Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD
<p>Transmission through thin films, incident and reflected electrical field.</p> "> Figure 2
<p>Typical SPAD cross-sections. (<b>a</b>) A SPAD with complete insulation between the high field region and (<b>b</b>) a SPAD without insulation.</p> "> Figure 3
<p>Photon Detection Probability (PDP) modeling implementation, based on TCAD, Matlab routine, measurements and external data.</p> "> Figure 4
<p>Cross-section and top view of the SPAD under investigation.</p> "> Figure 5
<p>2D electrical field distribution of the SPAD under investigation for an excess voltage <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>x</mi> </mrow> </msub> </semantics></math> = 30% <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </msub> </semantics></math>). The plots “TCAD–Doping profile” and “TCAD–Electric field” are directly taken from the TCAD software and are drawn to scale.</p> "> Figure 6
<p>Electric field profile obtained with TCAD simulation based on doping profile measurement for <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mo>%</mo> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>. A logarithmic scale is used for the vertical axis.</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>e</mi> </mrow> </msub> <mfenced open="(" close=")"> <mi>z</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mfenced open="(" close=")"> <mi>z</mi> </mfenced> </mrow> </semantics></math> are respectively the probability for an electron/a hole starting from the position <span class="html-italic">z</span> inside the depletion region to trigger an avalanche.</p> "> Figure 8
<p><math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is the probability that either an electron or a hole, starting from the position <span class="html-italic">z</span> inside the depletion region, triggers an avalanche breakdown.</p> "> Figure 9
<p>Internal quantum efficiency contributions for <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mo>%</mo> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Internal Quantum Efficiency simulation results, without substrate contribution.</p> "> Figure 11
<p>Photon Detection Probability simulation results, without substrate contribution.</p> "> Figure 12
<p>Photon Detection Probability and internal Quantum Efficiency for <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mo>%</mo> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, without substrate contribution.</p> "> Figure 13
<p>Photon Detection Probability for <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>E</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mo>%</mo> <msub> <mi>V</mi> <mrow> <mi>B</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, without substrate contribution.</p> "> Figure 14
<p>Photon Detection Probability as a function of excess voltage, without subtrate contribution.</p> ">
Abstract
:1. Introduction
- Doping profile measurement. The main distinction with the previous approach is the use of measured doping profile from commercial standard CMOS processes applied to a structure available in such processes, instead of custom processes in [8], an abrupt p-n junction shape approximation in [5,6,9], InGaAs diodes in [7], and entirely generated processes from commercial device simulator tools in [10,11].
- A commercial device simulator tool (TCAD).
- Analytical/numerical relations computed using a Matlab routine.
2. Model and Simulation Method Description
2.1. Photon Transmission Modeling
2.2. Internal Quantum Efficiency Modeling
- be absorbed, creating an electron–hole pair;
- the resultant particle has to diffuse to the depletion layer without recombination;
- once the particle reaches the depletion region, it needs to be accelerated by the high electric field, and finally, triggers an avalanche.
2.3. Internal Quantum Efficiency Modeling in the Undepleted Regions
2.4. Internal Quantum Efficiency Modeling in the Substrate
2.5. Internal Quantum Efficiency Modeling in the Depleted Region
2.6. Avalanche Triggering Probability Modeling
2.7. Model Implementation
- carriers mobility , modeled with the Masetti model [16,24] for modeling mobility degradation due to impurity scattering. The Philips unified mobility model, proposed by Klaassen [25], is also used. This latter unifies the description of majority and minority carrier bulk mobilities, and takes into account the temperature, electron-hole scattering, screening of ionized impurities by charge carriers and clustering of impurities. The high-field saturation is also taken into account [16];
- carrier lifetimes , modeled with doping, electric field and temperature dependence [16]. Carrier lifetimes are defined by the predominant carrier recombination-generation mechanisms: the band-band phonon-assisted Auger-impact and the capture-emission Shockley–Read–Hall (SRH) process. Lifetimes are then controlled by the densities of defects in the silicon [26]. Nevertheless, a doping dependence of the lifetimes are experimentally observed in silicon technologies and is modeled by the Scharfetter relation. This latter is based on theoretical conclusion that trap density of defects obtained with ionic implantation is strongly related to the doping density [26]. More details about the minority carriers lifetime implementation are given in our previous paper [27];
- the electric field F and the depletion layer width , obtained by Poisson equation resolution starting from the doping profile [16].
3. SPAD Description and Characterization Method
- to avoid premature edge breakdown;
- to avoid diode and insulation ring depletion layer merging.
4. Simulation, Measurement Results and Discussion
4.1. Photon Transmission Simulation
- silicon nitride of thickness;
- silicon dioxide of thickness. In reality, this layer is not unified and contains several layers called Inter-Layer-Dielectric (ILD). The stacking leads to a very slight index variation that we neglect.
4.2. Internal Quantum Efficiency and Photon Detection Probability Simulations
- this zone is longer than Top and Dep regions and more charges can diffuse to the depleted region to trigger an avalanche;
- the electrons generate the breakdown in this region. Electrons have a better mobility and avalanche triggering probability than holes.
4.3. Comparison with Measurements and Discussion
4.4. Uncertainties and Model Limitation
- the FWHM of the light intensity received by the sensor, presented in Section 3;
- the slight dispersion on the breakdown voltage measurement discussed in Section 4.3.
- doping profiles measurement;
- the Inter-Layer-Dielectric (ILD) of silicon dioxide stack has been neglected;
- incidence angle used for simulations is , which could not be the case during measurements, although all the necessary precautions were taken, with the light source facing the SPAD.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Measures, R.M. Laser Remote Sensing: Fundamentals and Applications; Krieger Publishing Company: Malabar, FL, USA, 1992. [Google Scholar]
- Charbon, E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos. Trans. R. Soc. A 2014, 372, 20130100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghioni, M.; Gulinatti, A.; Rech, I.; Maccagnani, P.; Cova, S. Large-area low-jitter silicon single photon avalanche diodes. In Quantum Sensing and Nanophotonic Devices V; International Society for Optics and Photonics: San Jose, CA, USA, 2008; Volume 6900, p. 69001D. [Google Scholar]
- Eisele, A.; Henderson, R.; Schmidtke, B.; Funk, T.; Grant, L.; Richardson, J.; Freude, W. 185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology. In Proceedings of the International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011; pp. 278–280. [Google Scholar]
- Rochas, A. Single Photon Avalanche Diodes in CMOS Technology. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003. [Google Scholar]
- Kindt, W. Geiger-Mode Avalanche Photodiode Arrays. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 1999. [Google Scholar]
- Kang, Y.; Lu, H.; Lo, Y.H.; Bethune, D.; Risk, W. Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection. Appl. Phys. Lett. 2003, 83, 2955–2957. [Google Scholar] [CrossRef]
- Gulinatti, A.; Rech, I.; Fumagalli, S.; Assanelli, M.; Ghioni, M.; Cova, S.D. Modeling photon detection efficiency and temporal response of single photon avalanche diodes. In Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing II; International Society for Optics and Photonics: Prague, Czech Republic, 2009; Volume 7355, p. 73550X. [Google Scholar]
- Mazzillo, M.; Piazza, A.; Condorelli, G.; Sanfilippo, D.; Fallica, G.; Billotta, S.; Belluso, M.; Bonanno, G.; Cosentino, L.; Pappalardo, A.; et al. Quantum detection efficiency in Geiger mode avalanche photodiodes. IEEE Trans. Nucl. Sci. 2008, 55, 3620–3625. [Google Scholar] [CrossRef]
- Xu, Y.; Xiang, P.; Xie, X.; Huang, Y. A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors. Semicond. Sci. Technol. 2016, 31, 065024. [Google Scholar] [CrossRef]
- Hsieh, C.A.; Tsai, C.M.; Tsui, B.Y.; Hsiao, B.J.; Lin, S.D. Photon-Detection-Probability Simulation Method for CMOS Single-Photon Avalanche Diodes. Sensors 2020, 20, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knežević, T.; Suligoj, T. Examination of the InP/InGaAs single-photon avalanche diodes by establishing a new TCAD-based simulation environment. In Proceedings of the 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 6–8 September 2016; pp. 57–60. [Google Scholar]
- Signorelli, F.; Telesca, F.; Tosi, A. Photon Detection Efficiency simulation of InGaAs/InP SPAD. In Proceedings of the 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 14–18 September 2020; pp. 1–2. [Google Scholar]
- Xie, S.; Liu, J.; Zhang, F. An Accurate Circuit Model for the Statistical Behavior of InP/InGaAs SPAD. Electronics 2020, 9, 2059. [Google Scholar] [CrossRef]
- Yeh, P. Optical Waves in Layered Media; Wiley Online Library: Hoboken, NJ, USA, 1988; Volume 95. [Google Scholar]
- Synopsys. Sentaurus Device Use Guide; Synopsys: Mountain View, CA, USA, 2015. [Google Scholar]
- Niclass, C.; Gersbach, M.; Henderson, R.; Grant, L.; Charbon, E. A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Henderson, R.K.; Webster, E.A.G.; Grant, L.A. A dual-junction single-photon avalanche diode in 130-nm CMOS technology. IEEE Electron Device Lett. 2013, 34, 429–431. [Google Scholar] [CrossRef]
- Pellegrini, S.; Rae, B.; Pingault, A.; Golanski, D.; Jouan, S.; Lapeyre, C.; Mamdy, B. Industrialised SPAD in 40 nm Technology. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Oldham, W.G.; Samuelson, R.R.; Antognetti, P. Triggering phenomena in avalanche diodes. IEEE Trans. Electron Devices 1972, 19, 1056–1060. [Google Scholar] [CrossRef]
- McIntyre, R.J. On the avalanche initiation probability of avalanche diodes above the breakdown voltage. IEEE Trans. Electron Devices 1973, 20, 637–641. [Google Scholar] [CrossRef]
- Moll, J.L.; Van Overstraeten, R. Charge multiplication in silicon pn junctions. Solid-State Electron. 1963, 6, 147–157. [Google Scholar] [CrossRef]
- Schaepe, K.; Jungnickel, H.; Heinrich, T.; Tentschert, J.; Luch, A.; Unger, W.E. Chapter 4.7—Secondary ion mass spectrometry. In Characterization of Nanoparticles; Hodoroaba, V.D., Unger, W.E., Shard, A.G., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–509. [Google Scholar] [CrossRef]
- Masetti, G.; Severi, M.; Solmi, S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron Devices 1983, 30, 764–769. [Google Scholar] [CrossRef]
- Klaassen, D. A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid-State Electron. 1992, 35, 953–959. [Google Scholar] [CrossRef]
- Fossum, J.G.; Lee, D.S. A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid-State Electron. 1982, 25, 741–747. [Google Scholar] [CrossRef]
- Panglosse, A.; Martin-Gonthier, P.; Marcelot, O.; Virmontois, C.; Saint-Pé, O.; Magnan, P. Dark Count Rate Modeling in Single-Photon Avalanche Diodes. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1507–1515. [Google Scholar] [CrossRef]
- Finkelstein, H.; Hsu, M.J.; Esener, S.C. STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett. 2006, 27, 887–889. [Google Scholar] [CrossRef]
- Faramarzpour, N.; Deen, M.J.; Shirani, S.; Fang, Q. Fully Integrated Single Photon Avalanche Diode Detector in Standard CMOS 0.18 μm Technology. IEEE Trans. Electron Devices 2008, 55, 760–767. [Google Scholar] [CrossRef]
- Niclass, C.; Soga, M. A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18 μm CMOS technology. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 14–23. [Google Scholar]
- Isaak, S.; Pitter, M.C.; Bull, S.; Harrison, I. Design and characterisation of 16 × 1 parallel outputs SPAD array in 0.18 μm CMOS technology. In Proceedings of the 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, Malaysia, 6–9 December 2010; pp. 979–982. [Google Scholar]
- Mandai, S.; Fishburn, M.W.; Maruyama, Y.; Charbon, E. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology. Opt. Express 2012, 20, 5849–5857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerappan, C.; Charbon, E. A low dark count pin diode based SPAD in CMOS technology. IEEE Trans. Electron Devices 2015, 63, 65–71. [Google Scholar] [CrossRef]
Diameter (m) | 10 |
---|---|
Breakdown Voltage (V) | 12.5 |
Excess voltage (V) | 2.5 (20% ) |
Maximum PDP (%) | 40 (at ) |
DCR (cps · ) | 1700 |
Afterpulsing probability (%) | |
Jitter ( | 260 (at ) |
Quenching | Passive |
Dead-time ( | 70 |
Excess Voltage (% ) | Mean Error, without Substrate Contribution (%) | (%) | Mean Error, with Substrate Contribution (%) |
---|---|---|---|
15 | 23 | 15 | 15 |
20 | 20 | 15 | 15 |
25 | 16 | 10 | 13 |
30 | 15 | 5 | 13 |
Average | 18.5 | 13.75 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panglosse, A.; Martin-Gonthier, P.; Marcelot, O.; Virmontois, C.; Saint-Pé, O.; Magnan, P. Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD. Sensors 2021, 21, 5860. https://doi.org/10.3390/s21175860
Panglosse A, Martin-Gonthier P, Marcelot O, Virmontois C, Saint-Pé O, Magnan P. Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD. Sensors. 2021; 21(17):5860. https://doi.org/10.3390/s21175860
Chicago/Turabian StylePanglosse, Aymeric, Philippe Martin-Gonthier, Olivier Marcelot, Cédric Virmontois, Olivier Saint-Pé, and Pierre Magnan. 2021. "Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD" Sensors 21, no. 17: 5860. https://doi.org/10.3390/s21175860
APA StylePanglosse, A., Martin-Gonthier, P., Marcelot, O., Virmontois, C., Saint-Pé, O., & Magnan, P. (2021). Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD. Sensors, 21(17), 5860. https://doi.org/10.3390/s21175860