; Giannini, V. Extraordinarily transparent compact metallic metamaterials. Nat. Commun. 2019, 10, 2118. [Google Scholar] [CrossRef] [Green Version]
- Jun, Y.C.; Huang, K.C.Y.; Brongersma, M.L. Plasmonic beaming and active control over fluorescent emission. Nat. Commun. 2011, 2, 283. [Google Scholar] [CrossRef] [PubMed]
- Boroditsky, M.; Krauss, T.F.; Coccioli, R.; Vrijen, R.; Bhat, R.; Yablonovitch, E. Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals. Appl. Phys. Lett. 1999, 75, 1036–1038. [Google Scholar] [CrossRef] [Green Version]
- Boroditsky, M.; Vrijen, R.; Krauss, T.F.; Coccioli, R.; Bhat, R.; Yablonovitch, E. Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Technol. 1999, 17, 2096–2112. [Google Scholar] [CrossRef] [Green Version]
- Engelberg, J.; Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 2020, 11, 1991. [Google Scholar] [CrossRef]
- Liu, J.N.; Huang, Q.; Liu, K.K.; Singamaneni, S.; Cunningham, B.T. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling. Nano Lett. 2017, 17, 7569–7577. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Cunningham, B.T. Microcavity-Mediated Spectrally Tunable Amplification of Absorption in Plasmonic Nanoantennas. Nano Lett. 2019, 19, 5297–5303. [Google Scholar] [CrossRef]
- Kim, S.M.; Zhang, W.; Cunningham, B.T. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy. Opt. Express 2010, 18, 4300–4309. [Google Scholar] [CrossRef]
- Huang, Q.; Canady, T.; Gupta, R.; Li, N.; Singamaneni, S.; Cunningham, B.T. Enhanced plasmonic photocatalysis through cooperative plasmonic-photonic hybridization. ACS Photonics 2020, 7, 1994–2001. [Google Scholar] [CrossRef]
- Block, I.D.; Chan, L.L.; Cunningham, B.T. Large-area submicron replica molding of porous low-k dielectric films and applications to photonic crystal biosensor fabrication. Microelectron. Eng. 2007, 84, 603–608. [Google Scholar] [CrossRef]
- Choi, C.J.; Cunningham, B.T. A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. Lab Chip 2007, 7, 550–556. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Li, P.; Lin, B.; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuators B 2002, 81, 316–328. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Li, P.; Schulz, S.; Lin, B.; Baird, C.; Gerstenmaier, J.; Genick, C.; Wang, F.; Fine, E.; Laing, L. Label-Free Assays on the BIND System. J. Biomol. Screen. 2004, 9, 481–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, B.T.; Qiu, J.; Li, P.; Pepper, J.; Hugh, B. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Actuators B 2002, 85, 219–226. [Google Scholar] [CrossRef]
- Huang, Q.; Li, N.; Zhang, H.; Che, C.; Sun, F.; Xiong, Y.; Canady, T.D.; Cunningham, B.T. Critical Review: Digital resolution biomolecular sensing for diagnostics and life science research. Lab Chip 2020, 20, 2816–2840. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.W.; Kim, Y.; Yoon, G.; Rho, J. Recent Progress on Ultrathin Metalenses for Flat Optics. iScience 2020, 23, 101877. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zheng, G.; Yuan, Q.; Zang, W.; Chen, R.; Li, T.; Li, L.; Wang, S.; Wang, Z.; Zhu, S. Imaging based on metalenses. PhotoniX 2020, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Padilla, W.J.; Averitt, R.D. Imaging with metamaterials. Nat. Rev. Phys. 2021. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Review of Recent Metamaterial Microfluidic Sensors. Sensors 2018, 18, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Kumar Mishra, Y. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Popescu, G. Quantitative Phase Imaging of Cells and Tissues; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Balaur, E.; Cadenazzi, G.A.; Anthony, N.; Spurling, A.; Hanssen, E.; Orian, J.; Nugent, K.A.; Parker, B.S.; Abbey, B. Plasmon-induced enhancement of ptychographic phase microscopy via sub-surface nanoaperture arrays. Nat. Photonics 2021, 15, 222–229. [Google Scholar] [CrossRef]
- Kwon, H.; Arbabi, E.; Kamali, S.M.; Faraji-Dana, M.; Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 2020, 14, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Horio, T.; Hotani, H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 1986, 321, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Chazot, C.A.; Nagelberg, S.; Rowlands, C.J.; Scherer, M.R.; Coropceanu, I.; Broderick, K.; Kim, Y.; Bawendi, M.G.; So, P.T.; Kolle, M. Luminescent surfaces with tailored angular emission for compact dark-field imaging devices. Nat. Photonics 2020, 14, 310–315. [Google Scholar] [CrossRef]
- Kuai, Y.; Chen, J.; Fan, Z.; Zou, G.; Lakowicz, J.; Zhang, D. Planar photonic chips with tailored angular transmission for high-contrast-imaging devices. Nat. Commun. 2021, 12, 6835. [Google Scholar] [CrossRef]
- Tseng, M.L.; Jahani, Y.; Leitis, A.; Altug, H. Dielectric Metasurfaces Enabling Advanced Optical Biosensors. ACS Photonics 2020, 8, 47–60. [Google Scholar] [CrossRef]
- Jahani, Y.; Arvelo, E.R.; Yesilkoy, F.; Koshelev, K.; Cianciaruso, C.; De Palma, M.; Kivshar, Y.; Altug, H. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun. 2021, 12, 3246. [Google Scholar] [CrossRef]
- Belushkin, A.; Yesilkoy, F.; Altug, H. Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS Nano 2018, 12, 4453–4461. [Google Scholar] [CrossRef]
- Belushkin, A.; Yesilkoy, F.; González-López, J.J.; Ruiz-Rodríguez, J.C.; Ferrer, R.; Fàbrega, A.; Altug, H. Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager. Small 2020, 16, 1906108. [Google Scholar] [CrossRef] [Green Version]
- Lidstone, E.A.; Chaudhery, V.; Kohl, A.; Chan, V.; Wolf-Jensen, T.; Schook, L.B.; Bashir, R.; Cunningham, B.T. Label-free imaging of cell attachment with photonic crystal enhanced microscopy. Analyst 2011, 136, 3608–3615. [Google Scholar] [CrossRef]
- Chen, W.; Long, K.D.; Lu, M.; Chaudhery, V.; Yu, H.; Choi, J.S.; Polans, J.; Zhuo, Y.; Harley, B.A.; Cunningham, B.T. Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 2013, 138, 5886–5894. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Long, K.D.; Kurniawan, J.; Hung, M.; Yu, H.; Harley, B.A.; Cunningham, B.T. Planar Photonic Crystal Biosensor for Quantitative Label-Free Cell Attachment Microscopy. Adv. Opt. Mater. 2015, 3, 1623–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Choi, J.S.; Marin, T.; Yu, H.; Harley, B.A.; Cunningham, B.T. Quantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM). Light Sci. Appl. 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Juan-Colas, J.; Hitchcock, I.S.; Coles, M.; Johnson, S.; Krauss, T.F. Quantifying single-cell secretion in real time using resonant hyperspectral imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 13204–13209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conteduca, D.; Barth, I.; Pitruzzello, G.; Reardon, C.P.; Martins, E.R.; Krauss, T.F. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat. Commun. 2021, 12, 3293. [Google Scholar] [CrossRef]
- Conteduca, D.; Quinn, S.D.; Krauss, T.F. Dielectric metasurface for high-precision detection of large unilamellar vesicles. J. Opt. 2021, 23, 114002. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Dong, W.; Wan, Z.; Wang, S.; Tao, N. Plasmonic scattering imaging of single proteins and binding kinetics. Nat. Methods 2020, 17, 1010–1017. [Google Scholar] [CrossRef]
- Li, N.; Canady, T.D.; Huang, Q.; Wang, X.; Fried, G.A.; Cunningham, B.T. Photonic resonator interferometric scattering microscopy. Nat. Commun. 2021, 12, 1744. [Google Scholar] [CrossRef]
- Regan Emma, C.; Igarashi, Y.; Zhen, B.; Kaminer, I.; Hsu Chia, W.; Shen, Y.; Joannopoulos John, D.; Soljačić, M. Direct imaging of isofrequency contours in photonic structures. Sci. Adv. 2016, 2, e1601591. [Google Scholar] [CrossRef] [Green Version]
- Zhen, B.; Chua, S.-L.; Lee, J.; Rodriguez, A.W.; Liang, X.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M.; Shapira, O. Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proc. Natl. Acad. Sci. USA 2013, 110, 13711. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wang, X.; Tibbs, J.; Che, C.; Peinetti, A.S.; Zhao, B.; Liu, L.; Barya, P.; Cooper, L.; Rong, L.; et al. Label-Free Digital Detection of Intact Virions by Enhanced Scattering Microscopy. J. Am. Chem. Soc. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.T.; Canady, T.D.; Zhao, B.; Ghosh, S.; Li, N.; Huang, Q.; Xiong, Y.; Fried, G.; Kohli, M.; Demirci, U. Photonic metamaterial surfaces for digital resolution biosensor microscopies using enhanced absorption, scattering, and emission. In Integrated Sensors for Biological and Neural Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11663, p. 116630K. [Google Scholar]
- Zhuo, Y.; Hu, H.; Chen, W.; Lu, M.; Tian, L.; Yu, H.; Long, K.D.; Chow, E.; King, W.P.; Singamaneni, S. Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst 2014, 139, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Canady, T.D.; Li, N.; Smith, L.D.; Lu, Y.; Kohli, M.; Smith, A.M.; Cunningham, B.T. Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 19362–19367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, C.; Li, N.; Long, K.D.; Aguirre, M.Á.; Canady, T.D.; Huang, Q.; Demirci, U.; Cunningham, B.T. Activate capture and digital counting (AC+ DC) assay for protein biomarker detection integrated with a self-powered microfluidic cartridge. Lab Chip 2019, 19, 3943–3953. [Google Scholar] [CrossRef]
- Zhao, B.; Che, C.; Wang, W.; Li, N.; Cunningham, B.T. Single-step, wash-free digital immunoassay for rapid quantitative analysis of serological antibody against SARS-CoV-2 by photonic resonator absorption microscopy. Talanta 2021, 225, 122004. [Google Scholar] [CrossRef]
- Ghosh, S.; Li, N.; Xiong, Y.; Ju, Y.-G.; Rathslag, M.P.; Onal, E.; Falkiewicz, E.; Kohli, M.; Cunningham, B.T. A portable photonic resonator absorption microscope for point of care digital resolution nucleic acid molecular diagnositcs. Biomed. Opt. Express 2021, 12, 4637–4650. [Google Scholar] [CrossRef]
- Foteinopoulou, S. Photonic crystals as metamaterials. Phys. B Condens. Matter 2012, 407, 4056–4061. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, Q.; Canady, T.D.; Barya, P.; Arogundade, O.H.; Race, C.M.; Liu, S.; Smith, A.M.; Kohli, M.; Cunningham, B.T. Photonic Crystal Enhanced Quantum Dots for Digital-resolution Single-base Selectivity miRNA Sensing. In Proceedings of the 2021 Biomedical Engineering Society Annual Meeting, Orlando, FL, USA, 6–9 October 2021. [Google Scholar]
- Mathias, P.C.; Jones, S.I.; Wu, H.-Y.; Yang, F.; Ganesh, N.; Gonzalez, D.O.; Bollero, G.; Vodkin, L.O.; Cunningham, B.T. Improved Sensitivity of DNA Microarrays Using Photonic Crystal Enhanced Fluorescence. Anal. Chem. 2010, 82, 6854–6861. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Tang, T.; Xu, H.; Zhu, C.; Cunningham, B.T. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system. Biosens. Bioelectron. 2015, 73, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Tawa, K.; Hori, H.; Kintaka, K.; Kiyosue, K.; Tatsu, Y.; Nishii, J. Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Opt. Express 2008, 16, 9781–9790. [Google Scholar] [CrossRef]
- Hell, S.W.; Wichmann, J. Breaking the Diffraction Resolution Limit by Stimulated-Emission—Stimulated-Emission-Depletion Fluorescence Microscopy. Opt. Lett 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rust, M.J.; Bates, M.; Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 13081–13086. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.F.; Liu, Z.W. Plasmonic Structured Illumination Microscopy. Nano Lett. 2010, 10, 2531–2536. [Google Scholar] [CrossRef]
- Ponsetto, J.L.; Bezryadina, A.; Wei, F.F.; Onishi, K.; Shen, H.; Huang, E.; Ferrari, L.; Ma, Q.; Zou, Y.M.; Liu, Z.W. Experimental Demonstration of Localized Plasmonic Structured Illumination Microscopy. ACS Nano 2017, 11, 5344–5350. [Google Scholar] [CrossRef]
- Bezryadina, A.; Zhao, J.X.; Xia, Y.; Zhang, X.; Liu, Z.W. High Spatiotemporal Resolution Imaging with Localized Plasmonic Structured Illumination Microscopy. ACS Nano 2018, 12, 8248–8254. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Liu, Z.W. Metamaterial-assisted illumination nanoscopy. Natl. Sci Rev. 2018, 5, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Wood, B.; Pendry, J.B.; Tsai, D.P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 2006, 74, 115116. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Hu, H.; Huang, E.; Liu, Z.W. Super-resolution imaging by metamaterial-based compressive spatial-to-spectral transformation. Nanoscale 2017, 9, 18268–18274. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.U.; Zhao, J.X.; Ma, Q.; Khorashad, L.K.; Posner, C.; Li, G.R.; Wisna, G.B.M.; Burns, Z.; Zhang, J.; Liu, Z.W. Metamaterial assisted illumination nanoscopy via random super-resolution speckles. Nat. Commun. 2021, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Bohm, U.; Hell, S.W.; Schmidt, R. 4Pi-RESOLFT nanoscopy. Nat. Commun. 2016, 7, 10504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtengel, G.; Galbraith, J.A.; Galbraith, C.G.; Lippincott-Schwartz, J.; Gillette, J.M.; Manley, S.; Sougrat, R.; Waterman, C.M.; Kanchanawong, P.; Davidson, M.W.; et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 2009, 106, 3125–3130. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Z.; Smolyaninov, I.I.; Narimanov, E.E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 2012, 100, 181105. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, L.; Lu, D.L.; Lepage, D.; Liu, Z.W. Enhanced spontaneous emission inside hyperbolic metamaterials. Opt. Express 2014, 22, 4301–4306. [Google Scholar] [CrossRef]
- Lu, D.; Kan, J.J.; Fullerton, E.E.; Liu, Z.W. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 2014, 9, 48–53. [Google Scholar] [CrossRef]
- Lee, Y.U.; Zhao, J.X.; Mo, G.C.H.; Li, S.L.; Li, G.R.; Ma, Q.; Yang, Q.Q.; Lal, R.; Zhang, J.; Liu, Z.W. Metamaterial-Assisted Photobleaching Microscopy with Nanometer Scale Axial Resolution. Nano Lett. 2020, 20, 6038–6044. [Google Scholar] [CrossRef]
- Lee, Y.U.; Posner, C.; Zhao, J.X.; Zhang, J.; Liu, Z.W. Imaging of Cell Morphology Changes via Metamaterial-Assisted Photobleaching Microscopy. Nano Lett. 2021, 21, 1716–1721. [Google Scholar] [CrossRef]
- Bagheri, S.; Weber, K.; Gissibl, T.; Weiss, T.; Neubrech, F.; Giessen, H. Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement. ACS Photonics 2015, 2, 779–786. [Google Scholar] [CrossRef]
- Shimizu, Y. Laser Interference Lithography for Fabrication of Planar Scale Gratings for Optical Metrology. Nanomanuf. Metrol. 2021, 4, 3–27. [Google Scholar] [CrossRef]
- Su, V.-C.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical metasurfaces: Fabrication and applications [Invited]. Opt. Express 2018, 26, 13148–13182. [Google Scholar] [CrossRef] [PubMed]
- Keskinbora, K. Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography; SPIE: San Jose, CA, USA, 2019. [Google Scholar] [CrossRef]
- Oh, D.K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J.G.; Rho, J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron. 2021, 14, 229–251. [Google Scholar] [CrossRef]
- Jiang, C. Synthesis, Assembly, and Integration of Magnetic Nanoparticles for Nanoparticle-Based Spintronic Devices. Ph.D. Thesis, The University of Hong Kong, Hong Kong, China, 2017. [Google Scholar]
- Hong, Y.; Pourmand, M.; Boriskina, S.V.; Reinhard, B.M. Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions. Adv. Mater. 2013, 25, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Ergin, T.; Stenger, N.; Brenner, P.; Pendry, J.B.; Wegener, M. Three-Dimensional Invisibility Cloak at Optical Wavelengths. Science 2010, 328, 337–339. [Google Scholar] [CrossRef] [Green Version]
- Farhoud, M.; Ferrera, J.; Lochtefeld, A.J.; Murphy, T.E.; Schattenburg, M.L.; Carter, J.; Ross, C.A.; Smith, H.I. Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist. J. Vac. Sci. Technol. B 1999, 17, 3182–3185. [Google Scholar] [CrossRef]
- Zhuo, Y.; Hu, H.; Wang, Y.F.; Marin, T.; Lu, M. Photonic crystal slab biosensors fabricated with helium ion lithography (HIL). Sens. Actuat A-Phys. 2019, 297, 111493. [Google Scholar] [CrossRef]
- Duan, H.G.; Hu, H.L.; Kumar, K.; Shen, Z.X.; Yang, J.K.W. Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps. ACS Nano 2011, 5, 7593–7600. [Google Scholar] [CrossRef]
- Kamali, S.M.; Arbabi, E.; Kwon, H.; Faraon, A. Metasurface-generated complex 3-dimensional optical fields for interference lithography. Proc. Natl. Acad. Sci. USA 2019, 116, 21379–21384. [Google Scholar] [CrossRef] [Green Version]
- Golovkina, V.N.; Nealey, P.F.; Cerrina, F.; Taylor, J.W.; Solak, H.H.; David, C.; Gobrecht, J. Exploring the ultimate resolution of positive-tone chemically amplified resists: 26 nm dense lines using extreme ultraviolet interference lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2004, 22, 99–103. [Google Scholar] [CrossRef]
- Gan, Z.; Cai, J.; Liang, C.; Chen, L.; Min, S.; Cheng, X.; Cui, D.; Li, W.-D. Patterning of high-aspect-ratio nanogratings using phase-locked two-beam fiber-optic interference lithography. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2019, 37, 060601. [Google Scholar] [CrossRef]
- Liang, C.; Qu, T.; Cai, J.; Zhu, Z.; Li, S.; Li, W.-D. Wafer-scale nanopatterning using fast-reconfigurable and actively-stabilized two-beam fiber-optic interference lithography. Opt. Express 2018, 26, 8194–8200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Lipson, R.H. Interference lithography: A powerful tool for fabricating periodic structures. Laser Photonics Rev. 2010, 4, 568–580. [Google Scholar] [CrossRef]
- Jang, J.H.; Ullal, C.K.; Maldovan, M.; Gorishnyy, T.; Kooi, S.; Koh, C.Y.; Thomas, E.L. 3D micro- and nanostructures via interference lithography. Adv. Funct. Mater. 2007, 17, 3027–3041. [Google Scholar] [CrossRef]
- Zhang, C.; Divitt, S.; Fan, Q.B.; Zhu, W.Q.; Agrawal, A.; Lu, Y.Q.; Xu, T.; Lezec, H.J. Low-loss metasurface optics down to the deep ultraviolet region. Light-Sci. Appl. 2020, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.; Lee, S.Y.; Mun, S.E.; Lee, G.Y.; Sung, J.; Yun, H.; Yang, J.H.; Kim, H.O.; Hwang, C.Y.; Lee, B. Metasurface with Nanostructured Ge2Sb2Te5 as a Platform for Broadband-Operating Wavefront Switch. Adv. Opt. Mater. 2019, 7, 1900171. [Google Scholar] [CrossRef]
- Brar, V.W.; Jang, M.S.; Sherrott, M.; Lopez, J.J.; Atwater, H.A. Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators. Nano Lett. 2013, 13, 2541–2547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hui, C.; Sun, R.J.; Li, K.; He, K.; Ma, X.C.; Liu, F. A large-area 15 nm graphene nanoribbon array patterned by a focused ion beam. Nanotechnology 2014, 25, 135301. [Google Scholar] [CrossRef]
- Chen, Y.F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Tseng, A.A.; Chen, K.; Chen, C.D.; Ma, K.J. Electron beam lithography in nanoscale fabrication: Recent development. IEEE Trans. Electron. Packag. 2003, 26, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Watt, F.; Bettiol, A.A.; Kan, J.A.V.; Teo, E.J.; Breese, M.B.H. Ion beam lithography and nanofabrication: A review. Int. J. Nanosci. 2005, 4, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Nanoimprint lithography. J. Vac. Sci. Technol. B 1996, 14, 4129–4133. [Google Scholar] [CrossRef]
- Austin, M.D.; Ge, H.X.; Wu, W.; Li, M.T.; Yu, Z.N.; Wasserman, D.; Lyon, S.A.; Chou, S.Y. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 2004, 84, 5299–5301. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.Y.; Jo, S.; Oh, J.H.; Kim, J.T.; Han, C.S. Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Appl. Surf. Sci. 2019, 484, 317–325. [Google Scholar] [CrossRef]
- Wi, J.S.; Lee, S.; Lee, S.H.; Oh, D.K.; Lee, K.T.; Park, I.; Kwak, M.K.; Ok, J.G. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale 2017, 9, 1398–1402. [Google Scholar] [CrossRef]
- Gao, L.; Shigeta, K.; Vazquez-Guardado, A.; Progler, C.J.; Bogart, G.R.; Rogers, J.A.; Chanda, D. Nanoimprinting Techniques for Large-Area Three-Dimensional Negative Index Metamaterials with Operation in the Visible and Telecom Bands. ACS Nano 2014, 8, 5535–5542. [Google Scholar] [CrossRef] [PubMed]
- Rinnerbauer, V.; Lausecker, E.; Schaffler, F.; Reininger, P.; Strasser, G.; Geil, R.D.; Joannopoulos, J.D.; Soljacic, M.; Celanovic, I. Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber. Optica 2015, 2, 743–746. [Google Scholar] [CrossRef]
- Schift, H. Nanoimprint lithography: An old story in modern times? A review. J. Vac. Sci. Technol. B 2008, 26, 458–480. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.J. Nanoimprint Lithography: Methods and Material Requirements. Adv. Mater. 2007, 19, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Ozin, G.A.; Hou, K.; Lotsch, B.V.; Cademartiri, L.; Puzzo, D.P.; Scotognella, F.; Ghadimi, A.; Thomson, J. Nanofabrication by self-assembly. Mater. Today 2009, 12, 12–23. [Google Scholar] [CrossRef]
- Mayer, M.; Schnepf, M.J.; Konig, T.A.F.; Fery, A. Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces. Adv. Opt. Mater. 2019, 7, 1800564. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.B.; Akselrod, G.M.; Argyropoulos, C.; Huang, J.N.; Smith, D.R.; Mikkelsen, M.H. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 2015, 6, 7788. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.B.; Kuttner, C.; Konig, T.A.F.; Tsukruk, V.V.; Forster, S.; Karg, M.; Fery, A. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays. ACS Nano 2014, 8, 9410–9421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.A.; Bao, K.; Sun, L.; Bao, J.M.; Manoharan, V.N.; Nordlander, P.; Capasso, F. Plasmonic Mode Engineering with Templated Self-Assembled Nanoclusters. Nano Lett. 2012, 12, 5318–5324. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.; Steiner, A.M.; Roder, F.; Formanek, P.; Konig, T.A.F.; Fery, A. Aqueous Gold Overgrowth of Silver Nanoparticles: Merging the Plasmonic Properties of Silver with the Functionality of Gold. Angew. Chem. Int. Ed. 2017, 56, 15866–15870. [Google Scholar] [CrossRef]
- Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; de Abajo, F.J.G.; Fery, A.; Liz-Marzan, L.M. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Lett. 2015, 15, 5427–5437. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhou, Y.; Ugwu, C.F.; Du, A.; Kravchenko, I.I.; Valentine, J.G. Large-Scale Metasurfaces Based on Grayscale Nanosphere Lithography. ACS Photonics 2021, 8, 1824–1831. [Google Scholar] [CrossRef]
- Haynes, C.L.; Van Duyne, R.P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Parviz, B.A.; Ryan, D.; Whitesides, G.M. Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 2003, 26, 233–241. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; Freymann, G.v.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Giessen, H.; Neubrech, F. Large-Area Antenna-Assisted SEIRA Substrates by Laser Interference Lithography. Adv. Opt. Mater. 2014, 2, 1050–1056. [Google Scholar] [CrossRef]
- Oh, D.K.; Lee, S.; Lee, S.H.; Lee, W.; Yeon, G.; Lee, N.; Han, K.S.; Jung, S.; Kim, D.H.; Lee, D.Y.; et al. Tailored Nanopatterning by Controlled Continuous Nanoinscribing with Tunable Shape, Depth, and Dimension. ACS Nano 2019, 13, 11194–11202. [Google Scholar] [CrossRef] [PubMed]
- Hanske, C.; Tebbe, M.; Kuttner, C.; Bieber, V.; Tsukruk, V.V.; Chanana, M.; Konig, T.A.F.; Fery, A. Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly. Nano Lett. 2014, 14, 6863–6871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Li, J.H.; Gilroy, K.D.; Tao, J.; Zhu, C.L.; Yang, X.; Sun, X.J.; Xia, Y.N. Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution. ACS Nano 2016, 10, 9861–9870. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Li, N.; Che, C.; Wang, W.; Barya, P.; Liu, W.; Liu, L.; Wang, X.; Wu, S.; Hu, H.; et al. Microscopies Enabled by Photonic Metamaterials. Sensors 2022, 22, 1086. https://doi.org/10.3390/s22031086
Xiong Y, Li N, Che C, Wang W, Barya P, Liu W, Liu L, Wang X, Wu S, Hu H, et al. Microscopies Enabled by Photonic Metamaterials. Sensors. 2022; 22(3):1086. https://doi.org/10.3390/s22031086
Chicago/Turabian StyleXiong, Yanyu, Nantao Li, Congnyu Che, Weijing Wang, Priyash Barya, Weinan Liu, Leyang Liu, Xiaojing Wang, Shaoxiong Wu, Huan Hu, and et al. 2022. "Microscopies Enabled by Photonic Metamaterials" Sensors 22, no. 3: 1086. https://doi.org/10.3390/s22031086
APA StyleXiong, Y., Li, N., Che, C., Wang, W., Barya, P., Liu, W., Liu, L., Wang, X., Wu, S., Hu, H., & Cunningham, B. T. (2022). Microscopies Enabled by Photonic Metamaterials. Sensors, 22(3), 1086. https://doi.org/10.3390/s22031086