A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite
<p>The infrared spectrometric results of MWCNTs, LC and MWCNTs-LC.</p> "> Figure 2
<p>Morphology of the multi-walled carbon nanotubes-liquid crystal-polydimethylsiloxane (MWCNT-LC-PDMS) composite with concentrations of LC in PDMS of (<b>a</b>) 0 wt%; (<b>b</b>) 20 wt%; (<b>c</b>) 40 wt%; and (<b>d</b>) 60 wt%.</p> "> Figure 3
<p>The fabrication process of the flexible resistive sensor.</p> "> Figure 4
<p>The strain of the tensile sensor with concentration of MWCNT of (<b>a</b>) 8 wt%; (<b>b</b>) 10 wt%; and (<b>c</b>) 12 wt%.</p> "> Figure 5
<p>The relative resistance changes under different strain of the tensile sensor with 0–60 wt% LC and MWCNTs of (<b>a</b>) 8 wt%; (<b>b</b>) 10 wt%; and (<b>c</b>) 12 wt%.</p> "> Figure 6
<p>The relative resistance changes under different strain of the tensile sensor with 8 wt% MWCNTs and 60 wt% LC.</p> "> Figure 7
<p>The hysteresis of the tensile sensing with 0–60 wt% LC and MWCNTs of (<b>a</b>) 8 wt%; (<b>b</b>) 10 wt%; and (<b>c</b>) 12 wt%.</p> "> Figure 8
<p>The relative resistance changes in the pressure range of 0–20 N with 0–60 wt% LC and MWCNTs of (<b>a</b>) 8 wt%; (<b>b</b>) 10 wt%; and (<b>c</b>) 12 wt%.</p> "> Figure 9
<p>Response and recovery time of the pressure sensor with 8 wt% MWCNTs and LC of (<b>a</b>) 0 wt%; (<b>b</b>) 20 wt%; (<b>c</b>) 40 wt%; and (<b>d</b>) 60 wt%.</p> "> Figure 10
<p>The measurement of water contact angle of the flexible sensor.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Measurement and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Adv. Mater. 2014, 26, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Huang, X.; Guo, W.; Li, Y.Y.; Wu, H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 2019, 62, 164–170. [Google Scholar] [CrossRef]
- Miyamoto, A.; Lee, S.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Mehmooda, A.; Mubaraka, N.M.; Khalidb, M.; Walvekarc, R.; Abdullahd, E.C.; Siddiquie, M.T.H.; Baloche, H.A.; Nizamuddine, S.; Mazari, S. Graphene based nanomaterials for strain sensor application-a review. J. Environ. Chem. Eng. 2020, 8, 2213–3437. [Google Scholar] [CrossRef]
- Wu, Y.T.; Yan, T.; Pan, Z.J. Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review. IEEE Sens. J. 2021, 21, 4030–4043. [Google Scholar] [CrossRef]
- Wang, H.H.; Cen, Y.M.; Zeng, X.Q. Highly Sensitive Flexible Tactile Sensor Mimicking the Microstructure Perception Behavior of Human Skin. ACS Appl. Mater. Interfaces 2021, 13, 28538–28545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Zhu, X.B.; Liu, Y.T.; Liu, L.; Xu, Q.; Liu, H.; Wang, W.; Chen, L. Ultra-Stretchable Monofilament Flexible Sensor with Low Hysteresis and Linearity based on MWCNTs/Ecoflex Composite Materials. Macromol. Mater. Eng. 2021, 306, 2100113. [Google Scholar] [CrossRef]
- Feng, W.; Zheng, W.; Gao, F.; Chen, X.S.; Liu, G.; Hasan, T.; Cao, W.W.; Hu, P.A. Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283. [Google Scholar] [CrossRef]
- Ge, J.; Sun, L.; Zhang, F.R.; Zhang, Y.; Shi, L.A. A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties. Adv. Mater. 2016, 28, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers 2018, 10, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, C.; Lee, G.Y.; Kim, T.I.; Kim, S.M.; Kim, H.N.; Ahn, S.H.; Suh, K.Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Zhu, P.; Han, F.; Zhu, Y.; Sun, R.; Wong, C.P. Flexible and highly sensitive pressure sensor based on microdome-patterned pdms forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 35968–35976. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Kim, J.H.; Kim, J.; Choi, S.; Lee, J.; Park, I.; Hyeon, T.; Kim, D.H. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 2014, 26, 4825–4830. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Liu, S.Y.; Yang, Y.C.; Lu, J.G. A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite. Nanomaterials 2018, 8, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, W.F.; Wang, X.Y.; Li, Y.Y.; Ai, X.; Fu, J.W. Preparation and Properties of GR/CNTs-PDMS Flexible Strain Sensor. Micronanoelectronic Technol. 2020, 57, 804–809. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Zhang, Y.; Luo, Y.; Lu, J. A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite. Sensors 2021, 21, 6078. https://doi.org/10.3390/s21186078
Luo M, Zhang Y, Luo Y, Lu J. A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite. Sensors. 2021; 21(18):6078. https://doi.org/10.3390/s21186078
Chicago/Turabian StyleLuo, Miao, Yumeng Zhang, Yuxiang Luo, and Jiangang Lu. 2021. "A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite" Sensors 21, no. 18: 6078. https://doi.org/10.3390/s21186078
APA StyleLuo, M., Zhang, Y., Luo, Y., & Lu, J. (2021). A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite. Sensors, 21(18), 6078. https://doi.org/10.3390/s21186078