Magnetoelastic Sensor Optimization for Improving Mass Monitoring
<p>Illustration of the detection of a magnetoelastic sensor by measuring the change in its resonance spectrum. The magnetoelastic sensor and detection coil are inductively coupled, which records the sensor’s resonance spectrum by measuring the coil’s impedance spectrum.</p> "> Figure 2
<p>Microscopic images of the edge/corner profiles (<b>A</b>) and edge (<b>B</b>) of a mechanically sheared rectangular sensor that has been annealed. The images feature the 5 mm edge of a 12.7 × 5 mm sensor.</p> "> Figure 3
<p>Block-diagram of the key instrumentation and interfaces in this experimental setup.</p> "> Figure 4
<p>The DC bias coil (<b>A</b>) and detection coil (<b>B</b>) used in this experiment. During measurement, the detection coil is placed in the DC bias coil, such that the two coils are concentric. The exposed portion of the chamber slide is not used, as the sensor is only placed in the chamber that is completely inserted into the detection coil.</p> "> Figure 5
<p>A diagram showing the 8 locations (A–H) where drops were deposited on the surface of each 12.7 mm × 5 mm sensor. Each letter represents a different location. With ‘H’ being at the origin center of the sensor, the rest of the letters (A–G) are mirrored across the four quadrants of the sensor surface to show symmetry.</p> "> Figure 6
<p>Schematic representation of magnetic field orientation and angles of maximum displacement in this study. The bias and activation fields are applied parallel and coincident with the 0° alignment of each shape, which is denoted by the darker color configuration. The lighter color configuration shows the same edge/corner that was initially aligned with 0° but is now aligned with the maximum displacement angle for that shape. The direction of applied fields remained the same throughout the experiments.</p> "> Figure 7
<p>Charts illustrating the range of sensitivities that exist across the sensor surface in 3D (<b>A</b>) and as 2D lines along the length of the sensor (<b>B</b>). The rectangular sensors were assumed to behave symmetrically. The horizontal axes in both figures represent the entire length of the sensor, with the center of the sensor defined as the origin.</p> "> Figure 8
<p>Changes in the sensor’s resonance frequency at varying directions of magnetic field. Three shapes of sensors were evaluated: rectangular (<b>A</b>, 12.7 mm × 5 mm), square (<b>B</b>, length = 12.7 mm), and equilateral triangle (<b>C</b>, base = 14.6 mm, height = 12.7 mm). Angular increments were selected based on the rotational symmetry of the shape. (<span class="html-italic">n</span> = 5; error = ± standard deviation).</p> "> Figure 9
<p>Plots of a single square sensor’s resonances at 0° (<b>A</b>), 45° (<b>B</b>), 90° (<b>C</b>), and 135° (<b>D</b>) rotations from the normal orientation.</p> "> Figure 10
<p>A plot of the results of the DC bias field optimization experiment (<b>A</b>) and an example of the under- and over-biasing effects on the resonance spectrum (optimal bias at 1.71 kA/m) (<b>B</b>). The sensors were all fabricated at an aspect ratio of 2.5 length over width. (<span class="html-italic">n</span> = 5; error = ± standard deviation).</p> "> Figure 11
<p>The responses of rectangular sensors fabricated at lengths 9 mm (<b>A</b>) and 12.7 mm (<b>B</b>) with varying widths were plotted against the surface area of those sensors. (<span class="html-italic">n</span> = 4; error = ± standard deviation).</p> "> Figure 12
<p>The response of rectangular sensors fabricated at lengths 9 mm (<b>A</b>) and 12.7 mm (<b>B</b>), normalized for their surface area, plotted against the aspect ratio of those sensors (<span class="html-italic">n</span> = 4, error = ± standard deviation).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Fabrication
2.2. Detection System
2.3. Determining Mass-Loading Sensitivity at Various Locations of the Sensor
2.4. Effects of Rotation on the Resonance Spectrum for Sensors of Different Shapes
2.5. Determination of Optimal DC Bias Field Magnitude for Rectangular Sensor Resonance
2.6. Effect of Aspect Ratio on Rectangular Sensor Resonance
3. Results and Discussion
3.1. Mass-Loading Sensitivity at Various Locations of the Sensor
3.2. Effects of Rotation on the Resonance Spectrum of Different Shapes
3.3. Optimization of the DC Bias Field
3.4. Effect of Aspect Ratio on the Sensor’s Resonance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacella, N.; DeRouin, A.; Pereles, B.; Ong, K.G. Geometrical modification of magnetoelastic sensors to enhance sensitivity. Smart Mater. Struct. 2015, 24, 025018. [Google Scholar] [CrossRef]
- Grimes, C.; Mungle, C.; Zeng, K.; Jain, M.; Dreschel, W.; Paulose, M.; Ong, K. Wireless Magnetoelastic Resonance Sensors: A Critical Review. Sensors 2002, 2, 294–313. [Google Scholar] [CrossRef] [Green Version]
- Grimes, C.A.; Kouzoudis, D. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors. Sens. Actuators A Phys. 2000, 84, 205–212. [Google Scholar] [CrossRef]
- García-Arribas, A.; Gutiérrez, J.; Kurlyandskaya, G.; Barandiarán, J.; Svalov, A.; Fernández, E.; Lasheras, A.; De Cos, D.; Bravo-Imaz, I. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity. Sensors 2014, 14, 7602–7624. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 2016, 36, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Sisniega, B.; Sagasti Sedano, A.; Gutiérrez, J.; García-Arribas, A. Real Time Monitoring of Calcium Oxalate Precipitation Reaction by Using Corrosion Resistant Magnetoelastic Resonance Sensors. Sensors 2020, 20, 2802. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Thanhthuy, T.T.; Zhou, L.; Huang, C.A.; Yuan, L.; Cai, Q. A wireless and sensitive detection of octachlorostyrene using modified AuNPs as signal-amplifying tags. Biosens. Bioelectron. 2014, 52, 427–432. [Google Scholar] [CrossRef]
- Zourob, M.; Ong, K.G.; Zeng, K.; Mouffouk, F.; Grimes, C.A. A wireless magnetoelastic biosensor for the direct detection of organophosphorus pesticides. Analyst 2007, 132, 338–343. [Google Scholar] [CrossRef]
- Ong, K.G.; Zeng, K.; Yang, X.; Shankar, K.; Ruan, C.; Grimes, C.A. Quantification of multiple bioagents with wireless, remote-query magnetoelastic microsensors. IEEE Sens. J. 2006, 6, 514–523. [Google Scholar] [CrossRef]
- Ong, K.G.; Leland, J.M.; Zeng, K.; Barrett, G.; Zourob, M.; Grimes, C.A. A rapid highly-sensitive endotoxin detection system. Biosens. Bioelectron. 2006, 21, 2270–2274. [Google Scholar] [CrossRef]
- Possan, A.L.; Menti, C.; Beltrami, M.; Santos, A.D.; Roesch-Ely, M.; Missell, F.P. Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli. Mater. Sci. Eng. C 2016, 58, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Menti, C.; Henriques, J.A.P.; Missell, F.P.; Roesch-Ely, M. Antibody-based magneto-elastic biosensors: Potential devices for detection of pathogens and associated toxins. Appl. Microbiol. Biotechnol. 2016, 100, 6149–6163. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, H.; Lakshmanan, R.S.; Johnson, M.L.; Wan, J.; Chen, I.-H.; Wikle, H.C.; Petrenko, V.A.; Barbaree, J.M.; Chin, B.A. Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors. Biosens. Bioelectron. 2009, 24, 1730–1736. [Google Scholar] [CrossRef]
- Kirchhof, C.; Krantz, M.; Teliban, I.; Jahns, R.; Marauska, S.; Wagner, B.; Knöchel, R.; Gerken, M.; Meyners, D.; Quandt, E. Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 2013, 102, 232905. [Google Scholar] [CrossRef]
- Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J.L.; Gerken, M.; Knöchel, R.; Quandt, E. Magnetoelectric thin film composites with interdigital electrodes. Appl. Phys. Lett. 2013, 103, 032902. [Google Scholar] [CrossRef]
- Krause, H.-J.; Dong, H. Biomagnetic Sensing. In Label-Free Biosensing; Springer Series on Chemical Sensors and Biosensors; Springer International Publishing: Cham, Switzerland, 2017; pp. 449–474. [Google Scholar]
- Andra, W.; Nowak, H. Magnetism in Medicine: A Handbook, 2nd ed.; Wiley: Weinheim, Germany, 2007. [Google Scholar]
- Modzelewski, C.; Savage, H.; Kabacoff, L.; Clark, A. Magnetomechanical coupling and permeability in transversely annealed metglas 2605 alloys. IEEE Trans. Magn. 1981, 17, 2837–2839. [Google Scholar] [CrossRef]
- Hernando, A. Metallic glasses and sensing applications. J. Phys. E Sci. Instrum. 1988, 21, 1129–1139. [Google Scholar] [CrossRef]
- O’Handley, R.C. Modern Magnetic Materials: Principles and Applications; Wiley-VCH: New York, NY, USA, 1999. [Google Scholar]
- Shekhar, S.; Karipott, S.S.; Guldberg, R.E.; Ong, K.G. Magnetoelastic Sensors for Real-Time Tracking of Cell Growth. Biotechnol. Bioeng. 2021, 118, 2380–2385. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, M.; Li, Q.; Cai, Q.; Yao, S.; Grimes, C.A. In-situ monitoring of breast cancer cell (MCF-7) growth and quantification of the cytotoxicity of anticancer drugs fluorouracil and cisplatin. Biosens. Bioelectron. 2008, 24, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Guntupalli, R.; Hu, J.; Lakshmanan, R.S.; Huang, T.S.; Barbaree, J.M.; Chin, B.A. A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Biosens. Bioelectron. 2007, 22, 1474–1479. [Google Scholar] [CrossRef]
- Guntupalli, R.; Lakshmanan, R.S.; Hu, J.; Huang, T.S.; Barbaree, J.M.; Vodyanoy, V.; Chin, B.A. Rapid and sensitive magnetoelastic biosensors for the detection of Salmonella typhimurium in a mixed microbial population. J. Microbiol. Methods 2007, 70, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.; Huang, S.; Cai, Q.; Yao, S.; Zeng, K.; Grimes, C.A. Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device. Biosens. Bioelectron. 2007, 23, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Meyers, K.M.; Ong, K.G. Magnetoelastic Materials for Monitoring and Controlling Cells and Tissues. Sustainability 2021, 13, 13655. [Google Scholar] [CrossRef]
- Sagasti, A.; Gutiérrez, J.; Lasheras, A.; Barandiarán, J.M. Size Dependence of the Magnetoelastic Properties of Metallic Glasses for Actuation Applications. Sensors 2019, 19, 4296. [Google Scholar] [CrossRef] [Green Version]
- Sagasti, A.; Gutierrez, J.; San Sebastian, M.; Barandiaran, J.M. Magnetoelastic Resonators for Highly Specific Chemical and Biological Detection: A Critical Study. IEEE Trans. Magn. 2017, 53, 4000604. [Google Scholar] [CrossRef]
- Saiz, P.G.; Gandia, D.; Lasheras, A.; Sagasti, A.; Quintana, I.; Fdez-Gubieda, M.L.; Gutiérrez, J.; Arriortua, M.I.; Lopes, A.C. Enhanced mass sensitivity in novel magnetoelastic resonators geometries for advanced detection systems. Sens. Actuators B Chem. 2019, 296, 126612. [Google Scholar] [CrossRef]
- Saiz, P.G.; Porro, J.M.; Lasheras, A.; de Luis, R.F.; Quintana, I.; Arriortua, M.I.; Lopes, A.C. Influence of the magnetic domain structure in the mass sensitivity of magnetoelastic sensors with different geometries. J. Alloys Compd. 2021, 863, 158555. [Google Scholar] [CrossRef]
- Metglas® 2826 MB. Available online: www.metglas.com (accessed on 11 November 2021).
- Holmes, H.R.; Tan, E.L.; Ong, K.G.; Rajachar, R.M. Fabrication of Biocompatible, Vibrational Magnetoelastic Materials for Controlling Cellular Adhesion. Biosensors 2012, 2, 57–69. [Google Scholar] [CrossRef] [Green Version]
- D’Alessio, S.J.D. Forced free vibrations of a square plate. SN Appl. Sci. 2021, 3, 60. [Google Scholar] [CrossRef]
- Chen, D.-X.; Brug, J.A.; Goldfarb, R.B. Demagnetizing factors for cylinders. IEEE Trans. Magn. 1991, 27, 3601–3619. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skinner, W.S.; Zhang, S.; Guldberg, R.E.; Ong, K.G. Magnetoelastic Sensor Optimization for Improving Mass Monitoring. Sensors 2022, 22, 827. https://doi.org/10.3390/s22030827
Skinner WS, Zhang S, Guldberg RE, Ong KG. Magnetoelastic Sensor Optimization for Improving Mass Monitoring. Sensors. 2022; 22(3):827. https://doi.org/10.3390/s22030827
Chicago/Turabian StyleSkinner, William S., Sunny Zhang, Robert E. Guldberg, and Keat Ghee Ong. 2022. "Magnetoelastic Sensor Optimization for Improving Mass Monitoring" Sensors 22, no. 3: 827. https://doi.org/10.3390/s22030827
APA StyleSkinner, W. S., Zhang, S., Guldberg, R. E., & Ong, K. G. (2022). Magnetoelastic Sensor Optimization for Improving Mass Monitoring. Sensors, 22(3), 827. https://doi.org/10.3390/s22030827