A Semantic SLAM System for Catadioptric Panoramic Cameras in Dynamic Environments
<p>Semantic segmentation results.</p> "> Figure 2
<p>Sphere epipolar geometry.</p> "> Figure 3
<p>Overall framework of dynamic point elimination.</p> "> Figure 4
<p>Dynamic point elimination results (<b>a</b>) Raw ORB feature points extract method and (<b>b</b>) ORB feature points extracted by our Method.</p> "> Figure 5
<p>Average relative translation error between our method and groundtruth: (<b>a</b>) result of low dynamic sequence, (<b>b</b>) result of high dynamic sequence, (<b>c</b>) result of sequences containing high dynamic and low dynamic objects.</p> "> Figure 6
<p>Comparison of absolute trajectory error (ATE) on public dataset (<b>a</b>) result of low dynamic sequence (<b>b</b>) result of high dynamic sequence (<b>c</b>) result of sequences containing high dynamic and low dynamic objects.</p> "> Figure 7
<p>Experimental platform.</p> "> Figure 8
<p>Comparison of experiment trajectories.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Panoramic Image Semantic Segmentation
3.2. Dynamic Point Removal
4. Experiment and Analysis
4.1. Public Dataset Experiment
4.2. Real-World Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bresson, G.; Alsayed, Z.; Yu, L.; Glaser, S. Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE Trans. Intell. Veh. 2017, 2, 194–220. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 834–849. [Google Scholar]
- Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.; Choi, B. Semi-direct visual odometry for a fisheye-stereo camera. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4077–4084. [Google Scholar]
- Liu, P.; Heng, L.; Sattler, T.; Geiger, A.; Pollefeys, M. Direct visual odometry for a fisheye-stereo camera. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1746–1752. [Google Scholar]
- Wang, S.; Yue, J.; Dong, Y.; Shen, R.; Zhang, X. Real-time Omnidirectional Visual SLAM with Semi-Dense Mapping. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Real-time Omnidirectional Visual SLAM with Semi-Dense Mapping, Changshu, China, 26–30 June 2018; pp. 695–700. [Google Scholar]
- Li, G.; Liao, X.; Huang, H.; Song, S.; Liu, B.; Zeng, Y. Robust Stereo Visual SLAM for Dynamic Environments With Moving Object. IEEE Access 2021, 9, 32310–32320. [Google Scholar] [CrossRef]
- Chum, O.; Matas, J.; Kittler, J. Locally Optimized RANSAC; Springer: Berlin/Heidelberg, Germany, 2003; pp. 236–243. [Google Scholar]
- Pire, T.; Fischer, T.; Civera, J.; Cristóforis, P.D.; Berlles, J.J. Stereo parallel tracking and mapping for robot localization. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1373–1378. [Google Scholar]
- Sun, Y.; Liu, M.; Meng, M.Q.H. Improving RGB-D SLAM in dynamic environments: A motion removal approach. Robot. Auton. Syst. 2017, 89, 110–122. [Google Scholar] [CrossRef]
- Li, S.; Lee, D. RGB-D SLAM in Dynamic Environments Using Static Point Weighting. IEEE Robot. Autom. Lett. 2017, 2, 2263–2270. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, Y.; Meng, M.Q.H. Improving monocular visual SLAM in dynamic environments: An optical-flow-based approach. Adv. Robot. 2019, 33, 576–589. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. [Google Scholar] [CrossRef]
- Bescos, B.; Campos, C.; Tardós, J.D.; Neira, J. DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE Robot. Autom. Lett. 2021, 6, 5191–5198. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Z.; Liu, X.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-time Instance Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Flexible Technique for Accurate Omnidirectional Camera Calibration and Structure from Motion. In Proceedings of the IEEE International Conference on Computer Vision Systems, New York, NY, USA, 4–7 January 2006. [Google Scholar]
- Schönbein, M.; Geiger, A. Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014. [Google Scholar]
- Zhang, Y.; Xu, X.; Zhang, N.; Lv, Y.; Lu, Y. Research on Visual Odometry Based on Catadioptric Panoramic Camera. Acta Photonica Sin. 2021, 50, 190–198. [Google Scholar]
- Zhang, J.; Henein, M.; Mahony, R.; Ila, V. VDO-SLAM: A Visual Dynamic Object-aware SLAM System. arXiv 2020, arXiv:2005.11052. [Google Scholar]
Sequence | Catadioptric Pano VO | Ours | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (× 10 m) | Median (× 10 m) | Mean (× 10 m) | S.D (× 10 m) | RMSE (× 10 m) | Median (× 10 m) | Mean (× 10 m) | SD (× 10 m) | |
Low dynamic sequence | 0.012 | 0.011 | 0.010 | 0.003 | 0.0096 | 0.0095 | 0.0092 | 0.0029 |
Low and high dynamic sequence | 0.972 | 0.971 | 0.972 | 0.218 | 0.0359 | 0.0355 | 0.0354 | 0.011 |
High dynamic sequence | 0.923 | 0.914 | 0.916 | 0.304 | 0.0445 | 0.0440 | 0.0441 | 0.013 |
Method | RMSE (m) | Median (m) | Mean (m) |
---|---|---|---|
DS-SLAM | 0.285 | 0.216 | 0.252 |
VDO-SLAM | 0.262 | 0.203 | 0.237 |
Ours | 0.198 | 0.131 | 0.091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, X.; Zhang, N.; Lv, Y. A Semantic SLAM System for Catadioptric Panoramic Cameras in Dynamic Environments. Sensors 2021, 21, 5889. https://doi.org/10.3390/s21175889
Zhang Y, Xu X, Zhang N, Lv Y. A Semantic SLAM System for Catadioptric Panoramic Cameras in Dynamic Environments. Sensors. 2021; 21(17):5889. https://doi.org/10.3390/s21175889
Chicago/Turabian StyleZhang, Yu, Xiping Xu, Ning Zhang, and Yaowen Lv. 2021. "A Semantic SLAM System for Catadioptric Panoramic Cameras in Dynamic Environments" Sensors 21, no. 17: 5889. https://doi.org/10.3390/s21175889
APA StyleZhang, Y., Xu, X., Zhang, N., & Lv, Y. (2021). A Semantic SLAM System for Catadioptric Panoramic Cameras in Dynamic Environments. Sensors, 21(17), 5889. https://doi.org/10.3390/s21175889