Methods of Hidden Periodicity Discovering for Gearbox Fault Detection
<p>Schematic (<b>a</b>) and general (<b>b</b>) view of the WTG gearbox.</p> "> Figure 2
<p>The segments of vibration realizations for three (<b>a</b>–<b>c</b>) stages of tooth failure.</p> "> Figure 3
<p>The estimators of the power spectral densities of the stationary approximation for the raw signal: (<b>a</b>) original and (<b>b</b>) zoomed.</p> "> Figure 4
<p>The covariance function estimators for the filtered signals corresponding to the first (<b>a</b>), second (<b>b</b>), and third (<b>c</b>) stages of the gear tooth failure.</p> "> Figure 5
<p>The power spectral density estimators for the filtered signals for each stage (<b>a</b>–<b>c</b>).</p> "> Figure 6
<p>The dependence of the square functional of the first order on the test frequency for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 7
<p>The amplitude spectra of the deterministic oscillations for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 8
<p>The mean function estimators of the vibration for the three stages (<b>a</b>–<b>c</b>) of gear tooth failure.</p> "> Figure 9
<p>The estimators of the covariance function of the vibration of stochastic parts for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 10
<p>The estimators of the spectral densities of the vibration of stochastic parts in the low-frequency domain for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 11
<p>The estimators of the spectral densities of the vibration of stochastic parts in the high-frequency domain for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 12
<p>The dependences of the second order square functional (38) on the test period for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 13
<p>The amplitude spectrum of the variance periodical variation.</p> "> Figure 14
<p>The first (<b>a</b>) and the second (<b>b</b>) component variance functionals for the first stage.</p> "> Figure 15
<p>The estimators of the variance for the vibrations stochastic parts for the first (<b>a</b>), the second (<b>b</b>) and the third (<b>c</b>) stages.</p> "> Figure 16
<p>The liberated tooth of the pinion gear at gearbox parallel stage.</p> "> Figure 17
<p>The time changes of the variance estimators on the plane.</p> "> Figure 18
<p>The dependences of the zero<sup>th</sup> covariance component estimators on the time lag for the first (<b>a</b>), second (<b>b</b>), and third (<b>c</b>) stages.</p> "> Figure 19
<p>The dependences of the first, second, and third cosine covariance components estimators on starting lag for the second (<b>a</b>) and third (<b>b</b>) stages.</p> "> Figure 20
<p>The dependences of the first, second, and third cosine covariance components estimators on the time lag for the second (<b>a</b>) and third (<b>b</b>) stages.</p> "> Figure 21
<p>The main stages of the cyclostationary (<b>a</b>) and PCRP (<b>b</b>) analysis.</p> ">
Abstract
:1. Introduction
- The properties of the gearbox vibration model, in the form of BPCRPs, are analyzed, and the possibility of using PCRP approximation for fault diagnosis is explored;
- Methods of searching for hidden periodicities of the first and the second order are used for gearbox vibration analysis;
- The efficiency of the least square (LS) method for the estimation of the period for the vibration deterministic component and the time variation of the stochastic part power is shown;
- The main steps of an algorithm for gearbox vibration analysis using PCRP for fault diagnosis are given;
- The amplitude spectra of deterministic oscillations and the time variation power of the stochastic component are given as the characteristic features for fault stages;
- The most sensitive indicator for fault detection is based on the results of natural data processing.
2. BPCRP as a Model of Gear Pair Vibration Signal
2.1. Covariance and Spectral Functions
2.2. The Simplest Particular Cases
3. Gear Fault Detection as PCRP Estimation Issue
3.1. The Stationary Analysis
3.2. The Detection and the Analysis of the Hidden Periodicities of the First Order
3.3. The Analysis of the Hidden Periodicities of the Second Order
4. The Analysis of the Natural Data
4.1. The Stationary Approximation Properties
4.2. Analysis of the Deterministic Oscillations
4.3. Analysis of the Stochastic Oscillations
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gardner, W.A. Introduction to Random Processes with Applications to Signals and Systems; Macmillan: New York, NY, USA, 1985. [Google Scholar]
- Gardner, W.A. Cyclostationarity in Communications and Signal Processing; IEEE Press: New York, NY, USA, 1994. [Google Scholar]
- Napolitano, A. Generalizations of Cyclostationary Signal Processing: Spectral Analysis and Applications; Wiley: Oxford, UK, 2012. [Google Scholar]
- Napolitano, A. Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Gladyshev, E.G. Periodically and Almost-Periodically Correlated Random Processes with a Continuous Time Parameter. Theory Prob. Appl. 1963, 8, 173–177. [Google Scholar] [CrossRef]
- Dragan, Y.; Javorskyj, I. Rhythmics of Sea Waving and Underwater Acoustic Signals; Naukova Dumka: Kyjiv, Ukraine, 1980. (In Russian) [Google Scholar]
- Dragan, Y.; Rozhkov, V.; Javorskyj, I. The Methods of Probabilistic Analysis of Oceanological Rhythmics; Gidrometeostat: Leningrad, Russia, 1987. (In Russian) [Google Scholar]
- Hurd, H.L.; Miamee, A. Periodically Correlated Random Sequences: Spectral Theory and Practice; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Javorskyj, I. Mathematical Models and Analysis of Stochastic Oscillations; Karpenko Physico-Mechanical Institute of NAS of Ukraine: Lviv, Ukraine, 2013. (In Ukraine)
- Mykhailyshyn, V.; Javorskyj, I.; Vasylyna, Y.; Drabych, O.; Isaev, I. Probabilistic models and statistical methods for the analysis of vibrational signals in the problems of diagnostics of machines and structures. Mater. Sci. 1997, 33, 655–672. [Google Scholar] [CrossRef]
- McCormick, A.C.; Nandi, A.K. Cyclostationarity in rotating machine vibrations. Mech. Syst. Signal Process. 1998, 12, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Capdessus, C.; Sidahmed, M.; Lacoume, J.L. Cyclostationary processes: Application in gear fault early diagnostics. Mech. Syst. Signal Process. 2000, 14, 371–385. [Google Scholar] [CrossRef]
- Antoni, J.; Bonnardot, F.; Raad, A.; El Badaoui, M. Cyclostationary modeling of rotating machine vibration signals. Mech. Syst. Signal Process. 2004, 18, 1285–1314. [Google Scholar] [CrossRef]
- Antoni, J. Cyclostationarity by examples. Mech. Syst. Signal Process. 2009, 23, 987–1036. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- Zimroz, R.; Bartelmus, W. Gearbox condition estimation using cyclostationary properties of vibration signal. Key Eng. Mater. 2009, 413, 471–478. [Google Scholar] [CrossRef]
- Javorskyj, I.; Kravets, I.; Matsko, I.; Yuzefovych, R. Periodically correlated random processes: Application in early diagnostics of mechanical systems. Mech. Syst. Signal Process. 2017, 83, 406–438. [Google Scholar] [CrossRef]
- Zhu, Z.K.; Feng, Z.H.; Kong, F.R. Cyclostationarity analysis for gearbox condition monitoring: Approaches and effectiveness. Mech. Syst. Signal Process. 2005, 19, 467–482. [Google Scholar] [CrossRef]
- Mark, W.D. Analysis of the vibratory excitation of gear systems: Basic theory. J. Acoust. Soc. Am. 1978, 63, 1409–1430. [Google Scholar] [CrossRef]
- McFadden, P.D. Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration. J. Vib. Acoust. Stress Reliab. 1986, 108, 165–170. [Google Scholar] [CrossRef]
- McFadden, P.D. Examination of a technique for the early detection of failure in gears by signal processing of the time domain average of the meshing vibration. Mech. Syst. Signal Process. 1987, 1, 173–183. [Google Scholar] [CrossRef]
- Dalpiaz, G.; Rivola, A.; Rubini, R. Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears. Mech. Syst. Signal Process. 2000, 14, 387–412. [Google Scholar] [CrossRef]
- Antoni, J.; Randall, R.B. Differential diagnosis of gear and bearing faults. J. Vib. Acoust. 2002, 124, 165–171. [Google Scholar] [CrossRef]
- Javorskyj, I.; Mykhailyshyn, V. Probabilistic models and statistical analysis of stochastic oscillations. Pattern Recognit. Image Anal. 1996, 6, 749–763. [Google Scholar]
- Javorskyj, I.; Yuzefovych, R.; Kravets, I.; Matsko, I. Methods of periodically correlated random processes and their generalizations. In Cyclostationarity: Theory and Methods; Chaari, F., Leskow, J., Sanches-Ramires, A., Eds.; Lecture Notes in Mechanical Engineering; Springer: New York, NY, USA, 2014; pp. 73–93. [Google Scholar]
- Javorskyj, I.; Dzeryn, O.; Yuzefovych, R. Analysis of mean function discrete LSM-estimator for biperiodically nonstationary random signals. Math. Model. Comput. 2019, 6, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Javorskyj, I.; Leśkow, J.; Kravets, I.; Isayev, I.; Gajecka-Mirek, E. Linear filtration methods for statistical analysis of periodically correlated random processes—Part II: Harmonic series representation. Signal Process. 2011, 91, 2506–2519. [Google Scholar] [CrossRef]
- Matsko, I.; Javorskyj, I.; Yuzefovych, R.; Zakrzewski, Z. Forced oscillations of cracked beam under the stochastic cyclic loading. Mech. Syst. Signal Process. 2018, 104, 242–263. [Google Scholar] [CrossRef]
- Javorskyj, I.; Mykhailyshyn, V. Probabilistic models and investigation of hidden periodicities. Appl. Math. Lett. 1996, 9, 21–23. [Google Scholar]
- Javorskyj, I.; Dehay, D.; Kravets, I. Component statistical analysis of second order hidden periodicities. Digit. Signal Process. 2014, 26, 50–70. [Google Scholar] [CrossRef]
- Javorskyj, I.; Yuzefovych, R.; Matsko, I.; Zakrzewski, Z.; Majewski, J. Coherent covariance analysis of periodically correlated random processes for unknown non-stationarity period. Digit. Signal Process. 2017, 65, 27–51. [Google Scholar] [CrossRef]
- Javorskyj, I.; Yuzefovych, R.; Matsko, I.; Zakrzewski, Z.; Majewski, J. Covariance Analysis of Periodically Correlated Random Processes. In Advances in Signal Processing. Rewiew; IFSA Publishing: Barcelona, Spain, 2018; pp. 155–276. [Google Scholar]
- Javorskyj, I.; Isayev, I. Coherent and component statistical analysis of stochastic oscillations. In Proceedings of the International Conference on Mathematics and Statistics, Wroclaw, Poland, 3–8 September 2000; pp. 64–65. [Google Scholar]
- Javorskyj, I.; Isayev, I.; Zakrzewski, Z.; Brooks, S.P. Coherent covariance analysis of periodically correlated random processes. Signal Process. 2007, 87, 13–32. [Google Scholar] [CrossRef]
- Javorskyj, I.; Semenov, P.; Yuzefovych, R.; Zakrzewski, Z. Nonparametric Spectral Analysis of Periodically Nonstationary Vibration Signals for Electrical Rotary Machines Testing. In Proceedings of the 25th International Conference “Mixed Design of Integrated Circuits and System”, Gdynia, Poland, 21–23 June 2018; pp. 385–389. [Google Scholar]
- Javorskyj, I.; Yuzefovych, R.; Kravets, I.; Matsko, I. Properties of Characteristics Estimators of Periodically Correlated Random Processes in Preliminary Determination of the Period of Correlation. Radioelectron. Commun. Syst. 2012, 55, 335–348. [Google Scholar] [CrossRef]
- Javorskyj, I.; Matsko, I.; Yuzefovych, R.; Zakrzewski, Z. Discrete estimators of characteristics for periodically correlated time series. Digit. Signal Process. 2016, 53, 25–40. [Google Scholar] [CrossRef]
- Javorskyj, I.; Isayev, I.; Majewski, J.; Yuzefovych, R. Component covariance analysis for periodically correlated random processes. Signal Process. 2010, 90, 1083–1102. [Google Scholar] [CrossRef]
- Javorskyj, I.; Kurapov, R.; Yuzefovych, R. Covariance characteristics of narrowband periodically non-stationary random signals. Math. Model. Comput. 2019, 6, 276–288. [Google Scholar] [CrossRef]
- Javorskyj, I.; Yuzefovych, R.; Kurapov, R.; Lychak, O. The Quadrature Components of Narrowband Periodically Non-Stationary Random Signals. In Advances in Intelligent Systems and Computing V; Springer Nature Switzerland AG: Cham, Switzerland, 2021; Volume 1293, pp. 696–713. [Google Scholar]
- Javorskyj, I.; Yuzefovych, R.; Kurapov, R. Model of multicomponent narrow-band periodically non-stationary random signal. Inf. Extract. Process. 2020, 48, 17–24. [Google Scholar]
- Javorskyj, I.; Yuzefovych, R.; Kurapov, R. Periodically Non-Stationary Analytic Signals and their Properties. In Proceedings of the IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies, Lviv, Ukraine, 11–14 September 2018; pp. 191–194. [Google Scholar]
- Javorskyj, I.; Matsko, I.; Yuzefovych, R.; Kurapov, R. Hilbert transform of a periodically non-stationary random signal: Low-frequency modulation. Digit. Signal Process. 2021, 116, 103113. [Google Scholar] [CrossRef]
- Zivanovic, G.D.; Gardner, W.A. Degrees of cyclostationarity and their application to signal detection and estimation. Signal Process. 1991, 22, 287–297. [Google Scholar] [CrossRef]
- Raad, A.; Antoni, J.; Sidahmed, M. Indicators of cyclostationarity: Theory and application to gear fault monitoring. Mech. Syst. Signal Process. 2008, 22, 574–587. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J.; Chobsaard, S. The relationship between spectral correlation and envelope analysis. Mech. Syst. Signal Process. 2001, 15, 945–962. [Google Scholar] [CrossRef]
- Antoni, J. Cyclic spectral analysis in practice. Mech. Syst. Signal Process. 2007, 21, 597–630. [Google Scholar] [CrossRef]
- Ho, D.; Randall, R.B. Optimization of bearing diagnostic techniques using similated and actual bearing fault signals. Mech. Syst. Signal Process. 2000, 14, 763–788. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
- Abboud, D.; El Badaoui, M.; Smith, W.; Randall, B. Advanced bearing diagnostics: A comparative study of two powerful approaches. Mech. Syst. Signal Process. 2019, 114, 604–627. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Kou, L.-L.; Qin, Y.; Zhao, Y.; Tsui, K.L. A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis. Mech. Syst. Signal Process. 2019, 122, 754–768. [Google Scholar] [CrossRef]
- Patel, V.N.; Tandon, N.; Pandey, R.K. Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator. Measurement 2012, 45, 960–970. [Google Scholar] [CrossRef]
- Borghesani, P.; Pennacchi, P.; Randall, R.B.; Sawalhi, N.; Ricci, R. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech. Syst. Signal Process. 2013, 36, 370–384. [Google Scholar] [CrossRef]
- Betea, B.; Dobra, P.; Gherman, M.-C.; Tomesc, L. Comparison between envelope detection methods for bearing defects diagnose. IFAC Proc. 2013, 46, 137–142. [Google Scholar] [CrossRef]
- Xu, Y.; Zhen, D.; Gu, J.X.; Rabeyee, K.; Chu, F.; Gu, F.; Ball, A.D. Autocorrelated Envelopes for early fault detection of rolling bearings. Mech. Syst. Signal Process. 2021, 146, 106990. [Google Scholar] [CrossRef]
- Obuchowski, J.; Wyłomańska, A.; Zimroz, R. Selection of informative frequency band in local damage detection in rotating machinery. Mech. Syst. Signal Process. 2014, 48, 138–152. [Google Scholar] [CrossRef]
- Wodecki, J.; Michalak, A.; Wyłomańska, A.; Zimroz, R. Influence of non-Gaussian noise on the effectiveness of cyclostationary analysis—Simulations and real data analysis. Measurement 2021, 171, 108814. [Google Scholar] [CrossRef]
- Antoni, J. The spectral kurtosis: A useful tool for characterizing non-stationary signals. Mech. Syst. Signal Process. 2006, 20, 282–307. [Google Scholar] [CrossRef]
- Antoni, J.; Randall, R.B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 2006, 20, 308–331. [Google Scholar] [CrossRef]
- Barszcz, T.; Jabłoński, A. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mech. Syst. Signal Process. 2011, 25, 431–451. [Google Scholar] [CrossRef]
- Wang, D.; Tse, P.W.; Tsui, K.L. An enhanced Kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2013, 35, 176–199. [Google Scholar] [CrossRef]
- Sawalhi, N.; Randall, R.B.; Endo, H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 2017, 31, 2616–2633. [Google Scholar] [CrossRef]
- Darlow, M.S.; Badley, R.H.; Hogg, G.W. Applications of High Frequency Resonance Techniques for Bearing Diagnostics in Helicopter Gearboxes; Technical Report; US Army Air Mobility Research and Development Laboratory, National Technical Information, US Department of Commerce Springfield A.A.; Mechanical Technology Inc.: Latham, NY, USA, 1974; pp. 74–77. [Google Scholar]
- Antoni, J. Cyclic Spectral Analysis of Rolling-Element Bearing Signals: Facts and Fictions. J. Sound Vibr. 2007, 304, 497–529. [Google Scholar] [CrossRef]
- Borghesani, P.; Pennacchi, P.; Ricci, R.; Chatterton, S. Testing second order cyclostationarity in the squared envelope spectrum of non-white vibration signals. Mech. Syst. Signal Process. 2013, 40, 38–55. [Google Scholar] [CrossRef]
- Antoni, J.; Randall, R.B. On the use of the cyclic power spectrum in rolling element bearings diagnostics. J. Sound Vib. 2005, 281, 463–468. [Google Scholar] [CrossRef]
- McFadden, P.D.; Smith, J.D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A review. Tribol. Int. 1984, 17, 3–10. [Google Scholar] [CrossRef]
- Courrech, J.; Gaudel, M. Envelope Analysis—The Key to Rolling-Element Bearing Diagnosis; Brüel & Kjær: Nærum, Denmark, 1987. [Google Scholar]
Stage 1 | Stage 2 | Stage 3 | ||||||
---|---|---|---|---|---|---|---|---|
Orders | Frequency, Hz | Orders | Frequency, Hz | Orders | Frequency, Hz | |||
0 | 0 | 0.000 | 0 | 0.00 | 0.000 | 0 | 0.00 | 0.000 |
1 | 24.20 | 0.045 | 1 | 24.05 | 0.039 | 1 | 23.41 | 0.080 |
2 | 48.40 | 0.020 | 2 | 48.10 | 0.011 | 2 | 46.82 | 0.004 |
3 | 72.60 | 0.002 | 3 | 72.15 | 0.003 | 3 | 70.23 | 0.008 |
4 | 96.80 | 0.007 | 4 | 96.20 | 0.029 | 4 | 93.64 | 0.047 |
5 | 121.00 | 0.041 | 5 | 120.25 | 0.198 | 5 | 117.05 | 0.132 |
6 | 145.20 | 0.079 | 6 | 144.30 | 0.330 | 6 | 140.46 | 0.447 |
7 | 169.40 | 0.240 | 7 | 168.35 | 1.062 | 7 | 163.87 | 1.278 |
8 | 193.60 | 0.409 | 8 | 192.40 | 1.654 | 8 | 187.28 | 1.677 |
9 | 217.80 | 0.115 | 9 | 216.45 | 0.546 | 9 | 210.69 | 0.679 |
10 | 242.00 | 0.038 | 10 | 240.50 | 0.162 | 10 | 234.10 | 0.049 |
11 | 266.20 | 0.065 | 11 | 264.55 | 0.265 | 11 | 257.51 | 0.335 |
12 | 290.40 | 0.005 | 12 | 288.60 | 0.141 | 12 | 280.92 | 0.275 |
13 | 314.60 | 0.116 | 13 | 312.65 | 0.270 | 13 | 304.33 | 0.193 |
14 | 338.80 | 0.231 | 14 | 336.70 | 0.382 | 14 | 327.74 | 0.518 |
15 | 363.00 | 0.191 | 15 | 360.75 | 0.405 | 15 | 351.15 | 0.286 |
16 | 387.20 | 0.165 | 16 | 384.80 | 0.345 | 16 | 374.56 | 0.486 |
17 | 411.40 | 0.143 | 17 | 408.85 | 0.260 | 17 | 397.97 | 0.319 |
18 | 435.60 | 0.064 | 18 | 432.90 | 0.163 | 18 | 421.38 | 0.333 |
19 | 459.80 | 0.030 | 19 | 456.95 | 0.068 | 19 | 444.79 | 0.122 |
20 | 484.00 | 0.010 | 20 | 481.00 | 0.018 | 20 | 468.20 | 0.070 |
21 | 508.20 | 0.010 | 21 | 505.05 | 0.019 | 21 | 491.61 | 0.060 |
22 | 532.40 | 0.029 | 22 | 529.10 | 0.029 | 22 | 515.02 | 0.048 |
23 | 556.60 | 0.030 | 23 | 553.15 | 0.045 | 23 | 538.43 | 0.050 |
24 | 580.80 | 0.014 | 24 | 577.20 | 0.020 | 24 | 561.84 | 0.036 |
25 | 605.00 | 0.519 | 25 | 601.25 | 0.230 | 25 | 585.25 | 0.339 |
26 | 629.20 | 0.005 | 26 | 625.30 | 0.023 | 26 | 608.66 | 0.062 |
27 | 653.40 | 0.014 | 27 | 649.35 | 0.010 | 27 | 632.07 | 0.040 |
28 | 677.60 | 0.006 | 28 | 673.40 | 0.021 | 28 | 655.48 | 0.027 |
29 | 701.80 | 0.018 | 29 | 697.45 | 0.012 | 29 | 678.89 | 0.038 |
30 | 726.00 | 0.038 | 30 | 721.50 | 0.023 | 30 | 702.30 | 0.062 |
31 | 750.20 | 0.062 | 31 | 745.55 | 0.039 | 31 | 725.71 | 0.171 |
32 | 774.40 | 0.063 | 32 | 769.60 | 0.032 | 32 | 749.12 | 0.156 |
33 | 798.60 | 0.040 | 33 | 793.65 | 0.020 | 33 | 772.53 | 0.095 |
34 | 822.80 | 0.053 | 34 | 817.70 | 0.018 | 34 | 795.94 | 0.077 |
35 | 847.00 | 0.089 | 35 | 841.75 | 0.006 | 35 | 819.35 | 0.147 |
36 | 871.20 | 0.048 | 36 | 865.80 | 0.016 | 36 | 842.76 | 0.240 |
37 | 895.40 | 0.062 | 37 | 889.85 | 0.034 | 37 | 866.17 | 0.183 |
38 | 919.60 | 0.055 | 38 | 913.90 | 0.039 | 38 | 889.58 | 0.182 |
39 | 943.80 | 0.047 | 39 | 937.95 | 0.039 | 39 | 912.99 | 0.170 |
40 | 968.00 | 0.080 | 40 | 962.00 | 0.084 | 40 | 936.40 | 0.182 |
41 | 992.20 | 0.061 | 41 | 986.05 | 0.078 | 41 | 959.81 | 0.246 |
42 | 1016.40 | 0.028 | 42 | 1010.10 | 0.061 | 42 | 983.22 | 0.216 |
43 | 1040.60 | 0.032 | 43 | 1034.15 | 0.050 | 43 | 1006.63 | 0.129 |
44 | 1064.80 | 0.010 | 44 | 1058.20 | 0.058 | 44 | 1030.04 | 0.110 |
45 | 1089.00 | 0.015 | 45 | 1082.25 | 0.028 | 45 | 1053.45 | 0.058 |
46 | 1113.20 | 0.021 | 46 | 1106.30 | 0.021 | 46 | 1076.86 | 0.047 |
47 | 1137.40 | 0.017 | 47 | 1130.35 | 0.020 | 47 | 1100.27 | 0.037 |
48 | 1161.60 | 0.010 | 48 | 1154.40 | 0.005 | 48 | 1123.68 | 0.019 |
49 | 1185.80 | 0.009 | 49 | 1178.45 | 0.022 | 49 | 1147.09 | 0.031 |
50 | 1210.00 | 0.005 | 50 | 1202.50 | 0.010 | 50 | 1170.50 | 0.010 |
Stage 1 | Stage 2 | Stage 3 | ||||||
---|---|---|---|---|---|---|---|---|
Orders | Frequency, Hz | Orders | Frequency, Hz | Orders | Frequency, Hz | |||
0 | 0 | 0.223 | 0 | 0.00 | 0.721 | 0 | 0.00 | 0.991 |
1 | 24.20 | 0.036 | 1 | 24.05 | 0.541 | 1 | 23.41 | 0.949 |
2 | 48.40 | 0.024 | 2 | 48.10 | 0.435 | 2 | 46.82 | 0.702 |
3 | 72.60 | 0.027 | 3 | 72.15 | 0.419 | 3 | 70.23 | 0.617 |
4 | 96.80 | 0.016 | 4 | 96.20 | 0.402 | 4 | 93.64 | 0.605 |
5 | 121.00 | 0.011 | 5 | 120.25 | 0.389 | 5 | 117.05 | 0.600 |
6 | 145.20 | 0.015 | 6 | 144.30 | 0.364 | 6 | 140.46 | 0.544 |
7 | 169.40 | 0.016 | 7 | 168.35 | 0.290 | 7 | 163.87 | 0.421 |
8 | 193.60 | 0.023 | 8 | 192.40 | 0.236 | 8 | 187.28 | 0.288 |
9 | 217.80 | 0.017 | 9 | 216.45 | 0.162 | 9 | 210.69 | 0.301 |
10 | 242.00 | 0.012 | 10 | 240.50 | 0.113 | 10 | 234.10 | 0.224 |
11 | 266.20 | 0.007 | 11 | 264.55 | 0.096 | 11 | 257.51 | 0.180 |
12 | 290.40 | 0.004 | 12 | 288.60 | 0.104 | 12 | 280.92 | 0.149 |
13 | 314.60 | 0.008 | 13 | 312.65 | 0.062 | 13 | 304.33 | 0.089 |
14 | 338.80 | 0.013 | 14 | 336.70 | 0.034 | 14 | 327.74 | 0.108 |
15 | 363.00 | 0.002 | 15 | 360.75 | 0.051 | 15 | 351.15 | 0.083 |
Degree | Initial | Small | Moderate | High | Emergency |
---|---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javorskyj, I.; Matsko, I.; Yuzefovych, R.; Lychak, O.; Lys, R. Methods of Hidden Periodicity Discovering for Gearbox Fault Detection. Sensors 2021, 21, 6138. https://doi.org/10.3390/s21186138
Javorskyj I, Matsko I, Yuzefovych R, Lychak O, Lys R. Methods of Hidden Periodicity Discovering for Gearbox Fault Detection. Sensors. 2021; 21(18):6138. https://doi.org/10.3390/s21186138
Chicago/Turabian StyleJavorskyj, Ihor, Ivan Matsko, Roman Yuzefovych, Oleh Lychak, and Roman Lys. 2021. "Methods of Hidden Periodicity Discovering for Gearbox Fault Detection" Sensors 21, no. 18: 6138. https://doi.org/10.3390/s21186138
APA StyleJavorskyj, I., Matsko, I., Yuzefovych, R., Lychak, O., & Lys, R. (2021). Methods of Hidden Periodicity Discovering for Gearbox Fault Detection. Sensors, 21(18), 6138. https://doi.org/10.3390/s21186138