Pocketable Labs for Everyone: Synchronized Multi-Sensor Data Streaming and Recording on Smartphones with the Lab Streaming Layer
<p>(<b>A</b>) Illustration of the setup of scenario 1A. Two phones were running the Sine-Wave app, while LabRecorder on PC recorded all data streams. Data were streamed with different sampling rates. (<b>B</b>) Illustration of a misalignment over time. Shown are 4 s of data. The upper plot shows data on their respective time scales diverging over time. The lower plot shows temporally aligned (resampled) data.</p> "> Figure 2
<p>(<b>A</b>) Illustration of scenario 1B setup using sensor data as a data source. Two phones were moved together while Send-a was streaming sensor values. On PC, LabRecorder was recording all data streams to file. (<b>B</b>) Nine minutes of data recorded from three different sensors. Displayed is one channel for every sensor from phone 1 (blue) and phone 2 (orange).</p> "> Figure 3
<p>(<b>A</b>) Illustration of scenario 2. A PC streamed data which was recorded by Record-a on phone and LabRecorder on PC simultaneously. (<b>B</b>) 9.5 min of data from the same channel recorded on the PC and on the phone.</p> "> Figure 4
<p>(<b>A</b>) Illustration of scenario 3. Both apps, Send-a and Record-a, were running on one phone, streaming and recording sensor data. On PC, LabRecorder was recording all data for validation purposes. (<b>B</b>) Selection of sensor data recorded on the PC and on the phone. Shown are 22 min of data from one channel per sensor.</p> "> Figure A1
<p>(<b>A</b>) Illustration of the timing test. A smartphone running Send-a was used to stream accelerometer data. On PC, two programs were running: a keyboard-capture tool creating markers for every key-press event and LabRecorder to record sensor data together with markers from PC. In the timing test, the phone was used to hit the space bar, which created a marker and an accompanying sensor response in the phone. (<b>B</b>) The upper plot shows all timing test responses vertically stacked. Each line shows the response of one trial, 20 ms of data around the marker indicating a key-press. The lower plot shows the average (bold black line) as well as every single sensor response (grey lines) in the time domain. The vertical dashed line indicates the position of the keyboard event marker.</p> ">
Abstract
:1. Introduction
1.1. The Smartphone Apps: Record-a, Send-a and Sine-Wave App
- Huawei Honor View 10 (Android 10, round corners in all figures)
- Samsung A51 (Android 11, square corners in all figures)
1.2. Record-a
1.3. Send-a
1.4. Sine-Wave App
2. Methods
2.1. Scenario 1: Data Streamed from Android Devices Recorded on a PC
2.2. Scenario 1A: Sine Wave Data Streamed from Android Devices, Recorded on a PC
2.3. Scenario 1B: Sensor Data Streamed from Android Devices, Recorded on a PC
2.4. Scenario 2: Data Streamed from PC, Recorded on an Android Device
2.5. Scenario 3: Sensor Data Streamed from Android Device, Recorded on the Same Android Device
3. Results
3.1. Scenario 1A: Sine Wave Data Streamed from Android Devices, Recorded on a PC
3.2. Scenario 1B: Sensor Data Sreamed from Android Devices, Recorded on a PC
3.3. Scenario 2: Data Streamed from PC, Recorded on an Android Device
3.4. Scenario 3: Sensor Data Streamed from an Android Device, Recorded on the Same Android Device
3.5. Fault Tolerance and Stability: Record-a
3.5.1. Error Scenario: The Stream Outlet Pauses or Stops to Send New Samples
3.5.2. Error Scenario: Record-a Is Terminated Unexpectedly
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Methods and Correspondence
Code Availability
Appendix A
Appendix A.1. Timing Test: Method
Appendix A.2. Timing Test: Results
References
- Bateson, A.D.; Baseler, H.A.; Paulson, K.S.; Ahmed, F.; Asghar, A.U.R. Categorisation of Mobile EEG: A Researcher’s Perspective. BioMed Res. Int. 2017, 2017, 5496196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UAB Oberlo. How Many People Have Smartphones in 2020—Oberlo. 2021. Available online: https://www.oberlo.com/statistics/how-many-people-have-smartphones (accessed on 23 March 2021).
- World Health Organzation. World Health Statistics 2020: Monitoring Health for the Sdgs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- The Digital Revolution. November 2020. Available online: https://www.kingsfund.org.uk/publications/digital-revolution (accessed on 23 July 2021).
- Stopczynski, A.; Stahlhut, C.; Larsen, J.E.; Petersen, M.K.; Hansen, L.K. The smartphone brain scanner: A portable real-time neuroimaging system. PLoS ONE 2014, 9, e86733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopczynski, A.; Stahlhut, C.; Petersen, M.K.; Larsen, J.E.; Jensen, C.F.; Ivanova, M.G.; Andersen, T.S.; Hansen, L.K. Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeedback. Int. J. Psychophysiol. 2014, 91, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Cisse, F.A.; Schaekermann, M.; Sakadi, F.; Tassiou, N.R.; Aissatou Kenda, B.A.H.; Hamani, A.B.D.; Lim, A.; Leung, E.C.W.; Fantaneau, T.A.; et al. Utilizing a wearable smartphone-based EEG for pediatric epilepsy patients in the resource poor environment of Guinea: A prospective study. (N5.001). Neurology 2019, 92 (Suppl. 15), N5.001. [Google Scholar]
- Mckenzie, E.D.; Lim, A.S.P.; Leung, E.C.W.; Cole, A.J.; Lam, A.D.; Eloyan, A.; Nirola, D.K.; Tshering, L.; Thibert, R.; Garcia, R.Z.; et al. Validation of a smartphone-based EEG among people with epilepsy: A prospective study. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, E.; Hamani, A.B.D.; Sakadi, F.; Williams, J.; Vogel, A.; Schaekermann, M.; Tassiou, N.; Bah, A.K.; Khatri, V.; Hotan, G.; et al. Smartphone EEG Utility and Quality for Epilepsy Patients in the West African Republic of Guinea (196). Neurology 2020, 94 (Suppl. 15), 196. [Google Scholar]
- Feyissa, A.M. Hold the Smartphone! Tele-Epilepsy in a Post–COVID-19 World. Mayo Clin. Proc. 2021, 96, 4–6. [Google Scholar] [CrossRef]
- Poveda, J.; O’Sullivan, M.; Popovici, E.; Temko, A. Portable neonatal EEG monitoring and sonification on an Android device. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Jeju, Korea, 11–15 July 2017; Korea Institute of Electrical and Electronics Engineers Inc.: Seoul, Korea, 2017; pp. 2018–2021. [Google Scholar]
- Koushik, A.; Amores, J.; Maes, P. Real-time sleep staging using deep learning on a smartphone for a wearable EEG. arXiv 2018, arXiv:1811.10111. [Google Scholar]
- Bleichner, M.G.; Debener, S. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG. Front. Hum. Neurosci. 2017, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Reichert, M.; Giurgiu, M.; Koch, E.D.; Wieland, L.M.; Lautenbach, S.; Neubauer, A.B.; von Haaren-Mack, B.; Schilling, R.; Timm, I.; Notthoff, N.; et al. Ambulatory assessment for physical activity research: State of the science, best practices and future directions. Psychol. Sport Exerc. 2020, 50, 101742. [Google Scholar] [CrossRef]
- Mühlbauer, E.; Bauer, M.; Ebner-Priemer, U.; Ritter, P.; Hill, H.; Beier, F.; Kleindienst, N.; Severus, E. Effectiveness of smartphone-based ambulatory assessment (SBAA-BD) including a predicting system for upcoming episodes in the long-term treatment of patients with bipolar disorders: Study protocol for a randomized controlled single-blind trial 11 Medical and Health Sciences 1103 Clinical Sciences 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Psychiatry 2018, 18, 1–9. [Google Scholar]
- Barthelmäs, M.; Killinger, M.; Keller, J. Using a Telegram chatbot as cost-effective software infrastructure for ambulatory assessment studies with iOS and Android devices. Behav. Res. Methods 2020, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Langan, J.; Bhattacharjya, S.; Subryan, H.; Xu, W.; Chen, B.; Li, Z.; Cavuoto, L. In-home rehabilitation using a smartphone app coupled with 3D printed functional objects: Single-subject design study. JMIR mHealth uHealth 2020, 8, e19582. [Google Scholar] [CrossRef]
- Ferreira, C.; Guimarães, V.; Santos, A.; Sousa, I. Gamification of stroke rehabilitation exercises using a smartphone. In Proceedings of the PervasiveHealth 14: 8th International Conference on Pervasive Computing Technologies for Healthcare, Oldenburg, Germany, 20–23 May 2014; pp. 282–285. [Google Scholar]
- Spina, G.; Huang, G.; Vaes, A.; Spruit, M.; Amft, O. COPDTrainer: A smartphone-based motion rehabilitation training system with real-time acoustic feedback. In Proceedings of the UbiComp 2013, 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, NY, USA, 8 September 2013; pp. 597–606. [Google Scholar]
- Worringham, C.; Rojek, A.; Stewart, I. Development and Feasibility of a Smartphone, ECG and GPS Based System for Remotely Monitoring Exercise in Cardiac Rehabilitation. PLoS ONE 2011, 6, e14669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moral-Munoz, J.A.; Zhang, W.; Cobo, M.J.; Herrera-Viedma, E.; Kaber, D.B. Smartphone-based systems for physical rehabilitation applications: A systematic review. Assist. Technol. 2021, 33, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Varnfield, M.; Karunanithi, M.; Lee, C.K.; Honeyman, E.; Arnold, D.; Ding, H.; Smith, C.; Walters, D.L. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: Results from a randomised controlled trial. Heart 2014, 100, 1770–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, P.; Coccetta, C.A.; Rabini, A.; Sciarra, T.; Massazza, G.; Ferriero, G. Mobile smartphone applications for body position measurement in rehabilitation: A review of goniometric tools. PM R 2014, 6, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Wang, H.; Du, Y.; Yang, F.; Yang, L.; Jiang, C. Portable Smartphone Platform Integrated with a Nanoprobe-Based Fluorescent Paper Strip: Visual Monitoring of Glutathione in Human Serum for Health Prognosis. ACS Sustain. Chem. Eng. 2020, 8, 8175–8183. [Google Scholar] [CrossRef]
- Jin, R.; Wang, F.; Li, Q.; Yan, X.; Liu, M.; Chen, Y.; Zhou, W.; Gao, H.; Sun, P.; Lu, G. Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sens. Actuators B Chem. 2021, 327, 128922. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Q.; Ding, K.; Liu, S.G.; Shi, X. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring. Sens. Actuators B Chem. 2021, 335, 129708. [Google Scholar] [CrossRef]
- Tittle, S.; Thibodeau, L.; Panahi, I.M.; Chengappa, P.C. Benefits of a smartphone as a remote microphone system. J. Acoust. Soc. Am. 2019, 146, 3047. [Google Scholar] [CrossRef]
- Amlani, A.M.; Smaldino, J.; Hayes, D.; Taylor, B.; Gessling, E. Feasibility of using a smartphone-based hearing aid application to improve attitudes toward amplification and hearing impairment. Am. J. Audiol. 2019, 28, 125–136. [Google Scholar] [CrossRef]
- Slaney, M.; Lyon, R.F.; Garcia, R.; Kemler, B.; Gnegy, C.; Wilson, K.; Kanevsky, D.; Savla, S.; Cerf, V.G. Auditory Measures for the Next Billion Users. Ear Hear. 2020, 41 (Suppl. 1), 131S–139S. [Google Scholar] [CrossRef]
- Low, C.A. Harnessing consumer smartphone and wearable sensors for clinical cancer research. NPJ Digit. Med. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Dehais, F.; Karwowski, W.; Ayaz, H. Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. Front. Neuroergonomics 2020, 1, 1. [Google Scholar] [CrossRef]
- Debener, S.; Emkes, R.; de Vos, M.; Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 2015, 5, 16743. [Google Scholar] [CrossRef] [Green Version]
- Hölle, D.; Meekes, J.; Bleichner, M.G. Mobile ear-EEG to study auditory attention in everyday life. Behav. Res. Methods 2021, 53, 2025–2036. [Google Scholar] [CrossRef]
- Kumar, P.; Saini, R.; Sahu, P.K.; Roy, P.P.; Dogra, D.P.; Balasubramanian, R. Neuro-Phone: An assistive framework to operate smartphone using EEG signals. In Proceedings of the TENSYMP 2017-IEEE International Symposium on Technologies for Smart Cities, Cochin, India, 14–16 July; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017. [Google Scholar]
- Salvidegoitia, M.P.; Jacobsen, N.; Bauer, A.R.; Griffiths, B.; Hanslmayr, S.; Debener, S. Out and about: Subsequent memory effect captured in a natural outdoor environment with smartphone EEG. Psychophysiology 2019, 56, e13331. [Google Scholar] [CrossRef] [PubMed]
- Artoni, F.; Barsotti, A.; Guanziroli, E.; Micera, S.; Landi, A.; Molteni, F. Effective Synchronization of EEG and EMG for Mobile Brain/Body Imaging in Clinical Settings. Front. Hum. Neurosci. 2018, 11, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, N.S.J.; Blum, S.; Witt, K.; Debener, S. A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings. Eur. J. Neurosci. 2020, ejn.14965. [Google Scholar] [CrossRef]
- Scanlon, J.E.M.; Jacobsen, N.S.J.; Maack, M.C.; Debener, S. Does the electrode amplification style matter? A comparison of active and passive EEG system configurations during standing and walking. Eur. J. Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Barkhuus, L.; Polichar, V.E. Empowerment through seamfulness: Smart phones in everyday life. Pers. Ubiquitous Comput. 2011, 15, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Gretton, C.; Honeyman, M. The Digital Revolution: Eight Technologies that will Change Health and Care—The King’s Fund. 2016. Available online: https://www.kingsfund.org.uk/publications/articles/eight-technologies-will-change-health-and-care (accessed on 26 April 2017).
- Zamm, A.; Palmer, C.; Bauer, A.R.; Bleichner, M.G.; Demos, A.P.; Debener, S. Synchronizing MIDI and wireless EEG measurements during natural piano performance. Brain Res. 2019, 1716, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kopetz, H.; Ochsenreiter, W. Clock Synchronization in Distributed Real-Time Systems. IEEE Trans. Comput. 1987, 100, 933–940. [Google Scholar] [CrossRef]
- Flammini, A.; Ferrari, P. Clock Synchronization of Distributed, Real-Time, Industrial Data Acquisition Systems; IntechOpen: London, UK, 2010. [Google Scholar]
- Elson, J.; Estrin, D. Time synchronization for wireless sensor networks. In Parallel and Distributed Processing Symposium, International; IEEE Computer Society: San Francisco, CA, USA, 2001; p. 30186b. [Google Scholar]
- Dolmans, T.C.; Poel, M.; Klooster, J.W.J.R.V.; Veldkamp, B.P. Data synchronisation and processing in multimodal research. Meas. Behav. 2020-21 2020, 1, 1–30. [Google Scholar]
- Arico, P.; Borghini, G.; di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends and future directions. Physiol. Meas. 2018, 39, 08TR02. [Google Scholar] [CrossRef]
- Wascher, E.; Reiser, J.; Rinkenauer, G.; Larra´, M.; Dreger, F.A.; Schneider, D.; Karthaus, M.; Getzmann, S.; Gutberlet, M.; Arnau, S. Neuroergonomics on the Go: An Evaluation of the Potential of Mobile EEG for Workplace Assessment and Design. Hum. Factors 2021. [Google Scholar] [CrossRef]
- Wang, Y.; Markham, C.; Deegan, C. Assessing the time synchronisation of EEG systems. In Proceedings of the 30th Irish Signals and Systems Conference (ISSC), Maynooth, Ireland, 17–18 June 2019; pp. 1–6. [Google Scholar]
- Istepanian, R.S.; Kulhandjian, M.; Chaltikyan, G. Mobile Health (mHealth) in the Developing World: Two Decades of Progress or Retrogression. J. Int. Soc. Telemed. Ehealth 2020, 8, e24. [Google Scholar] [CrossRef]
- Kernebeck, S.; Busse, T.S.; Böttcher, M.D.; Weitz, J.; Ehlers, J.; Bork, U. Impact of mobile health and medical applications on clinical practice in gastroenterology. World J. Gastroenterol. 2020, 26, 4182–4197. [Google Scholar] [CrossRef]
- Zmora, N.; Elinav, E. Harnessing SmartPhones to Personalize Nutrition in a Time of Global Pandemic. Nutrients 2021, 13, 422. [Google Scholar] [CrossRef]
- Meegahapola, L.; Gatica-Perez, D. Smartphone Sensing for the Well-Being of Young Adults: A Review. IEEE Access 2021, 9, 3374–3399. [Google Scholar] [CrossRef]
- Krichen, M. Anomalies Detection Through Smartphone Sensors: A Review. IEEE Sens. J. 2021, 21, 7207–7217. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blum, S.; Hölle, D.; Bleichner, M.G.; Debener, S. Pocketable Labs for Everyone: Synchronized Multi-Sensor Data Streaming and Recording on Smartphones with the Lab Streaming Layer. Sensors 2021, 21, 8135. https://doi.org/10.3390/s21238135
Blum S, Hölle D, Bleichner MG, Debener S. Pocketable Labs for Everyone: Synchronized Multi-Sensor Data Streaming and Recording on Smartphones with the Lab Streaming Layer. Sensors. 2021; 21(23):8135. https://doi.org/10.3390/s21238135
Chicago/Turabian StyleBlum, Sarah, Daniel Hölle, Martin Georg Bleichner, and Stefan Debener. 2021. "Pocketable Labs for Everyone: Synchronized Multi-Sensor Data Streaming and Recording on Smartphones with the Lab Streaming Layer" Sensors 21, no. 23: 8135. https://doi.org/10.3390/s21238135
APA StyleBlum, S., Hölle, D., Bleichner, M. G., & Debener, S. (2021). Pocketable Labs for Everyone: Synchronized Multi-Sensor Data Streaming and Recording on Smartphones with the Lab Streaming Layer. Sensors, 21(23), 8135. https://doi.org/10.3390/s21238135