A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques
Abstract
:1. Introduction
2. An Insight into Fractional-Order Calculus
3. Fractional-Order Sensing
4. Fractional-Order Filters
4.1. Analog Filters
4.2. Digital Filters
5. Applications of Fractional-Order Filters
5.1. Data Transmission and Networking
5.2. Applications Using Lithium-Ion Batteries
5.3. Other Applications
6. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gazizov, R.K.; Lukashchuk, S.Y. Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation. Mathematics 2021, 9, 216. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.; Bates, J.H. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, F.; Yu, Q.; Li, T. Review of fractional epidemic models. Appl. Math. Model. 2021, 97, 281–307. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, C.M.; Dulf, E.H.; Ghita, M.; Muresan, C.I. Robust controller design: Recent emerging concepts for control of mechatronic systems. J. Frankl. Inst. 2020, 357, 7818–7844. [Google Scholar] [CrossRef]
- De Keyser, R.; Muresan, C.I.; Ionescu, C.M. A novel auto-tuning method for fractional order PI/PD controllers. ISA Trans. 2016, 62, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Birs, I.; Muresan, C.; Nascu, I.; Ionescu, C. A Survey of Recent Advances in Fractional Order Control for Time Delay Systems. IEEE Access 2019, 7, 30951–30965. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.S.; Das, D.C.; Ustun, T.S.; Iqbal, A. A review on fractional order (FO) controllers’ optimization for load frequency stabilization in power networks. Energy Rep. 2021, 7, 4009–4021. [Google Scholar] [CrossRef]
- Dastjerdi, A.A.; Vinagre, B.M.; Chen, Y.; HosseinNia, S.H. Linear fractional order controllers; A survey in the frequency domain. Annu. Rev. Control 2019, 47, 51–70. [Google Scholar] [CrossRef]
- Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [Google Scholar] [CrossRef]
- Wei, Y.; Tse, P.W.; Yao, Z.; Wang, Y. The output feedback control synthesis for a class of singular fractional order systems. ISA Trans. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Z.; Liu, F.; Ma, R. Extended Kalman filters for nonlinear fractional-order systems perturbed by colored noises. ISA Trans. 2020, 102, 68–80. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M.; Duarte, F.B.; Ortigueira, M.D.; Rato, R.T. Rhapsody in fractional. Fract. Calc. Appl. Anal. 2014, 17, 1188–1214. [Google Scholar] [CrossRef] [Green Version]
- West, B.J. Fractional Calculus View of Complexity: Tomorrow’s Science; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tenreiro Machado, J.A.; Pinto, C.M.; Mendes Lopes, A. A review on the characterization of signals and systems by power law distributions. Signal Process. 2015, 107, 246–253. [Google Scholar] [CrossRef]
- Sotner, R.; Herencsar, N.; Jerabek, J.; Petrzela, J.; Dostal, T. Design of integer/fractional-order filter with electronically reconfigurable transfer response. In Proceedings of the 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 5–8 December 2017; pp. 156–159. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Singh, A.K.; Gangwar, P. Innovation-based fractional order adaptive Kalman filter. J. Electr. Eng. 2020, 71, 60–64. [Google Scholar] [CrossRef]
- Kaur, H.; Sahambi, J.S. Vehicle Tracking in Video Using Fractional Feedback Kalman Filter. IEEE Trans. Comput. Imaging 2016, 2, 550–561. [Google Scholar] [CrossRef]
- Arthur, J.; Attarian, A.; Hamilton, F.; Tran, H. Nonlinear Kalman filtering for censored observations. Appl. Math. Comput. 2018, 316, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Mao, Z.; Yuan, P.; He, D.; Jia, M. Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm. ISA Trans. 2017, 70, 104–115. [Google Scholar] [CrossRef]
- Menegaz, H.M.T.; Ishihara, J.Y.; Borges, G.A.; Vargas, A.N. A Systematization of the Unscented Kalman Filter Theory. IEEE Trans. Autom. Control 2015, 60, 2583–2598. [Google Scholar] [CrossRef] [Green Version]
- Eftekhar Azam, S.; Bagherinia, M.; Mariani, S. Stochastic system identification via particle and sigma-point Kalman filtering. Sci. Iran. 2012, 19, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, J.; Yu, T.; Jian, H.; Liu, T. Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator. Appl. Math. Comput. 2015, 256, 352–367. [Google Scholar] [CrossRef]
- Moayedi, M.; Soh, Y.C.; Foo, Y.K. Optimal kalman filtering with random sensor delays, packet dropouts and missing measurements. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Z.; Huang, X.; Kan, T. Hybrid extended-cubature Kalman filters for non-linear continuous-time fractional-order systems involving uncorrelated and correlated noises using fractional-order average derivative. IET Control Theory Appl. 2020, 14, 1424–1437. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Zhenyang, G.; Wu, X.; Yuan, C. An Improved Kalman Filter for Fractional Order System with Measurement Lévy noise. In Proceedings of the 2015 Chinese Intelligent Systems Conference; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Mawonou, K.S.; Eddahech, A.; Dumur, D.; Beauvois, D.; Godoy, E. Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. J. Power Sources 2019, 435, 226710. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Abedi, M. Design of a robust central difference Kalman filter in the presence of uncertainties and unknown measurement errors. Signal Process. 2020, 172, 107533. [Google Scholar] [CrossRef]
- Romanovas, M.; Al-Jawad, A.; Klingbeil, L.; Traechtler, M.; Manoli, Y. Implicit Fractional Model Order Estimation Using Interacting Multiple Model Kalman Filters. IFAC Proc. Vol. 2011, 44, 7767–7772. [Google Scholar] [CrossRef] [Green Version]
- Runtemund, K.; Cottone, G.; Müller, G. A combined Kalman-fractional calculus method for the parameter identification of structures under arbitrarily correlated ambient noise. In Proceedings of the ISMA2012-USD2012, Leuven, Belgium, 17–19 September 2012. [Google Scholar]
- Valério, D.; Trujillo, J.; Rivero, M.; Machado, J.; Baleanu, D. Fractional calculus: A survey of useful formulas. Eur. Phys. J. Spec. Top. 2013, 222, 1827–1846. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Tenreiro Machado, J.A. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Caputo, M. Linear Models of Dissipation whose Q is almost Frequency Independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Dorcak, L. Numerical Models for the Simulation of the Fractional-Order Control Systems. arXiv 2002, arXiv:math/0204108. [Google Scholar]
- Lopes, A.M.; Machado, J.T. Fractional order models of leaves. J. Vib. Control 2014, 20, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, C. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, W.; Chen, Y. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. Appl. 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Atangana, A. (Ed.) Chapter 5—Fractional Operators and Their Applications. In Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Academic Press: Cambridge, MA, USA, 2018; pp. 79–112. [Google Scholar] [CrossRef]
- Kamocki, R.; Obczyński, C. On fractional differential inclusions with the Jumarie derivative. J. Math. Phys. 2014, 55, 022902. [Google Scholar] [CrossRef]
- Mahto, L.; Abbas, S.; Favini, A. Analysis of Caputo impulsive fractional order differential equations with applications. Int. J. Differ. Equ. 2013, 2013, 704547. [Google Scholar] [CrossRef]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Leng, B.Y.; Qi, Z.D.; Shan, L.; Bian, H.J. Review of Fractional Order Control. In Modern Technologies in Materials, Mechanics and Intelligent Systems; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2014; Volume 1049, pp. 983–986. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.G.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Shah, Z.M.; Kathjoo, M.Y.; Khanday, F.A.; Biswas, K.; Psychalinos, C. A survey of single and multi-component Fractional-Order Elements (FOEs) and their applications. Microelectron. J. 2019, 84, 9–25. [Google Scholar] [CrossRef]
- Biswas, K.; Bohannan, G.; Caponetto, R.; Mendes Lopes, A.; Tenreiro Machado, J.A. Devices. In SpringerBriefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Lopes, A.M.; Tenreiro Machado, J.A.; Galhano, A.M. Towards fractional sensors. J. Vib. Control. 2019, 25, 52–60. [Google Scholar] [CrossRef]
- Salmaz, U.; Salamat, A.; Islam, T. Fractional order sensor for measuring the quality of milk. Mater. Today Proc. 2019, 18, 1077–1085. [Google Scholar] [CrossRef]
- Islam, T.; Shakil, S.; Lohani, B.; Mukhopadhyay, S. A Fractional Order Impedance Sensor for Measuring the Quality of Drinking Water. In Proceedings of the SENSORCOMM 2018: The Twelfth International Conference on Sensor Technologies and Applications, Valencia, Spain, 16–28 September 2018; pp. 25–30. [Google Scholar]
- Kumar, S.; Ghosh, A. An Improved Fractional-Order Circuit Model for Voltammetric Taste Sensor System with Infused Tea as Analyte. IEEE Sens. J. 2020, 20, 7792–7800. [Google Scholar] [CrossRef]
- Partha Sarathi, V.; Uma, G.; Umapathy, M. Realization of Fractional Order Inductive Transducer. IEEE Sens. J. 2018, 18, 8803–8811. [Google Scholar] [CrossRef]
- Acharya, A.; Das, S.; Pan, I.; Das, S. Extending the concept of analog Butterworth filter for fractional order systems. Signal Process. 2014, 94, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Gupta, M.; Upadhyay, D.K. Active realization of fractional order Butterworth lowpass filter using DVCC. J. King Saud Univ. Eng. Sci. 2020, 32, 158–165. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Bhatt, S.K.; Ghosh, S. Fractional order butterworth filter design using Artificial Bee colony algorithm. In Proceedings of the 2017 7th International Symposium on Embedded Computing and System Design, ISED 2017, Durgapur, India, 18–20 December 2017. [Google Scholar] [CrossRef]
- Bertsias, P.; Psychalinos, C.; Elwakil, A.S. Fractional-Order Complementary Filters for Sensor Applications. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Spain, 17–20 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sladok, O.; Koton, J.; Kubanek, D.; Dvorak, J.; Psychalinos, C. Pseudo-Differential (2 + α)-Order Butterworth Frequency Filter. IEEE Access 2021, 9, 92178–92188. [Google Scholar] [CrossRef]
- Singh, N.; Mehta, U.; Kothari, K.; Cirrincione, M. Optimized fractional low and highpass filters of (1 + α) order on FPAA. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Koumousi, S.; Psychalinos, C. Design of fractional-order filters using Current Feedback Operational Amplifiers. J. Eng. Sci. Technol. Rev. 2016, 9, 71–81. [Google Scholar] [CrossRef]
- Ahmed, O.I.; Yassin, H.M.; Said, L.A.; Psychalinos, C.; Radwan, A.G. Implementation and analysis of tunable fractional-order band-pass filter of order 2α. AEU Int. J. Electron. Commun. 2020, 124, 153343. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Sotner, R.; Jerabek, J.; Koton, J.; Psychalinos, C. Programmable analog array of fractional-order filters with CFOAs. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal Processing, TSP 2017, Barcelona, Spain, 5–7 July 2017. [Google Scholar] [CrossRef]
- Hamed, E.M.; Said, L.A.; Madian, A.H.; Radwan, A.G. On the Approximations of CFOA-Based Fractional-Order Inverse Filters. Circuits Syst. Signal Process. 2020, 39, 2–29. [Google Scholar] [CrossRef]
- Freeborn, T.; Maundy, B.; Elwakil, A. Fractional step analog filter design. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Ghoneim, M.; Hesham, R.; Yassin, H.; Madian, A. α-order universal filter realization based on single input multi-output differential voltage current conveyor. Analog. Integr. Circuits Signal Process. 2021, 107, 411–422. [Google Scholar] [CrossRef]
- Bertsias, P.; Psychalinos, C.; Elwakil, A.S.; Biswas, K. Single transistor fractional-order filter using a multi-walled carbon nanotube device. Analog. Integr. Circuits Signal Process. 2019, 100, 215–219. [Google Scholar] [CrossRef]
- Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Power law filters: A new class of fractional-order filters without a fractional-order Laplacian operator. AEU Int. J. Electron. Commun. 2021, 129, 153537. [Google Scholar] [CrossRef]
- Kapoulea, S.; Psychalinos, C. Double Exponent Fractional-Order Filters: Approximation Methods and Realization. Circuits Syst. Signal Process. 2021, 40. [Google Scholar] [CrossRef]
- Coza, A.; Zupanovic, V.; Vlah, D.; Jurisic, D. Group delay of fractional n + α-order bessel filters. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology, Opatija, Croatia, 28 September–2 October 2020. [Google Scholar] [CrossRef]
- Matos, C.; Ortigueira, M. Fractional Filters: An Optimization Approach. In Doctoral Conference on Computing, Electrical and Industrial Systems; Springer: Berlin/Heidelberg, Germany, 2010; Volume 314, pp. 361–366. [Google Scholar] [CrossRef] [Green Version]
- Moszkowski, T.; Pociask, E. Comparison of fractional- and integer-order filters in filtration of myoelectric activity acquired from biceps brachii. In Advances in the Theory and Applications of Non-Integer Order Systems; Lecture Notes in Electrical Engineering; Springer: Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Mahata, S.; Kar, R.; Mandal, D. Optimal analog-to-digital transformation of fractional-order Butterworth filter using binomial series expansion with Al-Alaoui operator. Int. J. Circuit Theory Appl. 2021, 49, 44–79. [Google Scholar] [CrossRef]
- Mahata, S.; Kar, R.; Mandal, D. Direct digital fractional-order Butterworth filter design using constrained optimization. AEU Int. J. Electron. Commun. 2021, 128, 153511. [Google Scholar] [CrossRef]
- Tseng, C.C.; Lee, S.L. Closed-form designs of digital fractional order Butterworth filters using discrete transforms. Signal Process. 2017, 137, 80–97. [Google Scholar] [CrossRef]
- Koksal, M.E. Fractional Order Butterworth Filter. Int. J. Adv. Eng. Res. Sci. 2018. [Google Scholar] [CrossRef]
- Díaz-Carmona, J.; Jovanovic-Dolecek, G. Fractional Delay Digital Filters. In Applications of MATLAB in Science and Engineering; IntechOpen: London, UK, 2011. [Google Scholar]
- Chen, G.; Zeng, Y.; Wang, M.; Wang, Y. Weighted least-squares method for designing fractional delay FIR digital filters. Shuju Caiji Chuli/J. Data Acquis. Process. 2011, 47, 114–124. [Google Scholar]
- Bensouici, T.; Charef, A.; Assadi, I. A new approach for the design of fractional delay by an FIR filter. ISA Trans. 2018, 82, 73–78. [Google Scholar] [CrossRef]
- Johansson, H.; Harris, F. Polyphase decomposition of digital fractional-delay filters. IEEE Signal Process. Lett. 2015, 22, 1021–1025. [Google Scholar] [CrossRef]
- Kumar, M. Optimal design of fractional delay FIR filter using cuckoo search algorithm. Int. J. Circuit Theory Appl. 2018, 46, 2364–2379. [Google Scholar] [CrossRef]
- Gao, Z. Fractional-order Kalman filters for continuous-time linear and nonlinear fractional-order systems using Tustin generating function. Int. J. Control 2019, 92, 960–974. [Google Scholar] [CrossRef]
- Liu, F.; Gao, Z.; Yang, C.; Ma, R. Extended Kalman Filters for Continuous-time Nonlinear Fractional-order Systems Involving Correlated and Uncorrelated Process and Measurement Noises. Int. J. Control. Autom. Syst. 2020, 18, 2229–2241. [Google Scholar] [CrossRef]
- Sierociuk, D.; Dzielinski, A. Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 2006, 16, 129–140. [Google Scholar]
- Torabi, H.; Pariz, N.; Karimpour, A. A novel cubature statistically linearized Kalman filter for fractional-order nonlinear discrete-time stochastic systems. J. Vib. Control 2018, 24, 5880–5897. [Google Scholar] [CrossRef]
- Sadeghian, H.; Salarieh, H.; Alasty, A.; Meghdari, A. On the general Kalman filter for discrete time stochastic fractional systems. Mechatronics 2013, 23, 764–771. [Google Scholar] [CrossRef]
- Torabi, H.; Pariz, N.; Karimpour, A. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal. Eur. Phys. J. Spec. Top. 2016, 225, 107–118. [Google Scholar] [CrossRef]
- Nosrati, K.; Shafiee, M. Kalman filtering for discrete-time linear fractional-order singular systems. IET Control Theory Appl. 2018, 12, 1254–1266. [Google Scholar] [CrossRef]
- Xue, G.; Xu, Y.; Guo, J.; Zhao, W. The fractional Kalman filter-based asynchronous multirate sensor information fusion. Complexity 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Caballero, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Extended and Unscented Filtering Algorithms in Nonlinear Fractional Order Systems with Uncertain Observations. Appl. Math. Sci. 2012, 6, 1471–1486. [Google Scholar]
- Sierociuk, D.; Macias, M.; Malesza, W.; Sarwas, G. Dual Estimation of Fractional Variable Order Based on the Unscented Fractional Order Kalman Filter for Direct and Networked Measurements. Circuits Syst. Signal Process. 2016, 35. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, Y.; Wu, X.; Hu, Y. Robust extended fractional Kalman filter for nonlinear fractional system with missing measurements. J. Frankl. Inst. 2018, 355, 361–380. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, H. Design of a Robust State Estimator for a Discrete-Time Nonlinear Fractional-Order System With Incomplete Measurements and Stochastic Nonlinearities. IEEE Access 2020, 8, 10742–10753. [Google Scholar] [CrossRef]
- Ramezani, A.; Safarinejadian, B. A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems. Circuits Syst. Signal Process. 2018, 37, 3756–3784. [Google Scholar] [CrossRef]
- Ramezani, A.; Safarinejadian, B.; Zarei, J. Novel hybrid robust fractional interpolatory cubature Kalman filters. J. Frankl. Inst. 2020, 357, 704–725. [Google Scholar] [CrossRef]
- Ramezani, A.; Safarinejadian, B.; Zarei, J. Fractional order chaotic cryptography in colored noise environment by using fractional order interpolatory cubature Kalman filter. Trans. Inst. Meas. Control 2019, 41, 3206–3222. [Google Scholar] [CrossRef]
- Najar, S.; Abdelkrim, M.N.; Abdelhamid, M.; Aoun, M. Discrete fractional Kalman filter. IFAC Proc. Vol. 2009, 42, 520–525. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Z.; Liu, F. Kalman filters for linear continuous-time fractional-order systems involving coloured noises using fractional-order average derivative. IET Control Theory Appl. 2018, 12, 456–465. [Google Scholar] [CrossRef]
- Gao, Z. Fractional-order Kalman filters for continuous-time fractional-order systems involving colored process and measurement noises. J. Frankl. Inst. 2018, 355, 922–948. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Z.; Li, X.; Huang, X. Adaptive fractional-order Kalman filters for continuous-time nonlinear fractional-order systems with unknown parameters and fractional-orders. Int. J. Syst. Sci. 2021, 1–21. [Google Scholar] [CrossRef]
- Chen, X.; Gao, Z.; Ma, R.; Huang, X. Hybrid extended-unscented Kalman filters for continuous-time nonlinear fractional-order systems involving process and measurement noises. Trans. Inst. Meas. Control 2020, 42, 1618–1631. [Google Scholar] [CrossRef]
- Miao, Y.; Gao, Z.; Chen, X. An adaptive unscented Kalman filter for a nonlinear fractional-order system with unknown order. In Proceedings of the 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20–22 November 2020; pp. 874–879. [Google Scholar]
- Azami, A.; Naghavi, S.V.; Dadkhah Tehrani, R.; Khooban, M.H.; Shabaninia, F. State estimation strategy for fractional order systems with noises and multiple time delayed measurements. IET Sci. Meas. Technol. 2017, 11, 9–17. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, X.; Cao, J.; Wei, Z.; Sun, G. Fractional extended Kalman filtering for non-linear fractional system with Lévy noises. IET Control Theory Appl. 2017, 11, 349–358. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y.; Lu, Z.; Wei, Z.; Ni, M.; Yu, W. A modified Kalman filter algorithm for fractional system under Lévy noises. J. Frankl. Inst. 2015, 352, 1963–1978. [Google Scholar] [CrossRef]
- Safarinejadian, B.; Asad, M. Two New Fractional Order Kalman Filters for Linear Fractional Order Systems with Colored Measurement Noise. Tabriz J. Electr. Eng. 2017, 47, 595–607. [Google Scholar]
- Sierociuk, D.; Ziubinski, P. Fractional Order Estimation Schemes for Fractional and Integer Order Systems with Constant and Variable Fractional Order Colored Noise. Circuits Syst. Signal Process. 2014, 33. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Cheng, S.; Wei, Y.; Li, A.; Wang, Y. Fractional central difference Kalman filter with unknown prior information. Signal Process. 2019, 154, 294–303. [Google Scholar] [CrossRef]
- Nosrati, K.; Shafiee, M. On the convergence and stability of fractional singular Kalman filter and Riccati equation. J. Frankl. Inst. 2020, 357, 7188–7210. [Google Scholar] [CrossRef]
- Sharma, N.; Rufus, E.; Karar, V.; Poddar, S. Fractional Order Extended Kalman Filter for Attitude Estimation. In Intelligent Systems Design and Applications; Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 823–832. [Google Scholar]
- Schenato, L. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans. Autom. Control 2008, 53. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, H.; Lei, Z.; Zhang, J. Design for wireless networked control systems with time-delay and data packet dropout. In Proceedings of the 2008 27th Chinese Control Conference, Kunming, China, 16–18 July 2008. [Google Scholar] [CrossRef]
- Gibbs, B.P. Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Haykin, S. Kalman Filtering and Neural Networks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Sum, J.; Leung, C.; Chan, L. Extended Kalman Filter in Recurrent Neural Network Training and Pruning; Chinese University of Hong Kong: Hong Kong, China, 1996. [Google Scholar]
- Schutter, J.D.; Geeter, J.D.; Lefebvre, T.; Bruyninckx, H. Kalman Filters: A Tutorial; Citeseer: Princeton, NJ, USA, 1999. [Google Scholar]
- Sadeghian, H.; Salarieh, H.; Alasty, A.; Meghdari, A. On the fractional-order extended Kalman filter and its application to chaotic cryptography in noisy environment. Appl. Math. Model. 2014, 38. [Google Scholar] [CrossRef]
- Feng, P.; Lu, L.; Xue, D. Compensation for network data dropouts based on modified fractional-order Kalman filter. In Proceedings of the The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015. [Google Scholar] [CrossRef]
- Junling, W.; Cuifang, G.; Zhendong, W.; Yan, C. Malicious Code Family Classification Based on Multi-feature Fusion Fractional Kalman Filter. In Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 28–31 May 2020. [Google Scholar] [CrossRef]
- Sierociuk, D.; Tejado, I.; Vinagre, B.M. Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Process. 2011, 91, 542–552. [Google Scholar] [CrossRef]
- Firouzabadi, M.G.; Nekoui, M.A.; Mohammadzadeh, E.; Mazinan, A.H. Fractional-order distributed Kalman filter in virtualized sensor networks by diffusion strategies. Control Eng. Appl. Inform. 2020, 22, 13–22. [Google Scholar]
- Hasan, R.; Scott, J.B. Fractional behaviour of rechargeable batteries. In Proceedings of the ENZCon 2016, Wellington, New Zealand, 17–18 November 2016. [Google Scholar]
- Sadli, I.; Urbain, M.; Hinaje, M.; Martin, J.P.; Raël, S.; Davat, B. Contributions of fractional differentiation to the modelling of electric double layer capacitance. Energy Convers. Manag. 2010, 51, 2993–2999. [Google Scholar] [CrossRef]
- Dong, G.; Chen, Z.; Wei, J.; Zhang, C.; Wang, P. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters. J. Power Sources 2016, 301, 277–286. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, S.; Yin, C. A lithium-ion battery fractional order state space model and its time domain system identification. In Proceedings of the FISITA 2012 World Automotive Congress; Springer: Berlin/Heidelberg, Germany, 2013; Volume 192. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.E.; Peng, H.; Liu, Z. Fractional-order modeling and parameter identification for lithium-ion batteries. J. Power Sources 2015, 293, 151–161. [Google Scholar] [CrossRef]
- Zou, Y.; Li, S.E.; Shao, B.; Wang, B. State-space model with non-integer order derivatives for lithium-ion battery. Appl. Energy 2016, 161. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Li, S.E.; Moura, S.J.; Peng, H. State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model. IEEE Trans. Control Syst. Technol. 2017, 25, 330–336. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, H.; Zou, C.; Li, Z.; Zhang, L. Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus. IEEE Trans. Veh. Technol. 2018, 67, 10319–10329. [Google Scholar] [CrossRef]
- Cai, M.; Chen, W.; Tan, X. Battery state-of-charge estimation based on a dual unscented kalman filter and fractional variable-order model. Energies 2017, 10, 1577. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, D.; Zhu, Q.; Liu, W.; Liu, C.; Xiong, N. A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter. Energies 2017, 10, 1313. [Google Scholar] [CrossRef]
- Chang, C.; Zheng, Y.; Yu, Y. Estimation for Battery State of Charge Based on Temperature Effect and Fractional Extended Kalman Filter. Energies 2020, 13, 5947. [Google Scholar] [CrossRef]
- Kupper, M.; Brenneisen, J.; Stark, O.; Krebs, S.; Hohmann, S. Cascaded Fractional Kalman Filtering for State and Current Estimation of Large-Scale Lithium-Ion Battery Packs. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 5071–5078. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Pan, K.; Fan, G.; Lu, R.; Zhu, C.; Rizzoni, G.; Canova, M. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery. J. Power Sources 2017, 367, 202–213. [Google Scholar] [CrossRef]
- Mu, H.; Xiong, R.; Zheng, H.; Chang, Y.; Chen, Z. A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 2017, 207, 384–393. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Jiang, H.; Fernandez, C.; Xiong, X. A novel combined estimation method of online full-parameter identification and adaptive unscented particle filter for Li-ion batteries SOC based on fractional-order modeling. Int. J. Energy Res. 2021, 45, 15481–15494. [Google Scholar] [CrossRef]
- Zou, C.; Hu, X.; Dey, S.; Zhang, L.; Tang, X. Nonlinear Fractional-Order Estimator With Guaranteed Robustness and Stability for Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 5951–5961. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Li, S.; Fu, C.; Qin, D.; Li, Z. Lithium-ion battery modeling and parameter identification based on fractional theory. Energy 2018, 165, 153–163. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Li, Y.; Gong, C. Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss. Int. J. Energy Res. 2019, 43, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Mi, C.C.; Cao, B.; Cao, J. A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model. J. Power Sources 2013, 233, 277–284. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. Fractional-order modeling and State-of-Charge estimation for ultracapacitors. J. Power Sources 2016, 314, 28–34. [Google Scholar] [CrossRef]
- Hidalgo-Reyes, J.I.; Gómez-Aguilar, J.F.; Alvarado-Martínez, V.M.; López-López, M.G.; Escobar-Jiménez, R.F. Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory. Alex. Eng. J. 2020, 59, 1919–1929. [Google Scholar] [CrossRef]
- Coopmans, C.; Jensen, A.M.; Chen, Y. Fractional-order complementary filters for small unmanned aerial system navigation. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 754–760. [Google Scholar] [CrossRef]
- Romanovas, M.; Klingbeil, L.; Traechtler, M.; Manoli, Y. Application of fractional sensor fusion algorithms for inertial MEMS sensing. Math. Model. Anal. 2009, 14, 199–209. [Google Scholar] [CrossRef]
- Metia, S.; Oduro, S.D.; Duc, H.N.; Ha, Q. Inverse Air-Pollutant Emission and Prediction Using Extended Fractional Kalman Filtering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2051–2063. [Google Scholar] [CrossRef]
- Metia, S.; Oduro, S.D.; Ha, Q.P.; Due, H. Air pollution prediction using Matérn function based extended fractional Kalman filtering. In Proceedings of the 2014 13th International Conference on Control Automation Robotics Vision (ICARCV), Singapore, 10–12 December 2014; pp. 758–763. [Google Scholar] [CrossRef]
- Oktaviana, Y.V.; Apriliani, E.; Arif, D.K. Fractional kalman filter to estimate the concentration of air pollution. J. Phys. Conf. Ser. 2018, 1008, 012008. [Google Scholar] [CrossRef] [Green Version]
- Ha, Q.P.; Metia, S.; Phung, M.D. Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring. IEEE Sens. J. 2020, 20, 4430–4441. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Chen, D.; Zhao, T.; Chen, Y. Fractional calculus in image processing: A review. Fract. Calc. Appl. Anal. 2016, 19, 1222–1249. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Chandrasekaran, V. Fractional Derivative Filter for Image Contrast Enhancement with Order Prediction. In Proceedings of the IET Conference on Image Processing (IPR 2012), London, UK, 3–4 July 2012; Volume 2012. [Google Scholar] [CrossRef] [Green Version]
- Jalab, H.; Ibrahim, R. Fractional Alexander polynomials for image denoising. Signal Process. 2015, 107, 340–354. [Google Scholar] [CrossRef]
- He, N.; Wang, J.B.; Zhang, L.; Lu, K. An improved fractional-order differentiation model for image denoising. Signal Process. 2015, 112, 180–188. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.; Xue, D. Fractional-order total variation image denoising based on proximity algorithm. Appl. Math. Comput. 2015, 257, 537–545. [Google Scholar] [CrossRef]
- Shukla, A.K.; Pandey, R.; Yadav, S.; Pachori, R.B. Generalized Fractional Filter-Based Algorithm for Image Denoising. Circuits Syst. Signal Process. 2020, 39, 363–390. [Google Scholar] [CrossRef]
- Hu, L.; Cui, J. Digital image recognition based on Fractional-order-PCA-SVM coupling algorithm. Measurement 2019, 145, 150–159. [Google Scholar] [CrossRef]
- Shukla, A.K.; Pandey, R.; Pachori, R.B. A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed. Signal Process. Control 2020, 59, 101883. [Google Scholar] [CrossRef]
- Baloochian, H.; Ghaffary, H.; Balochian, S. Enhancing Fingerprint Image Recognition Algorithm Using Fractional Derivative Filters. Open Comput. Sci. 2017, 7, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Epstein, M.; Murray, R.M. Kalman filtering over a packet-dropping network: A probabilistic perspective. IEEE Trans. Autom. Control. 2010, 55, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Malyavej, V.; Savkin, A.V. The problem of optimal robust Kalman state estimation via limited capacity digital communication channels. Syst. Control Lett. 2005, 54, 283–292. [Google Scholar] [CrossRef]
- Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M.I.; Sastry, S.S. Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 2004, 49, 1453–1464. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Hung, Y.S. Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises. IEEE Trans. Autom. Control 2002, 47, 1179–1183. [Google Scholar] [CrossRef] [Green Version]
- Moheimani, S.O.R.; Savkin, A.V.; Petersen, L.R. Robust filtering, prediction, smoothing, and observability of uncertain systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Soh, Y.C. Robust Kalman filtering for uncertain systems. Syst. Control Lett. 1994, 22, 123–129. [Google Scholar] [CrossRef]
Title | Year | Reference |
---|---|---|
Extended and Unscented Filtering Algorithms in Nonlinear Fractional-Order Systems with Uncertain Observations | 2012 | [86] |
Dual Estimation of Fractional Variable Order Based on the Unscented Fractional-Order Kalman Filter for Direct and Networked Measurements | 2016 | [87] |
State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model | 2017 | [124] |
A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems | 2018 | [90] |
A novel cubature statistically linearized Kalman filter for fractional-order nonlinear discrete-time stochastic systems | 2018 | [81] |
Nonlinear Fractional-Order Estimator With Guaranteed Robustness and Stability for Lithium-Ion Batteries | 2018 | [133] |
Robust extended fractional Kalman filter for nonlinear fractional system with missing measurements | 2018 | [88] |
Fractional-order chaotic cryptography in colored noise environment using fractional-order interpolatory cubature Kalman filter | 2019 | [92] |
Fractional-order Kalman filters for continuous-time linear and nonlinear fractional-order systems using Tustin generating function | 2019 | [78] |
An adaptive unscented Kalman filter for a nonlinear fractional-order system with unknown order | 2020 | [98] |
Design of a Robust State Estimator for a Discrete-Time Nonlinear Fractional-Order System With Incomplete Measurements and Stochastic Nonlinearities | 2020 | [89] |
Extended Kalman Filters for Continuous-time Nonlinear Fractional-order Systems Involving Correlated and Uncorrelated Process and Measurement Noises | 2020 | [79] |
Extended Kalman filters for nonlinear fractional-order systems perturbed by colored noises | 2020 | [11] |
Hybrid extended-cubature Kalman filters for nonlinear continuous-time fractional-order systems involving uncorrelated and correlated noises using fractional-order average derivative | 2020 | [24] |
Hybrid extended-unscented Kalman filters for continuous-time nonlinear fractional-order systems involving process and measurement noises | 2020 | [97] |
Novel hybrid robust fractional interpolatory cubature Kalman filters | 2020 | [91] |
Adaptive fractional-order Kalman filters for continuous- time nonlinear fractional-order systems with unknown parameters and fractional orders | 2021 | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muresan, C.I.; Birs, I.R.; Dulf, E.H.; Copot, D.; Miclea, L. A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques. Sensors 2021, 21, 5920. https://doi.org/10.3390/s21175920
Muresan CI, Birs IR, Dulf EH, Copot D, Miclea L. A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques. Sensors. 2021; 21(17):5920. https://doi.org/10.3390/s21175920
Chicago/Turabian StyleMuresan, Cristina I., Isabela R. Birs, Eva H. Dulf, Dana Copot, and Liviu Miclea. 2021. "A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques" Sensors 21, no. 17: 5920. https://doi.org/10.3390/s21175920
APA StyleMuresan, C. I., Birs, I. R., Dulf, E. H., Copot, D., & Miclea, L. (2021). A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques. Sensors, 21(17), 5920. https://doi.org/10.3390/s21175920